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ABSTRACT 

 

Antibiotics are widely used in human society and have been frequently 

detected in sewage treatment plants (STP). However, the fate of antibiotics in these 

STPs is limited, particularly in Southeast Asian countries. Therefore, this study was 

conducted to evaluate the removal performances of six selected STPs on selected 

wastewater quality parameters and four frequently prescribed antibiotics (ampicillin, 

ciprofloxacin, erythromycin and sulfamethoxazole). The mass flow, mass balance and 

removal pathways analysis of the antibiotics in these STPs were conducted in detail. 

The insight into the relationship between the removals of wastewater quality 

parameters and antibiotics was provided. Sewage samples were taken at each stage of 

six STPs, comprising of two decentralised treatment plants (Imhoff tanks (IT)), four 

conventional treatment plants (three extended aerations (EA) and one conventional 

activated sludge (CAS)) in Johor Bahru district. Liquid and sludge samples were pre-

treated using solid phase extraction and ultrasonicate extraction, respectively, followed 

by their quantification using UHPLC-MS according to USEPA Method 1694. Quality 

control experiment was done for the selected antibiotics with internal surrogate 

standards. The findings showed that most of the conventional wastewater constituents 

were better removed in conventional treatment systems compared to decentralised 

treatment system. The findings revealed that ampicillin, ciprofloxacin, erythromycin 

and sulfamethoxazole were detected in most wastewater samples, including influent, 

secondary effluent, final effluent and sewage sludge samples. The antibiotic 

concentrations in the wastewater and sludge ranged from 4.2 ng/l to 2,690 ng/l and 1.7 

ng/g to 317.4 ng/g, respectively. Between -26.4% to 99.9% of the antibiotics were 

removed in all STPs, depending on the process employed. A detailed antibiotic mass 

flow was conducted in EA and IT plants. An estimate of 45.6 g of ampicillin, 76.7 g 

of ciprofloxacin, 60.0 g of erythromycin and 225.4 g of sulfamethoxazole were 

discharged into the receiving river annually. The mass balance analysis indicated that 

biodegradation is the major route for the removal of all antibiotics studied. Sorption is 

only responsible for minor removal of ciprofloxacin, erythromycin and 

sulfamethoxazole. Statistical analysis showed that AMP and ERY removals were 

highly related with organic and solid removals while the removal of CIP and SMX 

were highly related with nutrient removal only. However, these relationships were 

insignificant due to small number of samples. As a conclusion, this study provided a 

preliminary evaluation on the removal of antibiotics in each stage of conventional and 

decentralised STPs. This work showed that conventional treatment system has better 

removal performance on wastewater quality parameters compared to decentralised 

treatment system. However, the removal of antibiotics accomplished by both 

conventional treatment systems is not significantly superior than that of decentralised 

treatment systems. Both systems are insufficient to prevent the discharge of antibiotics 

into the environment. 
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ABSTRAK 

 

Antibiotik digunakan secara meluas dalam masyarakat dan ia telah dikesan di 

loji rawatan kumbahan (STP). Walau bagaimanapun, pengetahuan tentang nasib 

antibiotik dalam STP adalah terhad, terutamanya di negara-negara Asia Tenggara. 

Kajian ini dijalankan bagi menilai prestasi penyingkiran beberapa parameter kualiti air 

kumbahan dan empat antibiotik yang lazim digunakan (ampisillin (AMP), 

siprofloksasin (CIP), eritromisin (ERY) dan sulfametoksazol (SMX)) di enam buah 

STP terpilih. Analisa aliran jisim, keseimbangan jisim, dan jalan penyingkiran 

antibiotik di  STP telah dijalankan secara terperinci. Hubung kait di antara 

penyingkiran parameter air kumbahan dan antibiotik diberikan. Sampel air kumbahan 

telah diambil di setiap bahagian proses rawatan di dua buah STP tidak berpusat (tangki 

Imhoff (IT)) dan empat buah STP konvensional (tiga sistem pengudaraan lanjutan (EA) 

dan satu sistem konvensional enapcemar teraktif (CAS)) di daerah Johor Bahru. Pra-

rawatan telah dilakukan bagi semua sampel air dan enapcemar dengan menggunakan 

pengekstrakan fasa pepejal dan pengekstrakan ultrasonik sebelum penentuan kuantiti 

dibuat dengan menggunakan kromatografi cecair berprestasi tinggi- spectrometer 

mass (UHPLC-MS) berdasarkan Kaedah 1694 USEPA. Ujian kawalan kualiti telah 

dijalankan bagi antibiotik terpilih dengan mengikut piawaian pengganti dalaman. 

