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ABSTRACT 

Oil palm (Elaeis guineensis Jacq.) is recognized as a golden crop and it 

contributes significantly to the economic development of Malaysia. Oil palm detection 

and delineation are important stepping stones for the practice of precision agriculture 

in the oil palm industry and it could be done so with remote sensing applications. This 

research aims to develop a semi-automatic, streamlined approach of oil palm detection 

and delineation using a combination of template matching, local maxima and seeded 

region growing with Worldview-2 data. The performance of the proposed methods 

was assessed in various aspects while taking into consideration the different planting 

conditions, age, and height. The proposed methods of oil palm detection managed to 

achieve high accuracy with overall precision and recall rate of 83% and 90% 

respectively and planimetric accuracy of 0.84 m root mean square error.  The overall 

accuracy index is recorded at 71.2%. It was found that different planting conditions 

affect the detection accuracy to a certain degree where oil palms in optimal planting 

conditions are the most accurately detected with an accuracy index of 89.5%. 

Meanwhile, the parameters of age and height were found to have no significant effect 

on the planimetric accuracy or its positional accuracy. Oil palm delineation scored a 

high segmentation accuracy with only a 25% error rate. The proposed methods are 

feasible for oil palm detection with their simple, streamlined and user-friendly features 

and the application of this approach can be extended to other regions of oil palms with 

similar conditions.  
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ABSTRAK 

Kelapa sawit (Elaeis guineensis Jacq.) telah diiktiraf sebagai tanaman emas 

dan ia banyak menyumbang kepada pembangunan ekonomi Malaysia. Pengesanan dan 

penyempadanan pokok kelapa sawit adalah batu loncatan penting bagi amalan 

pertanian teliti dalam industri kelapa sawit dan boleh dilakukan dengan aplikasi 

penderiaan jauh. Penyelidikan ini bertujuan untuk membangunkan kaedah pengesanan 

dan penyempadanan pokok kelapa sawit secara semi-automatik dan garis alir dengan 

gabungan teknik padanan templat, maksima tempatan dan penumbuhan kawasan 

pembenihan dengan data Worldview-2. Prestasi kaedah yang dicadangkan dinilai 

daripada pelbagai aspek dengan mengambil kira keadaan penanaman, usia dan 

ketinggian. Kaedah yang dicadangkan dalam pengesanan pokok kelapa sawit ini 

berjaya mencapai ketepatan yang tinggi dengan kejituan keseluruhan dan kadar 

ingatan masing-masing sebanyak 83% dan 90% serta ketepatan planimetri sebanyak 

0.84 m daripada min selisih punca kuasa dua. Indeks ketepatan keseluruhan 

direkodkan pada 71.2%. Didapati keadaan penanaman yang berbeza memberi kesan 

kepada ketepatan pengesanan kelapa sawit ke darjah tertentu, di mana kelapa sawit 

dalam keadaan penanaman yang optimum paling tepat dikesan dengan indeks 

ketepatan 89.5%. Sementara itu, parameter usia dan ketinggian didapati tidak memberi 

kesan yang bererti ke atas ketepatan planimetrik atau ketepatan kedudukannya. 

Sementara itu, penyempadanan kelapa sawit telah mencatat ketepatan segmentasi yang 

tinggi dengan hanya kadar ralat 25%. Kaedah yang dicadangkan adalah sesuai untuk 

pengesanan kelapa sawit dengan ciri-cirinya yang mudah, garis alir dan mesra 

pengguna dan aplikasi kaedah ini boleh diperluas ke kawasan kelapa sawit lain yang 

mempunyai keadaan yang serupa. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Research 

The oil palm (Elaeis Guineensis Jacq.) is a worldwide commodity known for 

its vegetable oil, also known as palm oil. Among other major oil crops like soybean, 

sunflower, rapeseed etc., oil palm has the highest oil yield per area, thus making it a 

lucrative crop to grow. Oil palm trees are planted commercially at large scale to make 

use of its high oil-yielding capability. The Malaysian Palm Oil Board (MPOB) (2017) 

states that 5,811,145 hectares of oil palms covered the land of Malaysia as of 

December of 2017, which constitutes about 17.68% of 32.86 million hectares total 

landmass of Malaysia. In the annual Gross Domestic Product (GDP) report published 

by the Department of Statistics Malaysia, the oil palm industry contributed to the GDP 

with RM 38,490 million at current prices in 2013, which constitutes of 41.91% share 

of the agricultural sector, or 3.9% of percentage share of the total GDP (Hasan, 2014). 

