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Abstract: Radio tomographic imaging (RTI) is an emerging imaging technique that utilizes the shadowing losses on links 
between multiple pairs of wireless nodes within the sensing area to estimate the attenuation of physical objects. By using an 
image reconstruction algorithm, the attenuations caused by the physical objects will be transformed into a tomographic image. 
The tomographic image provides information about the shape, size and position of an object. However, the process of 
reconstructing a tomographic image from the RSS measurements is an ill-posed inverse problem, meaning that a small number 
of errors or variations in measurements will lead to a significant impact on the image quality. The existing linear inverse solvers 
provide fast reconstruction but the imaging results is non-satisfactory and inaccurate. On the other hand, the nonlinear inverse 
solvers produce a higher quality image but are computationally expensive. Studies of applying deep learning technique and 
neural networks in tomographic reconstructions to solve the ill-posed inverse problems have emerged in recent years. However, 
to the best of our knowledge, the studies conducted in solving the inverse problem of RTI system using deep learning technique 
are rare. Therefore, a supervised deep feedforward neural network (SDFNN)-based image reconstruction algorithm for the 
RTI system is explored in this study to determine the feasibility of deep learning technique in reconstructing a tomographic 
image using RSS measurements only.  
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1. INTRODUCTION 
Radio tomographic imaging (RTI) is an emerging imaging 
technique that utilizes the shadowing losses on links 
between multiple pairs of wireless nodes within the 
sensing area to estimate the attenuation of physical objects.  
Figure 1(a) shows an illustration of the wireless sensor 
network (WSN) in the RTI system [1][2]. The black colour 
dots represent the radio frequency (RF) sensor that acts as 
transceivers. When the RTI system is operating, the 
transceivers in the sensor network will communicate with 
each other and formed a unique link. The object that enters 
the monitoring area at this time will absorb, diffract, 
reflect, or scatter some of the transmitted waveforms. Also, 
at the same time, the object will block some of the lines of 
sight (LOS) path of the unique links in the RTI system as 
shown in Figure 1((b) [1][2]. This caused the links between 
multiple pairs of RF nodes to experience shadowing losses. 

The shadowing losses is referred to the variations in the 
received signal strength (RSS) measurements which will 
be used for the reconstruction of the tomographic image. 
By using an image reconstruction algorithm, the 
attenuations caused by the physical objects will be 
transformed into a tomographic image. The tomographic 
image provides information about the shape, size and 
position of an object. 

In recent years, RTI has gained huge interest from the 
researchers in the device-free localization (DFL) field due 
to its ability to generate an image to localize a stationary 
and moving target within the monitoring area using the 
RSS measurements only without any phase and timing 
information [1], [3]–[14]. Besides, the RTI system is 
suitable for localization applications that are concerned 
about privacy. This is due to the facts that the RTI system 
only detects the presence and location of targets; it does 
not identify the individual uniquely [15]. 
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Figure 1. An illustration of (a) the wireless sensor 
network (WSN) in the RTI system, (b) LOS path and the 

object in the RTI system [1][2]. 

However, the process of reconstructing a tomographic 
image from the RSS measurements is an ill-posed inverse 
problem for the RTI system, meaning that a small number 
of errors or variations in measurements will lead to a 
significant impact on the image quality [1], [2], [16]. 
Besides, the reconstructed image in the RTI system is low 
in quality due to the number of pixels of an image is always 
higher than the number of sensor measurements. To solve 
the ill-posed inverse problem of the RTI system, a 
technique known as regularization has been introduced by 
adding extra information to the mathematical cost model 
[16]. In this decade, there are various regularization 
methods have been proposed by the researchers to solve 
the inverse problem. The inverse problem solvers in the 
RTI system mainly can be classified into two categories: 
linear algorithms and nonlinear algorithms. 

The commonly used linear inverse solvers are linear 
back projection (LBP) [17], Tikhonov regularization (TR) 
[1], [2], [12], [17]–[25], truncated singular value 
decomposition (TSVD) [2], [23] and regularized least 
squares estimator [5], [26]–[33]. While for nonlinear 
algorithms are projected Landweber iteration [34], pre-
iteration Landweber iteration (PLI) [22], Landweber 
iteration (LI) [22] and total variation (TV) [2], [35]. The 
existing linear algorithms provide fast reconstruction, but 
the imaging result is non-satisfactory and inaccurate. On 
the other hand, the nonlinear algorithms produce a higher 
quality image but are computationally expensive. 
Although various regularization techniques have been 
introduced to solve the inverse problem of the RTI system, 
however, the image produced using the existing image 
reconstruction algorithms still does not achieve a 
satisfactory result. 

Studies of applying deep learning technique and neural 
networks in tomographic reconstructions for electrical 
impedance tomography (EIT) to solve the ill-posed inverse 
problems have emerged in recent years [36]–[40]. From 
the previous works done by the researchers in the EIT field 
using deep learning-based image reconstruction 
algorithms, it shown that deep learning approaches are 
capable to replace more complex and slower non-linear 
image reconstruction algorithms and avoid poor inverse 
solvers because they are good at mapping complicated 
nonlinear functions. 