Hasil kajian menunjukkan bahawa STP konvensional mempunyai prestasi 

penyingkiran parameter kualiti air kumbahan yang lebih baik berbanding dengan STP 

tidak berpusat. Selain itu, antibiotik AMP, CIP, ERY dan SMX telah kesan di dalam 

semua sampel air sisa termasuklah sampel influen, efluen dan sampel enapcemar. 

Antibiotik berkepekatan di antara 4.2 ng/l dan 2,690 ng/l dikesan dalam air sisa 

manakala antibiotik berkepekatan di antara 1.7 ng/g to 317.4 ng/g telah dikesan dalam 

enapcemar. Penyingkiran antibiotik di antara -26.4% dan 99% didapati di semua STP, 

bergantung kepada proses yang digunakan. Analisa aliran jisim antibiotik telah 

dilaksanakan secara terperinci untuk sistem EA dan IT. Dianggarkan sebanyak 45.6 g 

AMP, 76.7 g CIP, 60.0 g ERY dan 225.4 g SMX, telah dilepaskan ke dalam sungai 

setiap tahun. Analisis keseimbangan jisim antibiotik menunjukkan penguraian bio 

adalah cara penyingkiran antibiotik yang utama. Penjerapan hanya bertanggung jawab 

menyingkirkan sedikit CIP, ERY dan SMX. Analisis statistik menunjukkan bahawa 

wujudnya hubungan yang kuat antara penyingkiran AMP dan ERY dengan 

penyingkiran organik dan nutrien. Selain itu, penyingkiran CIP dan SMX juga 

mempunyai hubungan dengan penyingkiran nutrien. Walau bagaimanapun,  hubungan 

tersebut adalah tidak ketara disebabkan bilangan sampel yang kecil. Kesimpulannya, 

kajian ini menunjukkan bahawa STP konvensional mempunyai prestasi penyingkiran 

parameter kualiti air kumbahan yang lebih baik berbanding dengan STP tidak berpusat. 

Tetapi, tidak ada bukti yang menunjukkan prestasi penyingkiran antibiotik di STP 

konvensional adalah lebih baik daripada STP desentralisasi. Kedua-dua sistem STP 

tidak manpu untuk menghalang pelepasan antibiotik ke persekitaran. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1 Preamble 

 

The effectiveness of antibiotics against bacterial infection have rendered 

exponential increase in consumption of antibiotics around the globe. During the past 

15 years, the global consumption of antibiotics has increased from 21.1 billion to 34.8 

billion defined daily dose (DDD) (Gelband et al., 2015). After the consumption of 

antibiotic, a portion of the consumed antibiotic will be excreted from human body and 

discharged into sewerage system. This consequently led to the frequently found of 

various types of antibiotics in the influent of sewage treatment plant (STP), ranging 

from ng/L to µg/L level (Le et al., 2018; Tran et al., 2016; Radjenović et al., 2009; 

Gulkowska et al., 2008; Brown et al., 2006; Göbel et al., 2005). 

 

Despite conventional treatment system being currently adopted as main 

treatment technology, decentralised treatment system is employed in urban and rural 

areas of many countries (Nguyen et al., 2018; Capodaglio, 2017; Yacob et al., 2017; 

Istenic et al., 2015). For example, decentralised treatment system accounted for 50% 

of the total STP and serving 1.0 million populations in Malaysia (IWK, 2020). 

Meanwhile, developed countries such as United States, have decentralised treatment 

system serving approximately 60 million people (Nelson, 2005).  

 

 Unfortunately, most of the conventional STPs are incapable to achieve 

complete removal of antibiotics and only a portion of these antibiotics will be removed 

during the treatment process (Le et al., 2018; Alvarino et al., 2014). The untreated 

antibiotics will eventually be discharged into receiving water body. As a consequence, 

aquatic organisms and human are exposed to high risk due to the presence of the 

antibiotic’s residue (Hu et al., 2018; Papageorgiou et al., 2016; Kosma et al., 2014). 
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The toxicity of antibiotic residue varies depending on the types of antibiotic exposure. 