Palm oil has become one of the major sources of edible oil. According to the 

trend of global edible oil demand, expansion of oil palm cultivation is inevitable, 

additional areas of oil palm are forecasted to increase globally by 12 to 19 Mha by 

2050 (Corley, 2009). However, in Malaysia, there is only a maximum potential 

increase of 28% of total oil palm areas (ETP, 2010). Due to the limited land bank in 

Malaysia, it is important that the land is utilized optimally to achieve highest 

production possible. In this context, constant monitoring of oil palm is essential to 

safeguard the production of existing oil palms while progressing towards the evolution 

of the industry with incorporation of technological advancement like remote sensing. 

Researches on oil palm monitoring have been growing in recent decades since 

oil palm makes a huge impact economically and environmentally. Remote sensing is 

a handy tool to provide accurate information to monitor oil palm in a sustainable 
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manner. Remote sensing is able to retrieve information from afar without coming into 

contact with the object of interest (Jensen and Lulla, 1987). By obtaining images of 

the oil palm plantations from above, valuable information like tree counts, terrain 

information, yield, palm age, etc. can be derived (Chong et al., 2017). Remote sensing 

is a stepping stone towards precision agriculture. Many remote sensing applications 

like land use classification, pest and disease detection, change detection etc. could be 

carried out for oil palm which will be discussed further in Chapter 2. 

As an industrial crop, oil palm trees are planted commercially with standard 

triangular planting pattern of 9 meters apart to maximize the penetration of sunlight in 

order to maximize production (Basiron, 2007). This planting pattern, together with the 

unique shape of oil palm, makes them readily distinguishable from above (Shafri, 

Hamdan and Saripan, 2011). These characteristics and its importance as a profitable 

crop, make oil palm to be a frequent subject for object detection studies (Kattenborn 

et al., 2014; Li et al., 2017; Norzaki and Tahar, 2018; Srestasathiern and Rakwatin, 

2014). In those studies, they aimed to detect and delineate oil palms automatically with 

various image processing techniques, which will be discussed further in Chapter 2. 

1.2 Statement of the problem 

Tree counting is a costly and a labour-intensive practice to be carried out on 

field level (Pouliot et al., 2002). In industrial practice of oil palm planting, most 

plantations have resorted to estimating the figures by multiplying total area with 

standard planting density (around 148 oil palms per hectare) (Basiron, 2007), which 

obviously is not accurate due to heterogeneity of the land surface (hilly, undulated or 

flat) and features (river, land or forest). Therefore, an automatic oil palm counting 

approach is very much desirable to solve this issue and the information would be 

invaluable to the plantation’s owner (Kattenborn et al., 2014).  

A fully automatic tree counting system does not required user intervention at 

any stage of processing and it applies to estate of any conditions; while a semi-

automatic approach does require user intervention at some stage of processing and the 
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result may affected by different conditions of an estate. At current stage, a fully 

automated oil palm counting has not yet achievable, while a semi-automatic one is 

quite feasible and had been much studied (Kattenborn et al., 2014; Shafri et al., 2011; 

Wong-in et al., 2015). However, most of the approaches are complex and knowledge 

demanding which are not easily transferable to the actual users, making them less 

adoptable to the actual commercial practice. There is a lack of simple, accurate and 

reliable approach which could streamline the whole process of oil palm counting, from 

detection to delineation. 

Delineation of oil palm could help to indicate the size of the individual oil palm 

crown. It can be performed by object-based image segmentation based on the features 

of an object like size, shape, and texture (Ahmed et al., 2018). The process segments 

images into smaller groups with similar features. However, common segmentation 

techniques introduce noises and overlapping of crowns tend to happen causing oil palm 

to lose its individuality which highlights the importance of the individual starting seeds 

(Erikson, 2003; Fan et al., 2005). Seeded region growing in this case reuses the 

detection result and could potentially produce a more accurate segmentation result, 

while retaining the identity of individual crowns, provided that the seeds are correctly 

placed. 