However, to the best of our knowledge, the studies 
conducted in solving the inverse problem of RTI system 
using deep learning technique are rare. Three studies have 

been published solving the ill-posed inverse problem of 
RTI system using deep learning techniques [41]–[43]. Due 
to low computation cost in training and execution, the 
initial works done by [41] have used convolutional neural 
networks (CNN) in their study to remove the artifacts 
caused by the limited number of sensors. Although both of 
the studies in [41] and [42] have used CNN to improve the 
reconstruction accuracy of the image and their network 
inputs are in image form, however, there are some 
differences in their design of network architecture. In [41], 
the authors used the images reconstructed using FBP 
algorithms as the network inputs and the ground truth 
images are regarded as the labels for the input data.  While 
in [42], the RSS measurements are collected and remapped 
into the training data set generated by the forward model 
and selected as the network inputs.  

Although works are done in [41] and [42] demonstrated 
that the CNN network is capable of improving the 
reconstruction accuracy by generalizing based on previous 
network training experiences. However, our investigations 
show that CNN is not practical with the resources available 
to us. This is because the reconstruction of a tomographic 
image is a multi-regression problem which is nonlinear and 
complex. Besides, the size of the pixels for a tomographic 
image usually very large, from 500 x 500 pixels up to 1280 
x 1280 pixels. The large pixel size of the tomographic 
image will increase the computational cost during the 
training of the deep learning model. Therefore, a 
supervised deep feedforward neural network (SDFNN)-
based image reconstruction algorithm for the RTI system 
is explored in this study to determine the feasibility of deep 
learning technique in reconstructing tomographic image 
using RSS measurements only.  

In Section 2, the experimental setup for the RTI system 
will be discussed in detail as well as the network 
architecture and training process of the proposed SDFNN 
model. The preliminary results of the proposed SDFNN-
based image reconstruction algorithm will be presented in 
Section 3. We conclude the paper and discuss the future 
work in Section 4.  

2. SDFNN-BASED IMAGE RECONSTRUCTION 
ALGORITHM FOR RTI SYSTEM 
In this section, the experimental setup for the RTI system 
is discussed in detail. Next, a supervised deep feedforward 
neural network (SDFNN)-based image reconstruction 
algorithm for the RTI system is modelled in this paper to 
study the feasibility of deep learning technique in 
reconstructing a tomographic image using RSS 
measurements only.  

2.1 Experimental Setup for RTI System 
The experimental setup for the RTI system in this study is 
as per our previous work in [44]. The eight units of RF 
sensors are mounted around the monitoring column with a 
diameter of 1m. Each of the RF sensors operates in 
transceiver mode in which they can transmit and receive 
sensor measurement sequentially. Figure 2 show an 
overview of the RTI system [44].  

As mentioned in Section 1, when the RTI system is 
operating, the communication between multiple pairs of 
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transceivers will form multiple unique links within the 
monitoring area. Also, since the connection between 
transceivers is two-way communication, thus, each of the 
individual links will have two measurements. The total 
number of unique links can be described as: 

 																																				𝑀 =	𝐾	(𝐾−1)2 																												(1) 

 

 
Figure 2. An overview of the RTI system [44]. 

In this study, an experiment was carried out to collect 
the RSS measurements for training the proposed SDFNN 
network. Figure 3 shows an experimental setup for the RTI 
system. The experiments were conducted according to four 
phantom profiles design shown in Table 1. Three phantom 
design profiles (Design 1, 2 and 3) contain a single 
phantom; however, they are in different size and position. 

 

 
Figure 3. An experimental setup for the RTI system. 

Table 1. Phantom Profiles Information 

Design Phantom Profiles Information 

1 

 

2 

 

3 

 

4 

 
 

2.2  Network Architecture of Proposed SDFNN-based 
Image Reconstruction Algorithm 

The main objective of tomographic reconstruction is to 
estimate the image vector, x from the measurements y, 
which is the inverse problem. The deep learning method 
that solves this problem is expressed in Equation 2, where 
xn and yn are datasets used to train this model. R is the 
network structure, which is used to learn the relationship 
between input and output. l and g denote cost function and 
regularization respectively. 𝜃 are the network parameters. 
							𝑅,-./0 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑙	 𝑋0, 𝑅: 𝑦0 + 𝑔(𝜃)=

0>? 							(2) 
In this study, a deep learning-based image 

reconstruction algorithm in reconstructing tomographic 
image is modelling using a supervised deep feedforward 
neural network as shown in Figure 4. The network contains 
three important layers: an input layer, three hidden layers 
and an output layer. The input vectors for the proposed 
SDFNN model consisted of 56 RSS measurements 
collected from eight units of transceivers in the RTI system 
as expressed in Equation 3. Each element contained a 
unique value. While the output vector contained 250,000 
elements (500 x 500 pixels tomographic image) as 
expressed in Equation 4.  