Many acute and chronic adverse effects were reported such as transfer of antibiotic 

resistant bacteria to the human, autoimmunity, carcinogenicity (sulfamethazine and 

oxytetracycline), mutagenicity, nephropathy (Gentamicin), hepatotoxicity, 

reproductive disorders, bone marrow toxicity (Chloramphenicol) and allergy 

(Penicillin) (Priyanka et al., 2017; Pomati et al., 2006). More importantly, the 

development of antibiotic resistance bacteria (ARB) and antibiotic resistance gene 

(ARG) could be easily triggered by antibiotic residue at environmental relevant 

concentration as reported in many previous studies (Hanna et al., 2018; Le et al., 2018; 

Calero-Cáceres et al., 2017; Keen et al., 2017; Qiao et al., 2017). Worldwide, the 

development and spread of antibiotic resistant bacteria/resistance genes has become a 

serious and growing threat to modern medicine and is considered as one of the leading 

health concerns of the 21st century (WHO, 2019). 

 

In this context, many countries have initiated monitoring program on the 

antibiotic removal capability of STPs. Recently, few types of antibiotics have been 

listed as hazardous substances in the list of priority substances in the field of water 

policy by the European Communities (EC) (EC, 2018; EC, 2015). In Malaysia, the 

discharge of sewage is regulated by the Environmental Quality (Sewage) Regulations 

2009, Environmental Quality Act 1974 and the operators of the STP are responsible in 

ensuring that the effluent from the STP complies with the legislative requirement 

(DOE, 1974). However, currently, none of the regulation is in force to regulate the 

limit for antibiotics discharge into the environment. 

 

In general, STP comprised of several treatment stages, which include primary, 

secondary and tertiary treatments. During the treatment in STP, different portion of 

antibiotic is removed in each of the treatment stage and it is mostly removed through 

biotic (biodegradation) and abiotic (sorption) pathways. Due to the differences in the 

design and operation of each treatment stage, the removal efficiency of the antibiotics 

contributed by each stage varies accordingly (Östman et al., 2018; Batt et al., 2007). 

In Malaysia, most of the STPs consist of two stages without tertiary treatment. The 

removal of antibiotics thus fully depends on the currently existing processes. This 
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raises the need and concern on the investigation of removal efficiency of the antibiotics 

by each treatment stage of the STPs. 

 

1.2 Problem Statement 

 

Many previous researches have been conducted on the effectiveness of STP in 

antibiotic removal. However, these studies only focused on conventional STP such as 

activated sludge system and membrane bioreactor. Decentralised treatment system 

such as septic tank and it modified system (i.e. imhoff tank) apparently missing in 

previous study. This information is important as these decentralised treatment systems 

are still commonly employed in rural area and small community of many countries as 

main treatment system. Hence, to have a clearer idea on how these systems remove 

antibiotic in wastewater is essential to prevent continue discharge of antibiotic to 

environment. 

 

The type and concentration of antibiotics detected in the influent of STPs varies 

considerably between region and country. Despite extensive researches being carried 

out on the occurrence of antibiotics in the influent of STPs, the types and concentration 

of antibiotics detected in STP influent varied between the studies regardless of 

treatment systems employed. The significant variation of antibiotic types and 

concentrations in STPs’ influent between regions could be due to factors such as 

antibiotics consumption pattern, seasonal and hourly fluctuation and the effect of STP 

scale. The variation between regions renders the investigation results from other 

studies not suitable to be fitted in Malaysia scenario. Hence, this study is important as 

to provide a better understanding on the presence of antibiotics in the influent of STP 

in Malaysia. 

 

Many countries such as United Stated, China, Spain, Finland, Japan and 

Singapore had initiated the investigation on the antibiotic removal capability of STPs 

in their respective countries. This information is important as it will provide a better 

understanding on the actions that need to be taken to minimize the antibiotic discharge 
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into environment. Apparently, as the investigation on the antibiotic removal capability 

of STP in tropical climate countries have only been carried out in Singapore, further 

study in this area is therefore crucial. 

 

In Malaysia, different types of treatment system have been employed in STP 

consisting of old and new technologies. Each system comprised of different processes 

with different capabilities. There is a need to understand how these processes and 

systems respond to different types of antibiotics and the type of removal mechanisms 

and pathways that are involved in the removal process with regards to the tropical 

climate. Furthermore, as antibiotics are expensive to analyse, it is important to explore 

the relationship between the removal of the commonly monitored wastewater quality 

parameters and the antibiotics. 

