
TEST CASE GENERATION TECHNIQUE FOR CONCURRENCY

IN ACTIVITY DIAGRAM

NUR SYAFIQAH ZAHIRAH BINTI ABDUL RAHMAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Philosophy

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

NOVEMBER 2018

lll

Dedicated to:

Myself,

Through struggling, stressing, crying and almost quitting,

Alhamdullilah, I made it!

Mak, Abah & My Siblings

Thank you for your endless affection, love, encouragement, prayers, moral & financial

support to ensure the completion o f my research with flying colors!

My Supportive Friend

Thank you for your willingness to hear all my problems & the cheerful word

“Sikit je lagipika, dh nkabis tu”

Thank you!

iv

ACKNOWLEDGEMENT

In The Name o f Allah swt, The Most Gracious and The Most Merciful.

First and foremost, all praise to The Almighty, All praise to Allah swt for bestowed

me with a knowledge, good health, courage and strength to complete my master study.

Alhamdullilah for His endless blessings throughout my entire research process.

My sincere appreciation to my main supervisor, Associate Professor Dr Dayang

Norhayati Abang Jawawi and my co-supervisor Associate Professor Dr Azurati

Ahmad@Salleh for their supervision, guidance, countless hours in sharing understanding

and patience throughout my research journey. I am thankful for their insightful comments,

criticisms and advices during my learning process. I will always look up them as my

academic role model to achieve my ambitions.

I would also like to express my gratitude to my parents Abdul Rahman bin Mohd

Darom and Zam binti Mahasan, my siblings Abg long, Kak long, Kakak, Abg Ude and

Abg Chik who means most to me, for their prayers of day and night, understanding, moral

and financial support to complete my master study. My close friends, Irfan, Rooster, Ayu,

Wani, Kak Sen, Kimah, Saidah and Murniyanti should also be recognized for their

kindness, assistance and support through thick and thin.

Last but not least, I am also indebted to Jabatan Perkhidmatan Awam (JPA) and

Research Management Center (RMC) for the sponsorship during my master study. It was

invaluable for me to undertake this endeavor.

v

ABSTRACT

Presently, the application of Model-Based Testing (MBT) using Unified

Modelling Language (UML) has attracted the attention of many practitioners to use UML

diagrams for generation of test cases. By using this technique, early detection of faults can

be achieved at the design phase. However, some UML diagrams have limitations in

generating test cases such as the need for a loop combination fragment to describe

looping, iteration process and combination fragment with the par operator to interpret

concurrency activities. To overcome these issues, a feature analysis was conducted to

observe the outcome of test case generation using similar cases but, by using different

techniques and UML diagrams. Based on the results, a guideline for selecting UML

diagrams in the generation of test cases based on the different features of software system

in the cases was developed. However, system design of concurrent software is complex,

leading to issues in system testing such as synchronization, non-deterministic, path

explosion and deadlock. In this research, an enhancement of the generate-activity-paths

algorithm as a test case generation technique was developed to solve the non-deterministic

problem of concurrent system. As the test cases are generated in a random order, a

prioritization technique using genetic algorithm was applied to find the critical path that

must be tested first from the test paths produced. The technique was implemented on the

Conference Management System case study and evaluated using cyclomatic complexity,

branch coverage, mutation analysis and average percentage of fault detected (APFD) to

measure the effectiveness and quality of the test cases in comparison to those using the

original technique. Results indicated that the technique achieved 100% basis path and

branch coverage criteria similar to the original technique. Moreover, it is also capable of

revealing non-deterministic faults by injecting concurrency coverage criteria into the test

paths, which was not possible using the original technique. Additionally, prioritization of

test paths yielded an APFD value of 43% which is better and higher than the non­

prioritized test paths (22%). This result signified that the usage of prioritization technique

leads to an improve detection rate of severe faults as compared to applying random order.

vi

ABSTRAK

Pada masa kini, Ujian Berasaskan Model dengan pengunaan Bahasa Pemodelan
Bersatu (UML) telah mendapat perhatian daripada ramai pengamal untuk menggunakan
gambar rajah UML dalam penghasilan kes ujian. Dengan menggunakan teknik ini,
pengesanan kesalahan akan dapat dicapai dengan lebih awal pada fasa reka bentuk. Namun
begitu, setiap jenis gamba rajah UML mempunyai kekangan dalam menjana kes ujian seperti
memerlukan cebisan gabungan gelung untuk menggambarkan proses penggelungan, lelaran
dan cebisan gabungan pengendali par untuk menafsirkan proses serentak. Bagi mengatasi
masalah ini, satu analisis ciri telah dijalankan untuk melihat hasil kes ujian menggunakan kes
yang serupa tetapi dengan teknik dan gambar rajah UML yang berbeza. Berdasarkan
hasilnya, satu garis panduan dalam pemilihan gambar rajah UML untuk menjana kes ujian
berdasarkan ciri-ciri berbeza sistem perisian yang terdapat dalam kajian kes telah
dibangunkan. Walaubagaimana pun, reka bentuk sistem perisian serentak yang kompleks
seperti penyelarasan, tidak berketentuan, ledakan laluan dan kebuntuan menimbulkan isu
dalam melaksanakan ujian sistem. Dalam kajian ini, penambahbaikan algoritma penjanaan
laluan aktiviti untuk teknik menjana kes ujian telah dibangunkan bagi menyelesaikan
masalah tidak berketentuan dalam sistem serentak. Disebabkan kes ujian dijana secara
rawak, teknik pengutamaan menggunakan algoritma genetik telah digunakan untuk mencari
laluan kritikal yang perlu diuji terlebih dahulu daripada laluan lain yang dihasilkan. Teknik
ini telah dilaksanakan ke atas Sistem Pengurusan Persidangan dan dinilai menggunakan
kerumitan siklomatik, liputan cabang, analisis mutasi dan purata peratusan pengesan
kesalahan (APFD) untuk mengukur keberkesanan dan kualiti kes ujian yang dijana
berbanding penggunaan teknik asal. Dapatan hasil penilaian menunjukkan teknik yang telah
ditambah baik mencapai 100% laluan dasar dan liputan cabang sama seperti menggunakan
teknik asal. Tambahan pula, teknik yang telah ditambah baik ini juga berkebolehan
mendedahkan kesalahan tidak berketentuan yang tidak mungkin dapat dilaksanakan
menggunakan teknik asal. Selain itu, teknik keutamaan laluan ujian menghasilkan
pengesanan kesalahan yang lebih baik, iaitu dengan nilai APFD 43% lebih tinggi berbanding
kes ujian yang tidak diutamakan (22%). Hasil kajian menunjukkan penggunaan teknik
pengutamaan membawa kepada peningkatan kadar pengesanan kesalahan yang teruk
berbanding menggunakan tertib rawak.

vii

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xiii

LIST OF FIGURES xvi

LIST OF ABBREVIATIONS xix

LIST OF APPENDICES xxi

1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Background 4

1.3 Problem Statements 6

1.4 Research Objectives 8

1.5 Research Scope 8

1.6 Significance of Study 9

1.7 Thesis Outline 10

TABLE OF CONTENTS

2 LITERATURE REVIEW

2.1 Introduction

11

11

2.2 Software Testing Overview 11

2.3 Software Testing Stages 13

2.3.1 Modeling the Software Environment 13

2.3.2 Selecting Test Scenarios 13

2.3.3 Test Execution 14

2.3.4 Quantifying Testing Process 14

2.4 Test Cases Generation 15

2.4.1 Test Cases Generation Technique 15

2.5 Model-Based Testing (MBT) Overview 17

2.5.1 Model-Based Testing Process 19

2.5.2 MBT Technique for Test Cases Generation 20

2.5.2.1 Finite State Machine (FSM) 21

2.5.2.2 Theorem Proving 21

2.5.2.3 Constraints Logic Programming and 21

Symbolic Equation

2.5.2.4 Model Checking 22

2.5.2.5 Markov Chain 22

2.5.2.6 Unified Modeling Language (UML) 23

2.5.3 Related Work on MBT Technique for Test Case 25

Generation

2.6 MBT Technique using UML Models for Test Case 28

Generation

2.7 Test Case Generation for Concurrent System using 33

UML Model

2.8 Automated Test Case Optimization Techniques 37

2.8.1 Genetic Algorithm (GA) 38

2.9 Test Case Optimization Technique using UML 40

Diagram

2.10 Chapter Summary 44

viii

ix

RESEARCH METHODOLOGY 45

3.1 Introduction 45

3.2 Research Operational Framework 46

3.3 Research Design Framework 50

3.4 Test Case Generation Evaluation Criteria 53

3.4.1 Coverage Criteria 55

3.4.2 Cyclomatic Complexity 56

3.4.3 Number of Faults Detected 57

3.4.3.1 Mutation Analysis 58

3.4.4 Average Percentage of Fault Detected (APFD) 59

3.5 Cases 59

3.5.1 Case 1: Automatic Teller Machine Withdrawal 61

Function (ATMW)

