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ABSTRACT 

Tunnels after serving period over time needs to be inspected and maintained 

for them to perform without any structural failure and posing no hazard to the ongoing 

traffic. Structural health assessment of tunnel lining is carried out to investigate and 

mitigate the cause of defects in tunnel lining to ensure user safety. In conjunction with 

other tunnel liner defects, liner cracks were found to be considered as the most critical 

defect because of their potential to trigger subsequent defects and cause tunnel 

instability. Until now, the relationship between the developing anomalies in tunnel 

liner and their cause is still unclear and studies have addressed the cause of liner crack 

due to topography (in terms of overburden) on the stability of tunnel liner, especially 

for the varying overburden. The research mainly aims at understanding the effect of 

varying overburden on liner cracks. For this purpose, visual inspection was conducted 

and cracks in the tunnel liner were mapped and quantified and numerical analysis was 

performed to see the effect of varying topography (overburden) using parameter Stress-

Ratio (K) on the intensity of liner in terms of state of stress-displacement using Induced 

Stress (IS) and Stress Concentration Factor (SCF) as a performance evaluation 

criteria’s. The result from this study shows the shift in magnitude as well as position 

of crack density along different portions of tunnel liner with varying overburden depth. 

Moreover, based on the regional diversity of crack along longitudinal profile of tunnel 

for advances in tunnel assessment, tunnel was divided into zones based on the varying 

overburden with a view to identify varying intensity of crack on tunnel liner. The crack 

density increased with increasing overburden depth such as shallow zone is ranging 

from 0 to 96 m overburden depth with crack density (575 m to 628 m), while transition 

zone has range from 97 to 160 m having density (650 m to 700 m) whereas the 

overburden depth for deep zone with denser cracks at vertical wall and lower hance 

portion ranges from 161 to 204 m with crack density (704 m to 724 m). On the basis 

of results, the method applied for mapping and quantification of crack can serve 

inspectors and owners of tunnels for technical guidance to conduct health assessment 

of tunnel liner. 
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ABSTRAK 

 Terowong, selepas suatu tempoh masa operasi, perlu diperiksa dan 

diselenggara agar terowong ini dapat beroperasi tanpa kegagalan struktur dan tidak 

menimbulkan bahaya kepada lalu lintas. Penilaian kesihatan struktural pelapik 

terowong dilakukan untuk menyiasat dan mengurangkan punca kerosakan pada 

pelapik terowong bagi memastikan keselamatan pengguna. Bersama dengan kecacatan 

pelapik terowong lain, keretakan kapal didapati dianggap sebagai kecacatan paling 

kritikal kerana berpotensi mencetuskan kecacatan berikutnya dan menyebabkan 

ketidakstabilan terowong. Sehingga kini, hubungan antara anomali yang berkembang 

pada pelapik terowong dan penyebabnya masih belum jelas dan kajian mengenai 

penyebab keretakan pelapik terowong oleh faktor topografi (dari segi tanggungan atas) 

terhadap kestabilan pelapik terowong, terutamanya untuk taggungan atas yang 

berbeza-beza. Tujuan utama kajian ini adalah untuk memahami kesan tanggungan atas 

pelbagai pada retakan pelapik terowong. Untuk tujuan ini, pemeriksaan visual 

dilakukan dan retakan pada pelapik terowong dipetakan, diukur dan analisis numerik 

dilakukan untuk melihat kesan topografi yang berbeza-beza (tanggungan atas) 

menggunakan parameter nisbah tegasan (K) pada intensiti pelapik dari segi keadaan 

tekanan-anjakan menggunakan Induced Stress (IS) dan Stress Concentration Factor 

(SCF) sebagai kriteria penilaian prestasi. Hasil dari kajian ini menunjukkan perubahan 

magnitud serta kedudukan kepadatan retakan di sepanjang bahagian pelapik terowong 

pada kedalaman dan tanggungan atas yang berbeza-beza. Tambahan lagi, berdasarkan 

kepelbagaian keretakan di sepanjang profil membujur terowong, terowong 

dibahagikan kepada beberapa zon berdasarkan tanggungan atas yang bervariasi 

dengan tujuan untuk mengenal pasti pelbagai intensitas retakan pada pelapik 

terowong. Kepadatan retakan bertambah dengan peningkatan tangungan atas, di mana 

zon cetek berkisar antara kedalaman 0 hingga 96 m tanggungan atas, dengan kepadatan 

retakan (575 m hingga 628 m), sementara zon peralihan berkisar di antara 97 hingga 