In most oil palm detection and delineation studies, the accuracy assessment is 

often inconclusive and biased as they did not take into consideration of the effect of 

different planting conditions on an actual setting. This is understandable as different 

settings could introduce additional errors to their result. Nevertheless, the algorithm 

should be tested for every situation and every condition so that the result could be 

evaluated impartially and accepted universally. This way, the weakness of the 

technique could be learnt and improved upon, and the goal to automatic oil palm 

counting will be one step closer.  
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1.3 Objectives of the study 

This study aims to devise an efficient way to detect and delineate individual oil 

palm crowns with high accuracy and lean towards the lower end on the spectrum of 

complexity. It involved streamlining the process of detection and delineation by using 

template matching and seeded region growing techniques and providing both 

information of the oil palm location and crown size in one go. The application of 

automatic detection and delineation of oil palm is beneficial to both the industry and 

the environment as it provides crucial information for the decision making of higher 

management.  

Having stated the context and significance of oil palm tree detection and 

individual delineation, the objectives of this research are as follows: 

(a) To develop a semi-automatic, streamlined approach to detect and delineate 

individual oil palm trees.  

(b) To assess the accuracy of the oil palm detection and delineation using different 

metrics under different planting conditions, age and height. 

 

1.4 Research Questions 

From the research background, problem statement and the objectives, the 

following research questions are drawn: 

i. Is a semi-automatic, streamlined oil palm tree detection and delineation 

applicable? 

ii. Do different settings like planting conditions, age and height affect the 

accuracy of oil palm detection? 
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1.5 Study Area 

The study area of the current research located is located at MPOB Research 

Station Kluang, Johor. It was established in September 1979 and formerly known as 

the Palm Oil Research Institute of Malaysia research station. The study site covers an 

area of 486 ha. It is located 13 km and 115 km from Kluang and Johor Bahru, 

respectively (see figure 1.1). 

 

 

Figure 1.1 Test site of the research station located at Kluang, Johor, Malaysia indicated 

by red polylines 

 

 

1.6 Scope of the Study 

There are several types of imagery for the application of tree counting. For an 

accurate result, the oil palm should be discernible on the image and thus a very high 

resolution imagery of 50 cm ground sample distance (GSD) or higher is required as 

the ratio of pixel spacing to crown diameter affects the result of object detection in 

general (Pouliot et al., 2002). This can be taken by low altitude aircraft or UAV. 
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Currently, many satellites also offer images of this resolution, e.g. WorldView-1, 

Worldview-2, WorldView-3, GeoEye, Quickbird, etc. These images also come in 

multiple spectral bands which can further assist in detecting oil palms. This study is 

tested on a research site (MPOB) in this research (see figure 1.1), where the 

configuration of planting conditions may differ from the actual commercial plantation, 

in which the planting conditions will be denser and more uniform. 

In the application of object detection techniques, local maxima and template 

matching were chosen to be applied in oil palm scenario. Both techniques are simple 

and can be executed quite easily while showing promising result on oil palm and other 

plantation crops (Larsen et al., 2011; Norzaki et al., 2018). There are several methods 

of object segmentation techniques. In this study, seeded region growing technique was 

found to be compatible to the research approach and had been chosen to streamline the 

detection and delineation process. Region growing techniques are commonly applied 

for the segmentation of forest trees but has not yet attempted on oil palm delineation 

(Erikson, 2003). Oil palm develops distinct features on the image which can be 

effectively delineated using region growing. 

1.7 Significance of the study 

Oil palm is the dominant and leading vegetable oil crop in the world. It has a 

global market share of 34% according to impact report released by Roundtable on 

Sustainable Palm Oil (RSPO) in 2014. Oil palm trees have been planted extensively in 

Malaysia, which made our country the largest producer of palm oil in the world. Hence, 

for Malaysia to remain competitive in the palm oil industry, the productivity of oil 

palms had to be measured and monitored.  