3.5.2 Case 2: Automatic Teller Machine Pin 62

Authentication (ATMPA)

3.5.3 Case 3: Automatic Ticket Machine System 63

(ATMS)

3.5.4 Case 4: Conference Management System 63

(CMS)

3.5.5 Case 5: Robotic Wheel Chair (RWC) 64

3.6 Chapter Summary 64

TEST CASE GENERATION FEATURE ANALYSIS 66

USING UML DIAGRAM

4.1 Introduction 66

4.2 The Conducted Feature Analysis 67

4.2.1 Test Cases Generation Technique by Boghdady 68

et al, (2011)

4.2.1.1 Module 1: Generation of Activity 69

Dependency Table (ADT)

3

4

x

4.2.1.2 Module 2: Generation of Activity 71

Dependency Graph (ADG)

4.2.1.3 Module 3: Test Case Generation 72

4.2.2 Test Case Generation Technique by Sarma et 75

al, (2007)

4.2.2.1 Module 1: Generation of Operation 77

Scenario

4.2.2.2 Module 2: Transformation Sequence 78

Diagram into Sequence Diagram

Graph (SDG)

4.2.2.3 Module 3: Test Case Generation 79

4.2.3 Test Cases Generation Technique by Swain et 81

al., (2012)

4.2.3.1 Module 1: Converting State Chart 82

Diagram into State Transition Graph

(STG)

4.2.3.2 Module 2: Test Case Generation 83

4.3 Feature Analysis Results 85

4.4 The Proposed Guidelines 88

4.5 Application of Guidelines on Cases 92

4.5.1 Guideline 1: Combination of Sequence 93

Diagram with State Chart Diagram

4.5.1.1 Module 1: Conversion of State Chart 93

Diagram (SCD) into State Chart Diagram

Graph (SCDG)

4.5.1.2 Module 2: Conversion of Sequence 94

Diagram (SD) into Sequence Diagram Graph

(SDG)

4.5.1.3 Module 3: Integration SCDG and SDG 95

into System Testing Graph (STG)

4.5.1.4 Module 4: Test Case Generation 96

4.5.2 Guideline 2: Extension of Sequence Diagram 100

with Labeled Transition System (LTS)

4.5.2.1 Module 1: Transformation of 100

Sequence Diagram into Labeled

Transition System (LTS)

4.5.2.2 Module 2: Test Case Generation 102

4.5.3 Guideline 3: Sequence Diagram with Loop and 105

Concurrent Fragment

4.5.3.1 Module 1: Converting Robotic Wheel 106

Chair (RWC) Sequence Diagram (SD)

into Sequence Graph (SG)

4.5.3.2 Module 2: Test Case Generation 108

4.6 Discussion 111

4.7 Chapter Summary 112

5 THE ENHANCEMENT OF TEST CASE GENERATION 113

TECHNIQUE

5.1 Introducti on 113

5.2 The Integration of the Selected Technique to Generate 114

Test Cases

5.2.1 The Enhancement of Test Case Generation 116

Technique

5.2.1.1 Step 1: Design Activity Diagram 119

5.2.1.1.1 Activity Diagram 119

5.2.1.2 Step 2: Extracted Activity from Activity 123

Diagram Specification

5.2.1.2.1 XML Metadata Interchange 123

5.2.1.3 Step 3: Transforms Extracted Activities 129

into Activity Graph

xi

5.2.1.4 Step 4: Generating Test Path from 130

Activity Graph

5.2.1.5 Step 5: Derived Test Cases 135

5.3 Prioritization Test Cases using Genetic Algorithm 142

5.4 Summary 148

6 EVALUATION OF THE PROPOSED APPROACH 150

6.1 Introducti on 150

6.2 The Results of the Proposed and Original Technique 151

6.2.1 Cyclomatic Complexity, V(G) 151

6.3 Branch Coverage 155

6.4 Mutation Analysis 156

6.5 Average Percentage of Fault Detected (APFD) 166

6.5.1 APFD Value for Fault Detected 166

6.5.2 APFD Value for Prioritized Test Sequence and 169

Non-Prioritized Test Sequence

6.6 Results Discussion 174

6.7 Chapter Summary 176

7 CONCLUSION AND FUTURE WORKS 177

7.1 Research Summary 177

7.2 Research Contributions 179

7.3 Research Limitation 180

7.4 Future Works 181

xii

REFERENCES

Appendices A-C

182

189-203

xiii

TABLE NO

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

4.1

4.2

4.3

4.4

LIST OF TABLES

TITLE

Test Case Generation Technique in Software Testing

Comparison of Different Testing Process in Software

Testing

Summary MBT Technique for Test Cases Generation

MBT Techniques to Generate Test Cases

MBT Technique using UML Model for Test Case

Generation

Comparison of Existing Test Case Generation

Technique using UML Diagram

Comparison of Existing Test Case Optimization

Technique using UML Model

Phases of Enhancement Process

Type of Coverage Criteria in Control-Flow

Selected Cases

Activity Dependency Table for Automatic Ticket

Machine System (ATMS)

Test Cases for Automatic Ticket Machine System

(ATMS)

Five operation scenario represented in quadruple

form for ATMW

Test Cases for Automatic Teller Machine

Withdrawal (ATMW)

PAGE

16

18

24

27

32

36

43

54

55

60

70

73

77

79

4.5 Test Cases for Automatic Teller Machine Pin 84

Authentication (ATMPA)

4.6 Comparison Number of Test Cases Generated 85

4.7 Type of Test Cases Produce using Different UML 86

Diagram for ATMW

4.8 Type of Test Cases Produce using Different UML 86

Diagram for ATMPA

4.9 Type of Test Cases Produce using Different UML 87

Diagram for ATMS

4.10 The Proposed Guideline 90

4.11 Test Cases Generated for Automatic Ticket Machine 98

System (ATMS)

4.12 Path Table for Automatic Teller Machine Pin 103

Authentication (ATMPA)

4.13 Test Case 1 104

4.14 Test Case 2 104

4.15 Test Case 3 104

4.16 Test Case 4 104

4.17 Test Case 5 105

4.18 Test Case 6 105

4.19 Message Details of Sequence Diagram (MDSD) 108

4.20 Generated Test Cases for Robotic Wheel Chair 110

(RWC)

5.1 Elements in Activity Diagram 120

5.2 Extracted Activities from the UML Activity Diagram 127

for CMS Case Study

5.3 Test Cases from Generate Activity Test Paths 138

6.1 Basis Path Coverage Criteria 152

6.2 Generated Test Cases for Branch Coverage Criteria 157

6.3 Test Path with Fault Detected (Enhanced Technique) 159

6.4 Fault-Based Mutation Result (Enhanced Technique) 161

xiv

xv

6.5 Test Path with Fault Detected (Original Technique) 163

6.6 Fault-Based Mutation Result (Original Technique) 164

6.7 Comparison Criteria for Improvement 165

6.8 Fault Matrix 171

xvi

FIGURE NO TITLE PAGE

1.1 Software Development Life Cycle (SDLC) Phases 2

2.1 Generic Process of MBT (Karaman, 2014) 20

2.2 UML Model Category (Priya & Sheba, 2013) 29

2.3 Search-Based Method (Mohi-Aldeen et al., 2014) 37

2.4 Basic Genetic Algorithm (GA) Steps 39

3.1 Research Operation Framework 49

3.2 Research Design Framework 51

4.1 Implementation Methodology 67

4.2 Activity Diagram for Automatic Ticket Machine 69

System (ATMS)

4.3 Activity Dependency Graph for Automatic Ticket 71

Machine System (ATMS)

4.4 Sequence Diagram for Automatic Teller Machine 76

Withdrawal (ATMW)

4.5 Sequence Diagram Graph for Automatic Teller 78

Machine Withdrawal (ATMW)

4.6 State Chart Diagram for Automatic Teller Machine 81

Pin Authentication (ATMPA)