 
 



Chau Ching Lee et al. / ELEKTRIKA, 20(2-3), 2021, 49-55 

52 
 

																								𝐼 = [𝑥?, 𝑥C, 𝑥D, 𝑥E, 𝑥F, … , 𝑥FH]														(3)		 
 

																								� = [𝑦?, 𝑦C, 𝑦D, … , 𝑦CFK,KKK]																(4)		 
 

 
Figure 4. Network architecture of the proposed SDFNN-

based image reconstruction algorithm for RTI system. 

2.3 Network Training of Proposed SDFNN-based 
Image Reconstruction Algorithm 

Before training the SDFNN model, we have a data 
preparation and data pre-processing process. Since we are 
using supervised learning, input and output data must be 
prepared and labelled. The input data which is the RSS 
measurements for the training of the SDFNN model are 
collected through conducting experiments. The RSS 
measurements are collected based on four designs shown 
in Table 1. While the labelled output data for the training 
of the SDFNN model is a 500 x 500 tomography image 
generated using a forward model. The four designs of a 
two-dimensional RTI system that have the similar setup to 
the designs shown in Table 1 are modelled and simulated 
using FEM. All the data are pre-processed before feeding 
it into the SDFNN model.  

For the initial study, the proposed SDFNN model was 
trained using 300 datasets. All datasets were randomly 
divided into 3 sets: training, validating, and testing in 
70:15:15. The training set was used to properly train each 
of the subsystems. While the validation set was used to 
determine the moment of stopping the iterative training 
process. The test set can be used for the independent 
assessment of network quality after the learning process. 

Three phantom designs which are Design 1, Design 2 
and Design 3 shown in Table 1 are applied in the training 
process of the SDFNN model. While Phantom Design 4 
are not included in the training process of the SDFNN 
model. Phantom Design 4 are used to verify the feasibility 
of the proposed SDFNN model to reconstruct tomography 
image that not in the training process. 

2.4 Working Principle of the Proposed SDFNN-based 
Image Reconstruction Algorithm for Radio 
Tomographic Imaging 

The working principle of the proposed SDFNN-based 
image reconstruction algorithm for the RTI system 
consists of three parts as shown in Figure 5. The first part 
is the data collection and preparation section. The input 
data was collected through an RTI system, and the output 
data was generated using a forward model. Next, the 
SDFNN model was trained using prepared training 

datasets. Last, the predicted results from the SDFNN 
model will be used for image reconstruction.  

 
Figure 5. The working principle of the proposed SDFNN-

based image reconstruction algorithm for Radio 
Tomographic Imaging. (a) RTI system used for the 

collections of RSS measurements. (b) Proposed SDFNN 
model. (c)The predicted results from the SDFNN model 

are used to reconstruct tomography image. 

3. PRELIMINARY RESULTS 
This section presents the preliminary results obtained by 
the SDFNN-based image reconstruction algorithm for the 
RTI system. Table 2 shows the reconstructed tomography 
image using a conventional linear image reconstruction 
algorithm: Linear Back Projection (LBP) algorithm for 
simulation and the proposed supervised deep feedforward 
neural network (SDFNN)-based image reconstruction 
algorithm.  

Based on the obtained results, the feasibility of using the 
deep learning technique in reconstructing RTI image is 
proven. The SDFNN model is capable to reconstruct image 
for Phantom Design 1 accurately. Compared to the image 
reconstructed using LBP Simulation, the proposed 
SDFNN model able to localize the phantom in Design 2 
and 3; however, the accuracy of the prediction on the size 
and position of the phantom needs further improvements.  

Table 2.  Reconstructed image using Linear Back 
Projection (LBP) Simulation and Supervised Deep 

Feedforward Neural Network (SDFNN)-based Image 
Reconstruction Algorithm for RTI system. 

Phantom 
Profiles  

(Design 1) 

Phantom 
Profiles  

(Design 2) 

Phantom 
Profiles  

(Design 3) 

   
LBP Simulation 

(Design 1) 
LBP Simulation 

(Design 2) 
LBP Simulation 

(Design 3) 

   
SDFNN Model 

(Design 1) 
SDFNN Model 

(Design 2) 
SDFNN Model 

(Design 3) 
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To verify the feasibility of the proposed SDFNN model 
to reconstruct tomography image that not in the training 
process, Phantom Design 4 are used in the testing process. 
Based on the result obtained in Table 3, the SDFNN model 
able to localize the phantom within the monitoring area. 
However, the size and shape of the phantom cannot be 
predicted accurately.  

Table 3. Feasibility of SDFNN model to recognize 
unknown phantom design.    

Phantom 
Profiles 

(Design 4) 

LBP Simulation 
(Design 4) 

SDFNN Model 
(Design 4) 

   
 

4. CONCLUSIONS 
In this paper, we proposed a supervised deep feedforward 
neural network (SDFNN)-based image reconstruction 
algorithm for the RTI system. The preliminary results 
showed the proposed SDFNN model able to reconstruct a 
tomographic image using RSS measurements only. 
However, the prediction on shape, size and position of the 
phantom needs further improvement. In the future study, 
the performance of the proposed SDFNN-based image 
reconstruction algorithm and the algorithm tuning 
parameters such as weight initialization, learning rate, 
activation functions, network topology, training batches, 
regularization and optimization will be explored to 
improve the quality of the reconstructed image.  
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