Precision agriculture is a key to future management of oil palms as it 

emphasised on maximum profit with minimum efforts. Oil palm tree detection is a 

stepping stone for the implementation of precision agriculture as it indicates the precise 

location of the oil palms and the number of oil palms planted in an area. With this 

information at hand, precise treatment plan could be derived which includes 
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fertilization program, weeding program, pruning program etc. These site-specific and 

tree-specific treatments of oil palms can improve yield and reduce costs of 

maintenance. While eliminating over-spending problems, it reduces the wastage of 

fertilizers and chemicals (pesticides and herbicides) which is beneficial in terms of 

environmental protection. 

Oil palm detection plays a key role in helping the management of oil palm 

plantations. It is an important and necessary practice for yield estimation and 

monitoring, precision agriculture, replanting layout planning, etc. With delineation of 

individual oil palm, their health condition could be monitored as the size of the crown 

often indicate the robustness of the oil palm. With their size in check, abnormal oil 

palm could be pinpointed and thus treatment plan could be derived for these stunted 

oil palms. 

1.8 Organization of chapters 

Chapter 1 provides an insight on the research objectives and the motivation of 

the study. The rest of the thesis are organized in the following structures. Chapter 2 is 

the review of past literatures on oil palm tree detection and delineation studies as well 

as other oil palm remote sensing applications on precision agriculture. Chapter 3 is the 

methodology of the thesis which describes every technique and process in details. 

Chapter 4 provides the result and discussion of the outcome of this research. Chapter 

5 is the conclusion which summarizes the research and offers recommendation for 

future studies. 
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Appendix A R codes for tree detection and delineation 

 

##template matching 

library(raster) 

library(rgdal) 

library(rgeos) 

library(sp) 

 

#creating template 

 

a <- raster(file.choose(),band=1) 

b<-zoom(a) 

r<-crop(a,b) 

plot(r) 

d<-click(r,xy=T,id=T) #finding oil palm manually 

df1<-d[1:2] 

df2<-df1+5 

df3<-df1-5 

df4<- cbind(df3$x,df2$x,df3$y,df2$y) 

 

op_temp<-NULL 

for(x in (1:nrow(df4))){ 

  op_temp<-c(op_temp,crop(c,extent(df4[x,]))) 

} 

 

#finding mean template 

op_temp_raster <- list(op1,op2,op3,…) 

op_temp_mat_all <- lapply(op_temp_raster,as.matrix) 

op_temp_mean <- raster(Reduce('+',op_temp_mat_all/length(op_temp_raster))) 

 

#moving template with NCC 

 

mov_win_FNCC_fm<- function(X,px){ #X is the raster object 

  j<-1 

  temp <- op_temp_mean_mat_19px[(1+(19-px)/2):(19-(19-px)/2),(1+(19-px)/2):(19-

(19-px)/2)] 

  zerotemp<- temp-mean(temp) 

  zerotempsq<- (temp-mean(temp))^2 

  v<-NULL 

  while ((j+(px-1))<nrow(X)){ 

    i<-1 

    r<-NULL 

    while ((i+(px-1))<ncol(X)){ 

      im <-X[j:(j+(px-1)),i:(i+(px-1))] 

      if(!anyNA(im)){ 

        tab1 <- sum(im) 

        tab2 <- sum(im^2) 

        nom <-sum((im-mean(im))*(zerotemp)) 

        deno <-sqrt((tab2-(1/ncell(im))*(tab1)^2)*(sum(zerotempsq))) 
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        cv<- nom/deno 

        r<-c(r,cv) 

      } 

      i<-i+1 

    } 

    j<- j+1 

    v<-rbind(v,r) 

  } 

  xymn<- xyFromCell(X,cellFromRowCol(X,(px+1)/2,(px+1)/2)) 

  xymx<- xyFromCell(X,cellFromRowCol(X,nrow(X)-((px-1)/2),ncol(X)-((px-

1)/2))) 

  

return(raster(v,xmn=xymn[1],xmx=xymx[1],ymn=xymx[2],ymx=xymn[2],crs=crs(X

))) 

} 

 

##local maxima 

library(raster) 

library(rgdal) 

library(sp) 

 

c<- raster(file.choose(),band=1) 

f<- function(X) max(X, na.rm=T) 

localmax <- focal(c, fun=f, w=matrix(1,nc=17,nr=17), pad=TRUE, padValue=NA) 