4.7 State Transition Graph for Automatic Teller Machine 82

Pin Authentication (ATMPA)

4.8 State Chart Diagram Graph for Automatic Ticket 94

Machine System (ATMS)

LIST OF FIGURES

4.9 Sequence Diagram Graph for Automatic Ticket

Machine System (ATMS)

4.10 System Testing Graph for Automatic Ticket Machine

System (ATMS)

4.11 Labeled Transition System (LTS) elements

4.12 Labeled Transition System (LTS) for Automatic

Teller Machine Pin Authentication (ATMPA)

4.13 Sequence Diagram for Robotic Wheel Chair (RWC)

Case

4.14 Sequence Graph (SG) for Robotic Wheel Chair

(RWC) Case

5.1 F ramework of Integration Technique

5.2 Proposed Integration Technique

5.3 Main Elements in Activity Diagram

5.4 Activity Diagram for Registration Cancellation Use

Case from Conference Management System (CMS)

Case

5.5 Input file XMI

5.6 Extracted Activity Algorithm

5.7 Output from the Algorithm

5.8 Activity Graph for CMS (Registration

Cancellation) Case

5.9 Generate Activity Test Path Algorithm

5.10 Test Path for Conference Management System

(Registration Cancellation) Case

5.11 Details Activity of Test Path Generated for

Conference Management System (Registration

Cancellation) Case

5.12 Injected Concurrency Elements

5.13 Test Path Generated in Random Order

95

96

101

102

106

107

115

118

119

122

xvii

124

125

126

130

133

134

135

136

143

5.14 Assigned Weight to Activity Graph for Conference

Management System (Registration Cancellation)

Case

5.15 Weight for Different Path in Conference

Management System (CMS) Registration

Cancellation Case

5.16 Test Cases Prioritization Algorithm

5.17 Prioritized Test Path

6.1 Cyclomatic Activity Graph for CMS (Registration

Cancellation) Case Study

6.2 Activity Graph for CMS (Registration Cancellation)

Case Study (Kundu & Samanta, 2009)

6.3 Test Cases Generated from CMS (Registration

Cancellation) Case Study (Kundu & Samanta,

2009)

6.4 Generated Test Path

6.5 Fault Mutation APFD Results

6.6 Comparison Based on APFD Values

6.7 Number of Fault Detected versus Sequence of

Prioritized Test Cases

6.8 Number of Fault Detected versus Sequence of Non­

Prioritized Test Cases

144

xviii

145

146

147

151

153

154

159

168

172

173

174

xix

ABC - Ant Bee Colony

ACOToTSP - Ant Colony Optimization for Test Scenario Prioritization

AD - Activity Diagram

ADT - Activity Dependency Table

ADG - Activity Dependency Graph

AIG - Activity Interaction Graph

AG - Activity Graph

ASG - Activity Sequence Graph

ATMS - Automatic Ticket Machine System

ATMW - Automatic Teller Machine Withdrawal

ATMPA - Automatic Teller Machine Pin Authentication

BFS - Breadth First Search

CCFG - Concurrent Control Flow Graph

CFG - Control Flow Graph

CMS - Conference Management System

C-GA - Constraints-Based Genetic Algorithm

DFA - Deterministic Finite Automaton

DFS - Depth First Search

EAA - Extracted Activity Algorithm

EFSM - Extended Finite State Machine

FSM - Finite State Machine

GA - Genetic Algorithm

HC - Hill Climbing

MBT - Model-Based Testing

MDG - Message Dependency Graph

LIST OF ABBREVIATIONS

xx

NDFA - Non-Deterministic Finite Automaton

OCL - Object Constraints Language

OP - Operational Profiles

PLC - Programmable Logic Controllers

PSO - Particle Swarm Optimization

RWC - Robotic Wheel Chair

SA - Simulated Annealing

SCG - State Chart Graph

SCSEDG - State Chart and Sequence Diagram Graph

SD - Sequence Diagram

SDG - Sequence Diagram Graph

SDLC - System Development Life Cycle

SFSNP - Semi-valid Fuzzing for the Stateful Network Protocol

SG - Sequence Graph

SMT - Satisfiability Modulo Theories

STG - State Transition Graph

SUT - System Under Test

TS - Tabu Search

UDG - Use Case Dependency Graph

UML - Unified Modeling Language

V&V - Verification and Validation

XML - Extensible Markup Language

XMI - XML Metadata Interchange

xxi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Test cases generation technique by Boghdady et al., 189

(2011)

B Test cases generation technique by Sarma et al., 195

(2007)

C Test cases generation technique by Swain et al., 200

(2012)

CHAPTER 1

INTRODUCTION

1.1 Overview

When new technologies take off, modern software become larger and more

complex. Computer applications have spread into every sphere of life for manipulation

of several sophisticated applications and most of these applications are very large and

complex (Biswal, 2010). Although growing difficulty and scope of software

applications require more emphasis, a comprehensive testing is almost impractical. In

a System Development Life Cycle (SDLC) as shown in Figure 1.1, testing is executed

after the completion of development process of a system. Myers described software

testing as an integral part of building a software (Myers et al., 2011):

“It has been known for quite a while that, in an ordinary programming venture, pretty

nearly 50% o f the passed time and more than 50% o f the aggregate expense are used

in testing the system or framework being created. Given this learning, one would

expect that program testing would have at this point been refined into an 'accurate

science,' however this is a long way from the genuine case ”.

2

Software Development

Life Cycle (SDLC)

Implemen
-tation

Figure 1.1 Software Development Life Cycle (SDLC) Phases

In term of software engineering, software testing is defined as a process of

recognizing failures or defects in advance leading to producing a quality product. The

main goal of software testing is to detect failures. Software failures are defined as

observable differences between the behaviors of implementation and what are

expected on the basis of system specification. Testing is a critical phase in an SDLC

in guaranteeing software quality, which is typically performed to verify that the

software is built according to customer’s requirements. Software testing increases the

efficiency and quality of a built software product and also ensures that the software is

free from faults.

Software testing can be divided into two main approaches comprising white-

box and black-box testing. White-box testing is a form of structural testing that

considers the internal structure of a system or components (Williams, 2006). Such

testing focuses on source code components. On the other hand, black-box testing,

which is also known as functional testing, is a testing approach that overlooks the

internal components of a developed software. Rather, black-box testing concentrates

on the outputs generated in response to selected inputs and execution conditions.

Scholars have utilized black-box testing approach in constructing test case, utilizing

information retrieved from requirements and design specifications. In recent years,

3

there is revival of interest on one of black-box testing techniques—Model-Based

Testing (MBT). MBT is progressively gaining scholars’ attention from various fields,

including industry and academia. MBT is a testing process that involves creating a test

model utilizing different models such as Finite State Machine (FSM), Model Checking

and Unified Modeling Language (UML), which are subsequently used to generate a

collection of test case (Boghdady et al., 2011). MBT is an evolving technique that

depends on system behavior models for the generation of model traces, input, and

expected output which are used to generate test case. Commonly, MBT employs

models to generate test case that are able to verify the expected behaviors of the

system.

In software engineering perspective, a test case consists of a set of conditions

or variables that allows a tester to confirm whether a built software system functions

as expected. Test case can be generated from requirements, source code, or design

artifacts. In generating test case, there are numerous test generation techniques which

have been proposed by scholars including, random testing, search-based testing,

combinatorial testing, and model-based testing. Commonly, test cases are designed

based on a program source code. For the most part, the developers of the software

might not have enough time to generate adequate test case to test their software system

after coding phase. This is because a large number of code are produced by the size

and complexity of the system nowadays (Jena et al., 2014). One of the solutions to

mitigate this issue is to generate test case prior to coding phase. The generation of test

case earlier prior to coding phase (i.e. design phase) makes test planning more effective

and has the additional benefit of allowing test case to be available early in SDLC

(Ikram et al., 2015). For a complex system, the number of test cases generated could

be large. One of the solutions to deal with a large collection of test case is to optimize

their ordering for testing in order to detect faults earlier. There are several test

optimization techniques available, such as test case prioritization, test case

minimization, and test case selection. These techniques help testers to optimize testing

resources such as time and cost. Optimization techniques are usually used in regression

testing. Optimizing test case generated through UML models for regression testing

could be useful in producing effective overall system testing.