 

1.3 Objectives 

 

The aim of this study is to investigate the occurrence and behaviour of selected 

antibiotics in targeted STPs. The study objectives are: 

 

i. To evaluate the occurrence concentration of targeted antibiotics (Ampicillin 

(AMP), ciprofloxacin (CIP), erythromycin (ERY) and sulfamethoxazole 

(SMX)) in the targeted STPs and the effectiveness of selected conventional and 

decentralized sewage treatment processes on the removal of selected 

antibiotics. 

 

ii. To determine the behaviour and removal pathway of the targeted antibiotics in 

STP through mass balance analysis. 

 

iii. To relate the performance of the conventional treatment process in removing 

wastewater quality parameters and the selected antibiotics. 
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1.4 Scope of study 

 

The study was conducted at six selected STPs in Johor Bahru district 

throughout a research period of eight months (December 2018 – August 2019). The 

selected types of STP include extended aeration (EA), imhoff tank (IT) and 

conventional activated sludge (CAS) which are commonly used in Malaysia. 

 

This study focused on four types of antibiotic namely AMP, CIP, ERY and 

SMX being the most common used antibiotics around the globe (World Health 

Organization, 2018). Additionally, other wastewater quality parameters including 

chemical oxygen demand (COD - total and soluble), biochemical oxygen demand (5d-

BOD), total suspended solid (TSS), total volatile solid (TVS), ammonia-N, nitrite-N, 

nitrate-N, total nitrogen (TN) and total phosphorus (TP) were also monitored. They 

were monitored at the influent, intermediate treatment stages and effluent of the 

treatment plants. The antibiotics within the solid/biomass were also quantified to 

determine the sorption capacity of the antibiotics onto these solids. The separation and 

quantification of the antibiotics were carried out at Monash University LC-MS/MS 

Laboratory, while the samples preservation, wastewater quality parameters analysis 

and samples pre-treatment (solid phase extraction and ultrasonicate extraction) were 

conducted at IPASA Environmental Engineering Laboratory, UTM. 

 

The removal efficiencies of wastewater quality parameters and antibiotics of 

the targeted STPs were compared and correlated. The mass balance analysis of 

antibiotics throughout the process of STPs were conducted to understand the fate and 

removal pathways of the antibiotics. 

 

1.5 Significance of study 

 

Extensive research has showed the ineffective treatment of antibiotics by STP 

in many country and region (Verlicchi et al., 2012; Li and Zhang, 2011). While many 

studies have been conducted elsewhere, such study is apparently lacking in Southeast 
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Asia region (SEA), such as Malaysia. Therefore, the significances of this study are 

listed as follows: 

 

1. The findings of this study would provide a better understanding on the removal 

capability of antibiotics by conventional and decentralised treatment systems. 

Furthermore, as decentralised treatment systems serve as a vital part of the sewerage 

system in Malaysia and many countries, the outcome of this work would be 

significantly beneficial. 

 

2. The findings from mass balance analysis would allow us to understand the 

contribution of each treatment stage at the STP in removing the antibiotics. This would 

also enhance our understanding on the removal pathway of the antibiotics within the 

treatment process. 

 

3. Investigation on the removal efficiency of the STPs with regards to the 

conventional wastewater quality parameters would provide a better understanding on 

the efficiency of different treatment systems in abiding to the regulations set by the 

authorities. Furthermore, the examination of the relationship between wastewater 

quality parameters removal and antibiotics removal would allow us to understand the 

simultaneous process that occurs during the removal process. The relationship would 

also provide a cheaper approach in determining the removal of antibiotics from the 

wastewater. 

 

1.6 Limitation and assumption 

 

There are few limitations and assumptions used in this work and they are as 

follows: 

 

(1) The studied STPs in this work are located in Johor District only. Therefore, the 

findings from this work might not represent the situation of whole Malaysia. 
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(2) Grab sampling method was used in this work instead of composite sampling. This 

is based on the assumption that all STPs are operating under steady state. 

 

1.7 Organization of thesis 

 

This thesis consists of five chapters. The gap on the antibiotic removal in 

decentralised treatment plant and the importance on filling these gaps are discussed in 

the first chapter. The second chapter focuses on the literature review, mainly discusses 

on the occurrence of antibiotics in surface water and wastewater, the removal 

mechanisms of antibiotics, the overall antibiotics removal in treatment plants and the 

factors affecting the antibiotics removal during treatment process. The third chapter 

explains the methodology used for this study and the detailed procedure of antibiotics 

recoveries, detections and quantifications. Chapter Four discusses the findings of the 

study, according to each objective. Finally, Chapter Five shows the conclusions and 

recommendations for future research. 
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