160 m dengan kepadatan (650 m hingga 700 m), manakala kedalaman tanggungan atas 

untuk zon dalam dengan retakan yang lebih padat pada dinding menegak dan bahagian 

hance yang lebih rendah berkisar antara 161 hingga 204m dengan kepadatan retakan 

(704 m hingga 724m). Berdasarkan hasil kajian, kaedah yang digunakan untuk 

pemetaan dan pengukuran retak ini dapat membantu pemeriksa dan pemilik terowong 

sebagai garis panduan teknikal untuk menjalankan kerja-kerja penilaian kesihatan 

pelapik terowong. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

The role of construction industry in the development of any country cannot be 

ignored. A nation’s competitiveness can be seen and realized in terms of its 

infrastructure. Being a developing nation Malaysia has realized the role of construction 

industry not only from economic perspective but also in the quality-of-life standard of 

its people. The increasing interest and inevitable need of construction industry is due 

to vision 2020. According to which, Malaysia must maintain GDP of 6% by the end 

of 2020 to be recognized one of the developed nations. The main purpose of vision 

2020 is to turn Malaysia into developed, strong, economically healthy and vigorous 

nation by the end of 2020, which has resulted in the execution of many civil 

infrastructures including tunnels in Malaysia [2].  

Since construction industry depends on the development of new infrastructure, 

but the condition of existing aging structures cannot be overlooked in terms of loss of 

revenue and disruption to industry and life of people. In addition, construction of new 

structure will cost more than that of reinstatement of already built structure. Tunnel is 

one of the major structures of civilization and an attractive civil infrastructure because 

of its advantage of providing better transportation facilities. After providing services 

over years, deterioration or other defects in the tunnels especially on the tunnel lining 

can be seen due to lack or improper maintenance, delay in repair or mainly due to 

aging, which results in decrease in the integrity of tunnel lining caused by the 

deterioration which may leads to tunnel collapse [3]. Hence the collapse of tunnel will 

seriously damage the socio-economic development and life quality of people in the 

city [4]. 
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The deterioration of tunnel lining which is manifested in lining anomalies such 

as: crack, water-leakage, spalling or delamination, rusting of re-enforcement etc. 

Among them the most serious and damaging anomaly is liner crack. To avoid these 

unwanted situations to happen a monitoring system is required to identify, monitor, 

and determine the types of anomalies and cause of their development in the tunnel 

lining. Therefore, to ensure the durability of the tunnel the structural health assessment 

of tunnel lining is needed during its service life [5]. 

For the abovementioned problem, many approaches have been established in 

the past regarding finding the cause of development of liner cracks and their respective 

effects on tunnel liner for the health assessment of tunnel such as movement of 

neighbouring slope, difference of temperature in environments, geological condition, 

construction deficiencies and topography [6-9]. Among them effect of varying 

topography, in terms of overburden especially in tunnels buried under shallow 

overburden, has widely been studied for development of crack to ensure stability of 

tunnel [7]. Many researchers have studied effect of varying topography on liner in 

terms of subsidence or settlements of crown mostly in shallow tunnels, but no study is 

available on effect of varying overburden on the intensity of crack along the 

longitudinal profile of tunnel.  

Numerical modelling is best way to demonstrate real life physical phenomenon 

in an idealized and simplified conceptual model. Although, result generated from 

numerical simulation are not exactly accurate, but they give approximation and aids 

knowledge in the understanding of solution of existing problem. Contrary to the 

previous studies constructing numerical model using horizontal ground surface to see 

the effect of topography, better result can be achieved using real topography. 

1.2 Problem Statement 

The realization of vision 2020 mentioned above shows the importance of 

development of new and maintenance of the existing civil infrastructures. Since tunnel 

is one of the significant underground structures which support transportation of goods 
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and people, but tunnel deteriorate over period of time. And out aging of existing 

tunnels are inevitably expensive in terms of loss to national asset and life quality of 

people. The main reason of tunnel deterioration is the development of liner cracks 

which may leads to tunnel collapse if not properly addressed. Therefore, to avoid 

disruption to industry the health condition of existing tunnels needs to be maintained 

for which we need health assessment system. Usually, concept of topography is used 

to know the inducement of crack but there is lack of understanding about the effect of 

varying topography on behaviour of crack in terms of its intensity on tunnel liner. 

Therefore, novel approach is needed to understand the influence of varying overburden 

on crack with a view to use it as a practical tool to facilitate health assessment of tunnel 

liner. 