4

Testing plays a vital role in guaranteeing the quality and reliability of a product

(Jena et al., 2014). As the difficulty and scope of systems expand attributed to

changing customer’s requirements, additional time and effort are needed to perform

adequate testing. In testing process, there are three parts involved comprising test case

generation, execution, and evaluation. Generation of test case is the most challenging

and difficult step in testing as they determine the success of testing in producing quality

products that meet customer’s expectation.

Testing is a time consuming and labor-intensive task as it involves creating a

huge collection of test case. This is attributed to growing software system size as

customers request new system functionalities. The use of manual testing is impractical

nowadays as it is both expensive and time consuming, particularly for modern software

applications that consist of many intricate components. Generation of test case from

source code can be arduous and ineffective. This is because hundreds if not thousands

of lines of code are produced during software development. Manually tracing code

line-by-line to discover faults requires a significant amount of time. Furthermore, test

case generated from source code have been indicated to be inadequate in the case of

component-based software development, where even the source code may not be

accessible to the developers (Samuel et al., 2008). Besides that, utilization of source

code to test an object-oriented system is also a difficult and monotonous task.

Researchers have consistently produced new techniques to address the

challenges of test case generation, aiming to reduce overall testing effort and time. It

is ideal to generate test case at the design stage, which helps to produce reliable

software (Jena et al., 2014). Based on this notion, MBT technique has been introduced

to support the production of quality software. MBT involves an automatic generation

of test case using models from system requirements (Cartaxo et al., 2007). Six MBT

techniques have been introduced by scholars to generate test case including Finite State

Machine (FSM), Theorem Proving, Constraints Logic Programming and Symbolic

Execution, Model Checking, Markov Chain, and Unified Modeling Language (UML).

Nowadays, model-based software development using UML notations has gained wide

1.2 Problem Background

5

attention among scholars, whereby numerous scholars have begun to extract useful

information from UML diagrams to generate test case (Sawant & Shah, 2011).

Evidently, UML models help developers to recognize software structure and discover

test data attributed to high-level abstraction models. In addition, MBT strategy in

generating test case allows testers to plan testing at an early phase in SDLC and

permits parallel testing and coding (Kundu & Samanta, 2009). Furthermore, when test

case is produced early, it allows developers to discover irregularities and ambiguities

in requirement specification and design documents.

Even though MBT techniques can address the challenges in generating test

case, they also suffer several challenges. MBT techniques typically generate a large

set of test case and involves extra cost of modelling software under test. In addition, a

full automation of MBT in generating test case is a challenging task as this demands

complete and clear-cut system models as inputs (Felderer & Herrmann, 2015). Even

though the generation of test case from UML diagrams is a rudimentary task for

software testers, each type of UML diagram has its constraint in generating test case.

Sequence diagram needs a loop combination fragment to describe the looping process,

and to model the concurrency a combination fragment with the par operator are needed

to show the parallel execution of the operation. On the other hand, a state machine

diagram needs orthogonal components to express the concurrent process in the system

and it becomes difficult if it involves complicated concurrent activity.

Due to this, it is difficult to select the most suitable diagram to generate test

case for different features of a system. Moreover, it is especially difficult when a

system contains concurrent processes. Testing concurrent object-oriented systems has

to deal with the complexities arising from the physical distribution and parallel

execution of the objects (Patnaik et al., 2011). Furthermore, testing concurrent systems

is a very critical task because the systems can show different responses depending on

respective of concurrent situations (Khandai et al., 2011). There may be test explosion,

deadlock, synchronization and non-deterministic concurrent problems when parallel

processes want to interact with each other. Based on Kundu and Samanta (2009) work,

a non-deterministic fault occurs because they only test a relative sequence of the

concurrent activity without considering the interleaving of activities between parallel

6

processes. Testing concurrent system requires not only to explore the space of possible

inputs, but also the space of possible interleaving which make technique used by

Kundu and Samanta (2009) lack in capturing the test path that involve the interleaving

activities.

Besides that, as MBT techniques can possibly produce a very huge set of test

case for any non-trivial models, many optimization methods are often applied to

choose which test case to include in the generated set (Kanstren & Chechik, 2014).

There are different optimization techniques available such as test case selection, test

case minimization, and test case prioritization. Test case prioritization determines the

ordering of execution of test case in such a way that most beneficial test case are

executed first (Mahali & Acharya, 2013). A number of different approaches have been

studied to prioritize test case such as Tabu Search, Hill Climbing, Ant Bee Colony

(ABC), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). These

algorithms are concerned with identifying an ‘ideal’ ordering of test case that can

reveal faults earlier. This way, critical problems can be found early in addition to

allowing testers to measure how quickly faults are detected within a testing process.

1.3 Problem Statements

This study focuses on test case generation from different type of UML

diagrams motivated by challenges faced in choosing suitable UML diagrams for

generating test case. MBT techniques have begun to be used widely to generate test

case replacing manual approaches. Researchers commonly utilize UML diagrams to

derive test case. However, there are many types of UML diagrams that have been used

to generate test case. The issue arises in choosing suitable UML diagrams as they do

not address specific issues like iteration, looping, and concurrent activities in software

systems. Specifically, issues that are faced by MBT using UML diagrams are as

follows:

7

i. It is a difficult task to select a suitable diagram to generate test case for different

features of software systems that consider looping, iteration and concurrent

processes unsupported by some UML diagrams in their models.

ii. From existing works, MBT techniques have been widely used to generate test

case for different types of software system. However, there is poor literature

emphasis on dealing with concurrent software systems. Testing concurrent

systems is a major challenge as testers need to verify legal sequence of

interactions between multiple objects to access resources that are shared among

processes.

iii. Generating test case in concurrent environment is a complex task due to

interference of concurrent threads that may lead to concurrency problems.

From Kundu and Samanta (2009) work, a non-deterministic arises when testing

parallels activities in the Conference Management System (CMS) case.

Hence, this study emphasizes generating test case from UML diagrams

focusing on concurrent software systems and solving the problem arising from

concurrent activities. In order to solve the limitations of considered UML diagrams in

generating test case and non-deterministic concurrent problems that arise from the

current existing work, the main research question is stated as follows:

“How can an effective test case utilizing different UML diagrams for concurrent

systems be produced?”

A set of research questions are constructed to address the aforementioned main

research problem as follows:

i. RQ1: Which types of UML diagrams are capable of generating test case that

consider looping, iteration, and concurrent processes in systems?

ii. RQ2: How can the current test case generation technique for concurrent system

be enhanced using UML diagrams to solve non-deterministic concurrent

problem?

iii. RQ3: How can GA be used to discover the critical test case generated using

MBT technique?

8

Based on the aforementioned problem statement and derived research

questions, the objectives of this research are as follows:

i. To propose a guideline for selection of UML diagrams to generate test case

based on looping, iteration and concurrent system.

ii. To enhance the current test case generation technique to solve the non-

deterministic concurrent problem and achieve a maximum basis path, branch,

and concurrent coverage criteria for defects to be detected.

iii. To implement optimization technique GA on the enhanced test case generation

technique, by prioritizing test case so that critical test case can be run earlier.

iv. To evaluate the implementation of the enhanced test case generation technique

on Conference Management System (CMS) and Automatic Teller Machine

(ATM) cases using several metrics.

1.4 Research Objectives

1.5 Research Scope

This section elaborates the scopes of this research. Some of the research scopes

are addressed in detail in later chapters.

i. Focuses on one of the black-box testing techniques, which is MBT technique,

where test case are derived from UML diagrams that are used to model user’s

requirements.

ii. Three UML behavioral models comprising activity diagram, sequence

diagram, and state chart diagram have been implemented on looping, iteration

and concurrent cases to compare the effectiveness on generating test case.

iii. Java programing language is used for implementation in case.

iv. Enterprise Architecture (EA) modelling tool is used, which supports UML 2.0

syntax/XMI 1.1 and 1.2.

9

Since modern software are huge and complex in a real-life applications,

exhaustive testing is impractical. In order to meet the convincing need of quick

development, software industries are attempting to create quality software within a

shorter period (Gantait, 2011). This research study investigates the existing UML

behavioral models to generate test case such as activity diagram, sequence diagram,

use case diagram, state chart diagram, and class diagrams. Based on the study, some

types of UML diagrams have their limitations in generating test case for software

systems that involve looping, iteration, and concurrent process.

This research also primarily intends to enhance the current test case generation

technique proposed by Kundu and Samanta (2015). Their technique was capable of

detecting faults such as looping fault and synchronization fault. However, it is not

capable of detecting non-deterministic problem. Motivated by this, the enhance test

case generation technique has been proposed for covering the non-deterministic faults.

The enhanced technique leads to producing effective test case covering concurrent

faults, and achieving a maximum path coverage criteria, branch coverage criteria, and

concurrent coverage.

As a result, the knowledge gained from this research provide benefits other

researchers that are looking into exploring software testing area, particularly on test

case generation using UML diagrams. It helps software tester to select suitable UML

diagram to be used in generating test case for different features of cases such as

looping, iteration and concurrent. In addition, the suitable selection of diagram enables

and are capable of covering concurrent fault, achieving path and branch criteria

advantages in order to produce quality test cases and deliver the good software system

to the user.

1.6 Significance of Study

10

This thesis is organized as follows:

Chapter 1 discusses the overview of the research area, problem backgrounds,

problem statements, aim, objective, scope and significance of the study. The main

research questions are also stated in this chapter. Chapter 2 reviews software testing

activities and model-based testing techniques that have been used to generate test case.

This chapter also reviews related works on generation of test case based on UML

models such as activity diagram, use case diagram, sequence diagram, and state chart

diagram. Test case optimization techniques have also been discussed including a

literature review of the current works in the field.

Chapter 3 describes the research operation framework that shows all related

phases involved during the study. The proposed research design framework has also

been discussed, which shows overall related research elements used for the research.

Chapter 4 proposes a guideline of selecting UML model for generation of test case

based on different features of cases.

Chapter 5 proposes an enhanced technique to generate test case from

concurrent systems. This enhanced technique is an improvement of Kundu and

Samanta (2009) test case generation technique for solving non-deterministic

concurrent problem.

Chapter 6 presents the results of the enhanced test case generation technique.

The results have been discussed, evaluated, and benchmarked with existing work.

Chapter 7 summarizes and concludes the thesis. The thesis is concluded by restating

the contributions with further discussions and exploring crucial issues concerning area

for methodology improvements. The chapter also suggests directions for future study.

1.7 Thesis Outline

182

REFERENCE

A li, M d Azaharuddin, et al. (2014).T est Case Generation using U M L State Diagram

and OCL Expression. International Journal o f Computer Applications. 95(12):

7-11.

Alsm adi, Izzat. (2012). U sin g Test Case M utation to Evaluate the M odel o f the U ser

Interface. Computer Science Journal o f Moldova, 20(1): 1-25.

Anand, Saswat, et al. (2013). A n orchestrated survey o f m ethodologies for automated

software test case generation. Journal o f Systems and Software. 86(8): 1978­

2001.

Nur Fatimah As' Sahra (2015). Test Case Prioritization Technique Using Sequence

Diagram and Labeled Transition Systems in Regression Testing. U niversiti

Teknologi M alaysia. T esis Sarjana.

B isw al, Baikuntha Narayan (2010). Test Case Generation and Optimization o f Object-

Oriented Software using UML Behavioral Models. N ational Institute o f

T echnology Rourkela. T esis Sarjana.

B isw al, Baikuntha Narayan , et al. (2010). A N ove l Approach for O ptim ized Test Case

Generation U sin g A ctiv ity and Collaboration Diagram . International Journal

o f Computer Applications, 1(14): 67-71.

Boghdady, Pakinam N , et al. (2011). A proposed test case generation technique based

on activity diagrams. International Journal o f Engineering & Technology

IJET-IJENS, 11(03): 1-18.

Cartaxo, Em anuela G, et al. (2007). Test case generation by m eans o f U M L sequence

diagrams and labeled transition system s. IEEE International Conference.

Systems, Man and Cybernetics, ISIC. 1292-1297.

Castro, M iguel, et al. (2008). Better bug reporting w ith better privacy . ACM Sigplan

Notices. 319-328 .

183

Dalal S. and Chhillar R. S. (2012). Case studies o f m ost com m on and severe types o f

software system failure. International Journal o f Advanced Research in

Computer Science and Software Engineering, 2(8): 1-7.

D alal, Siddhartha R, et al. (1999). M odel-based testing in practice. Proceedings o f the

21st international conference on Software engineering. 285-294.

Ebert C. and Cain J. (2016). C yclom atic C om plexity. IEEE Software, 33(6): 27-29.

Enoiu, Eduard P, et al. (2016). M utation-Based Test Generation for PLC Em bedded

Software U sin g M odel Checking. IFIP International Conference on Testing

Software and Systems. 155-171.

Felderer, M ichael, & Herrmann, Andrea. (2015). M anual Test Case D erivation from

U M L A ctiv ity Diagram s and State M achines: a Controlled Experiment.

Information and Software Technology. 1-15.

Gantait, Amitranjan. (2011). Test Case Generation and Prioritization from U M L

M odels. Emerging Applications o f Information Technology (EAIT), 2011

Second International Conference on. 345-350.

G ebizli, Cereri §ahin, et al. (2015). C om bining m odel-based and risk-based testing for

effective test case generation. Software Testing, Verification and Validation

Workshops (ICSTW), 2015 IEEE Eighth International Conference on. 1-4.

H amon, Gregoire, et al. (2004). Generating efficient test sets w ith a m odel checker.

Software Engineering and Formal Methods, 2004. SEFM 2004. Proceedings

o f the Second International Conference on. 261-270.

H elke, Steffen, et al. (1997). A utom ating test case generation from Z specifications

w ith Isabelle, in ZUM'97: The Z Formal Specification Notation (pp. 52-71)

Springer.

Horgan, Joseph R., et al. (1994). A ch iev in g software quality w ith testing coverage

measures. Computer, 27(9), 60-69.

Ikram, M uham m ad T ouseef, et al. (2015). Testing from U M L D esign using A ctivity

Diagram: A Com parison o f Techniques. International Journal o f Computer

Applications, 131(5).

Jena, Ajay Kumar, et al. (2014). A novel approach for test case generation from U M L

activity diagram. Issues and Challenges in Intelligent Computing Techniques

(ICICT), 2014 International Conference on. 621-629 .

Juristo, Natalia, et al. (2006). Software testing practices in industry. IEEE software.

23(4): 19-21.

184

Kanstren, Teem u, & Chechik, Marsha. (2014). A com parison o f three b lack-box

optim ization approaches for m odel-based testing. Computer Science and

Information Systems (FedCSIS), 2014 Federated Conference on. 1591-1598.

Kaur, Arvinder, & G oyal, Shivangi. (2011). A b ee co lony optim ization algorithm for

fault coverage based regression test suite prioritization. International Journal

o f Advanced Science and Technology. 29: 17-30.

Keum , ChangSup, et al. (2006). Generating test cases for w eb services using extended

finite state m achine, in Testing o f Communicating Systems (pp. 103-117).

Springer

Khandai, M onalisha, et al. (2011). Test case generation for concurrent system using

U M L com binational diagram. International Journal o f Computer Science and

Information Technologies, IJCSIT, 2, 1-10.

Khurana N , and Chillar RS. (2015). Test Case Generation and O ptim ization using

U M L M odels and G enetic Algorithm . Procedia Computer Science, 57, 9 9 6 ­

1004.

Kim , H yungchoul, et al. (2007). Test cases generation from U M L activity diagrams.

Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACISInternational

Conference on. 556-561.

Kim , Y oung Gon, et al. (1999). Test cases generation from U M L state diagrams. IEEE

Proceedings-Software, 146(4):187-192.

K osindrdecha N . and Daengdej J. (2010). A test case generation process and technique.

Journal o f Software Engineering, 4(4): 265-287 .

Kundu D. and Samanta D . (2009). A N o v e l Approach to Generate Test C ases from

U M L A ctivity Diagram s. Journal o f Object Technology, 5(3): 65-83.

K yaw A. A. and M in M . M. (2015). A n E fficient Approach for M odel B ased Test Path

Generation. International Journal o f Information and Education Technology,

5(10): 763.

Lammermann, Frank, et al. (2008). Evaluating evolutionary testability for structure-

oriented testing w ith software m easurem ents. Applied Soft Computing. 8(2):

1018-1028.

Li H. and Lam C. P. (2004). Software Test Data Generation using A nt C olony

Optim ization. International Conference on Computational Intelligence. 1-4.

185

Linzhang, W ang, et al. (2004). Generating test cases from U M L activity diagram based

on gray-box method. Software Engineering Conference, 2004. 11th Asia-

Pacific. 284-291.