1.3 Significance of Study 

This study has given fair amount of understanding about the crack intensity 

along with their cause of inducements on tunnel liner for which health monitoring has 

received significant attraction. Especially, the effect of real topography on the tunnel 

liner was limited in previous literature with respect to behaviour of crack in terms of 

intensity along longitudinal profile of tunnel. This study validates and illustrates the 

application of proposed diagnostic approach in health assessment of tunnel by 

considering the effect of real topography on tunnel liner. The methodology presented 

and finding from this study may kick start serious efforts in providing technical 

guideline to the tunnel inspector and tunnel owners for the subsequent technical and 

maintenance program to increase the lifespan of tunnel. The results from numerical 

analysis may also give fair amount of idea to designers and engineers, keeping role of 

varying overburden in mind, during design and construction phase of tunnel. The 

outcome of this research will provide comprehensive knowledge and idea that can be 

pursued for future study. 
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1.4 Research Aim and Objectives 

The aim of this study is to gain understanding of crack density at shotcrete 

tunnel liner by incorporating the influence of varying overburden factor on the 

intensity of crack. To achieve this aim, following objectives were needed: 

i. To identify the cracks on tunnel liner. 

ii. To quantify intensity of cracks mapped from visual inspection. 

iii. To validate the effect of varying overburden on crack intensity using 

numerical simulation. 

 

 

1.5 Scope and Limitations 

The multi-arch tunnel Meru (T1) and Menora (T2) located at Jelapang, Perak, 

Malaysia on the North-South Expressway was chosen as case study. They are situated 

in the Kledang Range which comprises of granitic igneous rock. The tunnels are 800 

m long in length. Different section of tunnel along tunnel length were chosen 

depending upon the crack intensity. The tunnel was constructed employing New 

Austrian Tunnelling Method (NATM) and liner of tunnel was built out of shotcrete. 

Among different types of anomalies in tunnel, cracks were chosen focusing on the 

intensity of these cracks on different portions of shotcrete tunnel liner such as wall, 

hance and vault. Moreover, the effect of varying overburden is studied on the intensity 

of cracks along the length of tunnel. Arc-GIS software was utilized to get elevation 

data to construct real topographical surface. Effect of varying topography in terms of 

induced stresses, stress concentration, and total displacement was studied 

incorporating two-dimensional (2D) Finite Element software RS2, used for 2D 

numerical simulation using Mohr-Coulomb failure criteria. 

Required data for research was gathered by conducting series of field 

inspection i.e., visual and technical, as-build drawing, previous reports, liaising with 
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project contractors and project owners, personal contact to government departments 

and related professionals for topographic map, literature review and laboratory testing. 

Serious constraints were faced conducting tunnel inspection and getting design data 

pertaining to construction of tunnel due to confidentiality which resulted in 

unavailability of some data. In these cases, some assumptions were made based on 

engineering judgement during numerical analysis. 

1.6 Structure of Thesis 

The thesis has been structured and organized in five chapters as: 

Chapter 1: gives the background of study and outlined the research problem. It 

also discussed the objectives needs to achieve the aim of study. And then it illustrates 

the significance of study as well as scope and limitations. It also provides overview of 

forthcoming chapters. 

Chapter 2: This chapter aims at providing previous literature review regarding 

general concepts, theories, procedure, standards, and overview of software utilized in 

this study. In this chapter overview of tunnel application, anatomy, types of tunnel 

based on construction method along with tunnel supports and failure history of tunnel 

is also presented. Moreover, understanding of stresses around opening during 

underground excavation is also given. And then types of anomalies on tunnel liner as 

well as cause of their inducement is presented focusing on varying topography. And 

then this chapter discussed the background studies of health assessment, laboratory 

testing procedure and different method of numerical analysis along with software 

employed. 

Chapter 3: In this chapter flow chart of research activities is demonstrated. 

Brief description of geology and study area is also provided which is chosen as case 

study. Then this chapter explains technical procedures, descriptions adopted to conduct 

field inspections and further discusses laboratory testing conducted on core samples. 

This chapter also illustrates the method employed to extract elevation data using Arc-
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GIS. And it puts forward the input of collected data and then explains the step-by-step 

procedure adopted to develop numerical model at different section of tunnel along its 

length. 

Chapter 4: This chapter discusses results obtained from field inspection, 

material testing in laboratory and 2D numerical modelling of tunnel at different section 

along tunnel length. Moreover, this chapter elaborate effect of varying overburden on 

the intensity of crack by comparing and validating results from field observation and 

numerical analysis. In addition, this chapter also shed light on the findings of this 

study. 

Chapter 5: The chapter summarize the conclusions derived from findings and 

results of numerical analysis and field inspection. Moreover, this chapter briefs 

practical applicability of the study conducted. And at the end recommendations for 

further study and future work is stated. 
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