Liu, Pan, et al. (2017). A study for extended regular expression-based testing.

IEEE/ACIS 16th International Conference on Computer and Information

Science (ICIS). 14-23

Lobo, Fernando G, & Lima, Claudio F. (2007). Adaptive population sizing schem es

in genetic algorithms. In Parameter Setting in Evolutionary Algorithms (pp.

185-204): Springer.

Lu G. and M iao H. (2014). A n Approach to Generating Test Data for E F SM Paths

Considering Condition Coverage. Electronic Notes in Theoretical Computer

Science, 309. 13-29.

Ma, Rui, et al. (2017). Sem i-valid fuzz testing case generation for stateful network

protocol. Tsinghua Science and Technology, 22(5): 458-468 .

M ahali P. and Acharya A . A . (2013). M odel based test case prioritization using U M L

activity diagram and evolutionary algorithm. International Journal o f

Computer Science and Informatics, 3(2): 42-47.

M ahali, Prateeva, et al. (2015). M odel B ased Test Case Generation and Optim ization

U sin g Intelligent O ptim ization Agent, in Information Systems Design and

Intelligent Applications (pp. 47 9 -4 8 8 .) Springer.

M ingsong, Chen , et al. (2006). A utom atic test case generation for U M L activity

diagrams. Proceedings o f the 2006 international workshop on Automation o f

software test. 2-8.

M oham m ad R eza K eyvanpour, et al. (2012). A utom atic Software Test Case

Generation: A n Analytical C lassification Framework. International Journal o f

Software Engineering and Its Applications, 6(4): 1-16.

M ohi-A ldeen , Shaym a Mustafa, et al. (2014). System atic M apping Study in

Autom atic Test Case Generation. In SoMeT. 703-720.

M yers, G lenford J, et al. (2011). The art o f software testing. (3rd). Canada: John W iley

& Sons.

Nebut, C lem entine, et al. (2006). A utom atic test generation: A use case driven

approach. IEEE Transactions on Software Engineering, 32(3): 140-155.

186

M. O. Odetayo. (1993). Optimal population size for genetic algorithms: an

investigation. In G enetic A lgorithm s for Control System s Engineering, IEE

Colloquium on. 2 /1-2 /4 . Offutt J. and Abdurazik A. (1999). Generating tests

from U M L specifications «UML»’99— The Unified Modeling Language (pp.

416-429). Springer.

Pahwa N and Solanki K. (2014). U M L based test case generation methods: A review.

International Journal o f Computer Applications, 95(20): 1-6.

Panthi V . and Mohapatra D P. (2016). ACO based em bedded system testing using

U M L A ctivity Diagram . Region 10 Conference (TENCON), 2016IEEE. 2 3 7 ­

242.

Patnaik, Debashree, et al. (2011). Generating T estcases for Concurrent System s U sing

U M L State Chart Diagram . Information Technology and Mobile

Communication (pp. 100-105). Springer.

Priya S. S. and Sheba PD. (2013). Test Case Generation from U m l M o d e ls -A Survey.

In Proc. International Conference on Information Systems and Computing

(ICISC-2013). 1-11.

Rayadurgam S. and H eim dahl M . P. E. (2001). Coverage based test-case generation

using m odel checkers. Engineering o f Computer Based Systems, 2001. ECBS

2001. Proceedings. Eighth Annual IEEE International Conference and

Workshop on the. 83-91.

Sabharwal, Sangeeta, et al. (2010). Prioritization o f test case scenarios derived from

activity diagram using genetic algorithm. Computer and Communication

Technology (ICCCT), 2010 International Conference. 481-485 .

Sahoo, Rajesh Ku, et al. (2017). M odel D riven Test Case O ptim ization o f U M L

Com binational D iagram s U sin g Hybrid B ee C olony Algorithm . International

Journal Intelligent Systems and Applications. 43-45.

Samuel, Philip, et al. (2008). A utom atic test case generation using unified m odeling

language (U M L) state diagrams. IETsoftware, 2(2): 79-93.

Samuel, Philip, et al. (2007). A utom atic test case generation from U M L

com m unication diagrams. Information and software technology, 49(2): 158­

171.

Sarma M . and M all R. (2007). A utom atic test case generation from U M L sequence

diagram. In Advanced Computing and Communications, 2007. ADCOM2007.

International Conference on. 60-67.

187

Sawant V . and Shah K. (2011). Construction o f Test C ases from U M L M odels

Technology Systems and Management (pp. 61-68). Springer

Sawant V. and Shah K. (2011). A utom atic generation o f test cases from U M L m odels.

In International Conference on Technology Systems and Management

(ICTSM). 7-10

Shah, Syed Asad Ali, et al. (2016). A utom ated Test Case Generation U sin g U M L

Class & Sequence Diagram . British Journal o f Applied Science & Technology,

15(3): 1-12.

Shanthi A. and M ohanKum ar G. (2012). A novel approach for automated test path

generation using T A B U search algorithm. International Journal o f Computer

Applications, 45(13): 975-888

Sokenou, D ehla. (2006). Test Sequences from U M L Sequence Diagram s and State

Diagram s. In GI Jahrestagung (2). 236-240.

Sumalatha V .M and Raju G SVP. (2013). Object Oriented Test Case Generation

Technique using G enetic A lgorithm s. International Journal o f Computer

Applications, 61(20): 20-28

Sun, Chang-ai, et al. (2016). A transform ation-based approach to testing concurrent

programs using U M L activity diagrams. Software: Practice and Experience,

46(4), 551-576.

Suresh Y. and Rath S. K. (2014). A genetic algorithm based approach for test data

generation in basis path testing. International Journal o f Soft Computing and

Software Engineering. 1-7

Swain, Ranjita Kumari, et al. (2012). Generation and O ptim ization o f Test cases for

Object-Oriented Software U sin g State Chart Diagram. International Journal

o f Soft Computing and Software Engineering. 1-18

Swain, Ranjita Kumari, et al. (2014). S licing-based test case generation using U M L

2.0 sequence diagram. International Journal o f Computational Intelligence

Studies 2, 3(2-3): 221-250.

Swain, Santosh Kumar, et al. (2010). Test case generation based on use case and

sequence diagram. International Journal o f Software Engineering, 3(2): 21-52.

Swain, Santosh Kumar, et al. (2010). Test Case Generation B ased on State and

A ctivity M odels. Journal o f Object Technology, 9(5): 1-27.

Tachio Terauchi (2006). Types for deterministic concurrency. U niversity o f

California, B erkeley. T esis D oktor Falsafah.

188

Utting, Mark, et al. (2006). A taxonomy of model-based testing. Department of

Computer Science, University of Waikato.

Wang Y. and Zheng M. (2012). Test case generation from uml models. In 45th Annual

Midwest Instruction and Computing Symposium, Cedar Falls, Iowa. 1-9

Weyuker, Elaine J. (1988). Evaluating software complexity measures. IEEE

transactions on Software Engineering, 14(9), 1357-1365.

Whittaker J. A. and Thomason M. (1994). A Markov chain model for statistical

software testing. Software Engineering, IEEE Transactions on, 20(10): 812­

824.

Zhu, Hong, et al. (1997). Software unit test coverage and adequacy. Acm computing

surveys (csur), 29(4): 366-427.

189

APPENDICES A

(Test case generation technique by Boghdady et al., 2011)

1.1 Test Case Generation Technique by Boghdady et al., (2011)

The original technique to generate test cases from ATM withdrawal case studies

has been proposed by Boghdady et al., (2011) They proposes an approach for generating

test cases from activity diagram. Activity diagram has been chosen as a source of test

case generation because it is one of the important UML models that used in representing

the activity flow in the system. In this experiment, an activity diagram for Automatic

Teller Machine Pin Authentication (ATMPA) are created as shown in Figure 1.1.
a c t A c t iv i t y D ia g r a m (P IN A u th e n tic a t io n)

Sta rt

E n d

Figure 1.1 Activity Diagram for Automatic Teller Machine Pin Authentication (ATMPA)

190

In their work, they introduced an algorithm that automatically creates a table called

Activity Dependency Table (ADT). This table will be used to creates a graph that called

Activity Dependency Graph (ADG) and from this graph, the test cases is generated. In

ADT, a symbol is given for each activities in activity diagram to showing the input and

the expected output values for each activities. Table 1.1 shows the ADT for ATMPA.

1.1.1 Module 1: Generation of Activity Dependency Table (ADT)

Table 1.1: Activity Dependency Table for Automatic Teller Machine Pin Authentication

(ATMPA)

Symbol Activity
Name

Controlling
Entity: Entity

Class

Dependency Input Expected Output

A Insert
Card

i: ATM
Interface

Card c:Card

B Card
Valid?

a: cardReader A Card True (Valid card),
False (Invalid
Card)

C Display
Message

i: ATM
Interface

B
D
I

False (Invalid
card)
False (Account
closed)
False (Invalid
PIN)

“Please insert
ATM card”
“Account is
closed”
“PIN number is
invalid”

D Check
Card
Status

b: sessionMgr B True (Valid
card)

True (Status =
“Ok”, Account =
“Open”), False
(Status = “Ok”,
Account =
“Closed”), False
(Status = “Stolen”)

191

E Enter PIN
Number

b: sessionMgr D True (Status =
“Ok”, Account
= “Open”)

n: number PIN

F Is Valid? d: keyReader E n: number PIN True (Valid PIN),
False (Invalid PIN)

G Display
Menu
Transacti
on

i: ATM
Interface

F True (Valid
PIN)

a: Bank

H Request
New PIN

d: keyReader F False (Invalid
PIN)

r: request PIN

I Request
PIN < 4

d: keyReader H n: number PIN True (Valid PIN <
4), False (Invalid
PIN > 4, Cancel)

J Return i: ATM
Interface

C
G

r: request PIN

1.1.2 Module 2: Generation of Activity Dependency Graph (ADG)

After the creation of ADT, activity diagram is transformed into Activity

Dependency Graph (ADG) using the symbol mentioned in Table 1. Each node in ADG

represent the symbol that was mentioned in ADT. The transitions from one activity to

another are represented by edges in the ADG. The presence of an edge from a node to

another node is determined by checking the dependency column in the ADT for the current

node’s symbol. Firstly, the nodes are created for all the symbols and draw a transition

edge from each of the node refering to their dependency. The same procedures are applied

continuously on every row in ADT to have the final ADG. Figure 1.2 illustrates the ADG

for ATMPA.

192

Figure 1.2 Activity Dependency Graph for Automatic Teller Machine Pin Authentication

(ATMPA)

Figure 4.6 represent the ADG for ATMPA activity. Six possible paths are obtain from this

ADG as listed below:

i. Path 1 : A-B-C-J

ii. Path 2 : A-B-D-C-J

iii. Path 3 : A-B-D-A

iv. Path 4 : A-B-D-E-F-G-J

v. Path 5 : A-B-D-E-F-H-I-C-J

vi. Path 6 : A-B-D-E-F-H-I-E-F-G-J

1.1.3 Module 3: Test Case Generation

To obtain the final test cases, the ADG is traversed and test cases are generated

based on branch coverage criteria. The final test cases are generated using particular

suggested algorithm called “GeneratingTestCasesSuite”. This algorithm is apply on ADG

to get all paths as listed above. All information are extracted from ADT and added to each

test path to get the final test cases. Table 2.1 shows the generated test cases after the

information is added to each test paths for ATMPA case study.

193

Table 2.1: Test Cases for Automatic Teller Machine Pin Authentication (ATMPA)

Test
Case

Test Path Node Input Node
Expected
Output

Test Case
Input

Test Case
Expected Output

1 A c: Card False (Invalid Invalid “Please insert
B False (Invalid card) Card ATM card”
C Card) “Please insert

ATM card”
2 A c: Card True (Valid Valid Card “Account is

B True (Valid card) closed”
D card) False (Status =
C False (Status = “Ok”, Account
J “Ok”, Account = “Closed”

= “Closed” “Account is
closed”

3 A c: Card True (Valid Valid Card Back to initial
B True (Valid card) state
D card) False (Status =
A False (Status = “Ok”, Account

“Stolen”) = “Closed”
Back to initial
state

4 A c: Card True (Valid Valid Card Display Menu
B True (Valid card) Transaction
D card) True (Status =
E True (Status = “Ok”, Account
F “Ok”, Account = “Open”
G = “Open” n: number PIN
J n: number PIN True (Valid

True (Valid PIN)
PIN)

5 A c: Card True (Valid Valid Card “PIN number is
B True (Valid card) invalid”
D card) True (Status =
E True (Status = “Ok”, Account Reject card
H “Ok”, Account = “Open”
I = “Open” n: number PIN
C n: number PIN False (Invalid
J False (Invalid PIN)

PIN) False (Request
r: request PIN PIN > 4)
False (Request “PIN number
PIN > 4) is invalid”

6 A c: Card True (Valid Valid Card Display Menu
B True (Valid card) Transaction
D card) True (Status =
E True (Status = “Ok”, Account
H “Ok”, Account = “Open”
I = “Open” n: number PIN
E n: number PIN

194

G
J

False (Invalid
PIN)
r: request PIN
True (Request
PIN < 4)

False (Invalid
PIN)
True (Request
PIN < 4)

From Table 2.1, six final test cases was generated from ATMPA case study using activity

diagram. The lists of test cases shows that test cases 5 and 6 cover iteration and looping

process in this case study. The looping process perform when user repeat to enter their pin

number if they insert an invalid pin number while iteration process perform when user

repeatedly re-enter their pin number until they get a valid pin number. From the original

technique, only test cases 1,2,3,4 and 6 was generated excluded test cases 5. In test cases

5, it cover faults in loop when user has entered a maximum number of trying the system

will display “Pin number is invalid” and automatically eject the card.

195

APPENDICES B

(Test case generation technique by Sarma et al., 2007)

2.1 Test Case Generation Technique by Sarma et al., (2007)

Technique that had been proposed by Sarma et al., (2007) uses sequence diagram

as a source of test case generation. In their approach, they created a UML sequence

diagram and transform this diagram into a graphical representation called sequence

diagram graph (SDG). Example of ATMPA case study is chosen to implement their

technique. On the other hand, Figure 2.1 represents the implementation of their technique

to another case study which is ATMS.
sd Se qu e n ce Diagram ATM

I
Custom er

I
I
| Choose ticket(m 1)

b: Autom atic c: Autom atic
Ticket M achine Ticket M achine

System

verifyChoosing(m 2)

S ta tu s= "TicketSelected"(m 3)

Choose destination and train fare(m 4) |

verifyChoosing(m 5)

Sta tu s= "DestinationSelected"(m 6)

Made paym ent(m 7)

verifyPaym ent(m 8)

Invalid paym ent (m9)

P
Return m oney(m 10)

alt va lidP aym ent / ----- 1----- V alid payment(m 11)

I

R eceive ticket (m 14)

Return M oney(m10)

I
I
I
I

iir

verifyBalance(m 12)

b alan ce > 0(m13)

b alan ce = 0(m15)

R eceive ticket(m 14)

I
I

Figure 2.1 Sequence Diagram for Automatic Ticket Machine System (ATMS)

196

To transform sequence diagram into sequence diagram graph (SDG), they

proposed a methodology of operation scenario as a guide to form SDG. The operation

scenario is define as a quadruple and definition of SDG is stated as below:

aOpnScn: <ScnId; StartState; MessageSet; NextState>

ScnId: A unique number that identifies each operation scenario.

StartState : Starting point of the ScnId that is, where a scenario starts.

MessageSet: Denotes the set of all events that occurs in an operation scenario.

NextState: The state that a system enters after the completion of a scenario.

An event that occurs in MessageSet denoted by a tuple:

<messageName; fromObject; toObject[/guard]>

An operation scenario is identified in order to create the SDG. From the sequence diagram

in Figure 2.1, an operation scenarios are produced as shown in Table 2.1 for ATMS case

study. State X is the start state for all the operation scenario, State Y is defined as a next

state and State Z is a final state for all the operation.

2.1.1 Module 1: Generation of Operation Scenario

Table 2.1: Three operation scenario represented in quadruple form for ATMS

<Scn1 <Scn2 <Scn3

State X State X State X

s1: (m1, a, b) s1: (m1, a, b) s1: (m1, a, b)
s2: (m2, b, c) s2: (m2, b, c) s2: (m2, b, c)

s3: (m3, c, b) s3: (m3, c, b) s3: (m3, c, b)

s4: (m4, a, b) s4: (m4, a, b) s4: (m4, a, b)

s5: (m5, b, c) s5: (m5, b, c) s5: (m5, b, c)

s6: (m6, c, b) s6: (m6, c, b) s6: (m6, c, b)

s7: (m7, a, b) s7: (m7, a, b) s7: (m7, a, b)

s8: (m8, b, c) s8: (m8, b, c) s8: (m8, b, c)

197

s9: (m9, c, b) s11: (m11, c, b) s11: (m11, c, b)

s10: (m10, b, a) s12: (m12, b, c) s12: (m12, b, c)

State Y> s13: (m13, c, b) s13: (m13, c, b)
s14: (m14, b, a) s15: (m14, c, b)

s10: (m10, b, a) s14: (m14, b, a)

State Y> State Z>

2.1.2 Module 2: Transformation Sequence Diagram into Sequence Diagram Graph

(SDG)

After identifying all of the operation scenarios, the sequence diagram graph is

created. There are transitions that occur from state X to state Y in each operation scenario.

Each node connected in SDG is referring to these transitions. Figure 2.2 represent the

SDG for ATMS.

Figure 2.2 Sequence Diagram Graph for Automatic Ticket Machine System (ATMS)

SDG contains information that is needed for test cases generation. Each node in SDG is

mapped to a communication from object A to object B in message set. Besides that, SDG

198

covers all paths from the start node to the final node to cover all interactions that occur in

ATMS activity and to obtain the test paths. From the start node X to the final node Y and

Z, three test paths has been obtained as listed below:

i. Path 1 : S1-S2-S3-S4-S5-S6-S7-S8-S9-S10 = Unsuccessful

ii. Path 2 : S1-S2-S3-S4-S5-S6-S7-S8-S11-S12-S13-S14-S10 = Successful

iii. Path 3 : S1-S2-S3-S4-S5-S6-S7-S8-S11-S12-S13-S15-S14 = Successful

To generate test cases, all the paths that are collected from SDG will be used as a reference

to produce a set of test cases. Each test path will fetch the input and expected output for

indexing the table of final set of test cases.

2.1.3 Module 3: Test Case Generation

To generate test case, a set of test sets defined to detect any faults when an object

invokes a method of another object or whether message passing follow the right sequence

to finish an operation. Coverage criteria is defined whereby given a test set A and sequence

diagram B, T must cause each sequence of message path exercised at least once. The

algorithm called “AlgorithmTestSetGeneration” was used to generate test set satisfying

the coverage criterion. The SDG is traversed based on this coverage criteria and fault

model to make sure each path in SDG would be visited to generate test cases. Three final

generated test cases for ATMS are shown in Table 2.2.

Table 2.2: Test Cases for Automatic Ticket Machine System (ATMS)

Test Case
Scenario

Input Output Post-Conditions

1 Ticket = “Select”
Payment = “Insufficient”

Get Money Display Menu

2 Ticket = “Select”
Payment = “Sufficient”
Balance = 0

Receive Ticket Display Menu

199

3 Ticket = “Select” Receive Ticket and Get Display Menu
Payment = “Sufficient” Money
Balance > 0

Table 2.2 lists three final test cases for ATMS case study when sequence diagram were

used for the generation. As can be seen in table above, three final test cases was derived

compared to six final test cases when Boghdady et al. (2011) techniques was applied in

this case study. From the table, test cases 1 until 3 cover a basis process to buy a train

ticket such as choosing ticket, made payment and receive ticket. From the Figure 2.1, the

sequence diagram for ATMS case study did not consider the looping activity in this case

study. If the looping activity that occur when user make a selection of ticket type and

destination is captured in the sequence diagram, another three test cases can be generated

on this case study.

200

APPENDICES C

(Test case generation technique by Swain et al., 2012)

3.1 Test Case Generation Technique by Swain et al., (2012)

U sin g Swain et al., (2012) technique, test cases are generated from state chart

diagram and is im plem ented on A T M S case study. They choose state chart diagram as a

source o f test cases generation because it can g ive an abstract description o f the behavior

o f a system and m odel dynam ic nature o f a system . In their work, they derived state

transition graph (ST G) from state chart diagram and all inform ation to generate test cases

are extracted from the STG. They also include the m inim ization o f test cases by

calculating node coverage for each test case to determine w hich test cases are covered by

other test cases. In this experim ent, their technique are im plem ented on another case study

that is ATM W . Figure 3.1 represent the state chart diagram for A T M W case studies.

Figure 3.1 State Chart Diagram for A utom atic Teller M achine W ithdrawal (A T M W)

201

3.1.1 Module 1: Converting State Chart Diagram into State Transition Graph

(STG)

For generating state transition graph, a definition o f transition graph has been

defined. A transition graph TG = (Vt, Ed) w hich (Vt) represents a set o f vertices and (Ed)

consisting a set o f directed edges. In state chart diagram, a state w ill represent nodes and

transitions betw een states w ill represent edges in STG. B esid es that, each transition from

one node to another w ill have a set o f stages (ST) that consists o f input data (ID), output

data (O D) and also transition (TR). The STG for A T M W is presented in Figure 3.2

Figure 3.2 State Transition Graph for A utom atic Teller M achine W ithdrawal (A T M W)

From all the STG above, it can be seen that each transition from one node to next node

has a set o f stages that defines the input, output and transitions that occur for each activity

in the system functions. To extract all o f the inform ation w hich are required to generate

test sequence, this set o f stages needs to show the connection betw een one nodes to the

next node. This graph is then traversed using sim ple transition coverage b y v isiting all

vertices in the graph.

202

For generation o f test cases, they applied the graphical travelling salesm an

problem w hich are determined the shortest p ossib le path that v isits each node exactly once

and returns to the initial node. The graphical travelling salesm an problem is defined as, if

n is greater than 1, the transition graph has to be transformed k - 1 tim es. A ll possib le

paths o f transition k w ill be obtain from the STG and added to the set o f test cases. B efore

test cases are generated, all required inform ation from the STG for A T M W are described

as below :

ST= {St1, St2, St3, St4, St5, St6, St7, St8, St9, St10}

ID = {ID 1, ID2, ID3, ID4, ID 5, ID6, ID7, ID8, ID 9, ID 10}

O D = {O D 1, O D 2, O D3, O D4, O D5, O D6, O D7, O D8, O D 9, O D 10}

TR = {TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, T R 10}

TR1: {St1, St2}

TR2: {St2, St3}, {St2, St 10)

TR3: {St3, St4}

TR4: {St4, S t5}, {St4, S t8},

TR5: {St5, St6}

TR6: {St6, St7}

TR7: {St7, Final}

TR8: {St8, St9}, {St8, St10}

TR9: {St9, St5}, {St9, St10}

TR 10: {St10, Final}

3.1.2 Module 2: Test Case Generation

203

From the information above, it shows that transition between source and destination stage

in TR2, TR4, TR8 and TR9 consists of two source stage. The test cases generated from

this case study is shows in Table 3.1.

Table 3.1: Test Cases for Automatic Teller Machine Withdrawal (ATMW)

Test Cases Information Extracted
1 {ST1, ST2, ST3, ST4, ST5, ST6, ID1, ID2, ID3, ID4, ID5, OD1, OD2, OD3,

OD4, OD5, TR1, TR2, TR3, TR4, TR5}
2 {ST1, ST2, ST3, ST4, ST5, ST7, ST6, ID1, ID2, ID3, ID4, ID5, ID6, ID7, OD1,

OD2, OD3, OD4, OD5, OD6, OD7, TR1, TR2, TR3, TR4, TR5, TR6, TR7}
3 {ST2, ST3, ST4, ST5, ST7, ST6, ID2, ID3, ID4, ID5, ID6, ID7, OD2, OD3,

OD4, OD5, OD6, OD7, TR2, TR3, TR4, TR5, TR6, TR7}
4 {ST3, ST4, ST5, ST7, ST6, ID3, ID4, ID5, ID6, ID7, OD3, OD4, OD5, OD6,

OD7,TR3, TR4, TR5, TR6, TR7}
5 {ST4, ST5, ST7, ST6, ID4, ID5, ID6, ID7,OD4, OD5, OD6, OD7, TR4, TR5,

TR6, TR7}

Table 3.1 lists test cases that are generated from ATMW case study using state chart

diagram. Based on the table, five test cases has been produce using this technique. We

observed that the number of generated test cases from the three technique that are applied

on ATMW case study is consistent using activity diagram, sequence diagram and state

chart diagram. The reason for this because ATMW case study is free from looping and

iteration activities and the three type of UML diagram can be used to generated test cases.