 

c1 <- c==localmax 

 

e <- rasterToPoints(c1,fun=function(x) (x==1), spatial=T)  

h <- remove.duplicates(e,zero=2.3,remove.second=T)h 

writeOGR(h,dsn=getwd(),layer='op_points_5',driver='ESRI Shapefile') 

 

## seeded region growing 

library(raster) 

library(rgdal) 

library(rgeos) 

rggw <- function(a,sp,fd){  

  # a is the raster objects;  

  # sp is the point layers/ seeds; 

  # fd= simliarity threshold fisher distance 

  

  ####parameter#### 

  pixmax = 145 #145 for 7th iteration 

  t3 = 3500 #threshold for non oil palm pixel value; on b layer (nirband range 1500-

4500)  

  t4 = 1500 #max-min 

  ################# 

  point_mat<-NULL 

  df<-NULL 

  defcrs<-crs(sp) 

  treenum<-0 
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  for (j in (1:length(sp))){ 

    # extracting value of seed cell 

    seed_coord<- coordinates(sp)[j,] 

    seed_cell<- cellFromXY(a,seed_coord) 

    seed_value<- extract(a,seed_cell) #nir band 

    adjcell_vec<- adjacent(a,seed_cell,directions=4,sorted=T,pairs=F,include=T) 

    reg_member<-adjcell_vec 

    iter<-1 

     

    # circularity 

    # convexity/laplacian 

     

    if (is.na(seed_value)){ 

      next 

    } 

    if (seed_value<t3){ 

      next 

    } 

    else{ 

      if(seed_value>3800){ 

        t2<- iter*36.1-15 # 29.182*exp(0.3211*iter) ##intra-segment std deviation 

(minimum)# follow units on nir band 

        t4<- 1000 

      } 

      if(seed_value>4000){ 

        t2<- iter*36.1+40 # 29.182*exp(0.3211*iter) ##intra-segment std deviation 

(minimum)# follow units on nir band 

        t4<-1500 

      } 

      if(seed_value>4200){ 

        t2<- iter*36.1+60 # 29.182*exp(0.3211*iter) ##intra-segment std deviation 

(minimum)# follow units on nir band 

        t4<-1800 

      } 

      if(seed_value>4500){ 

        t2<- iter*45+100 # 29.182*exp(0.3211*iter) ##intra-segment std deviation 

(minimum)# follow units on nir band 

        t4<-2000 

      } 

      while 

((sd(extract(a,reg_member),na.rm=T)<t2)&(ncell(reg_member)<pixmax)&(iter<10)

& 

             ((max(extract(a,reg_member),na.rm=T)-

min(extract(a,reg_member),na.rm=T))<t4)){ 

        adjcell_vec<- adjacent(a,reg_member,directions=8,sorted=T,pairs=F,include=T) 

        adjcell_vec<- adjcell_vec[!adjcell_vec %in% reg_member] 

        regionmean<- mean(extract(a,reg_member),na.rm=T) 

        regionsd<-(sd(extract(a,reg_member),na.rm=T)) 

        for (i in 1:length(adjcell_vec)){ 

          if (is.na(extract(a,adjcell_vec[i]))){ 
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            next 

          } 

          if (extract(a,adjcell_vec[i])<t3){ 

            next 

          } 

          # if (((extract(a,adjcell_vec[i])-mean(extract(a,reg_member),na.rm=T))^2)/ 

          #     (var(extract(a,reg_member),na.rm=T))<fd){ #### 

          if (((abs(extract(a,adjcell_vec[i])-regionmean))/regionsd)<fd){ #### 

            reg_member<- c(reg_member,adjcell_vec[i]) 

          } 

          else{ 

          } 

        } 

        iter<- iter+1 

        #print(ttt) 

      } 

    } 

    treenum<-treenum+1 

    cat(treenum) 

    point<- xyFromCell(a,reg_member) 

    point_mat<- rbind(point_mat,point) 

    df<-rbind(df,matrix(replicate(nrow(point),treenum),byrow=T)) 

    ##reg_trees[j]<-list(point) 

  } 

  sp_trees<- 

SpatialPointsDataFrame(point_mat,data=data.frame(df,row.names=NULL), 

proj4string=defcrs) 

  return(sp_trees) 

  #return(rasterize(sp_trees,a)) 

} 

 

polygonize<- function(X,Y){  ##X is list of coordinates, Y is SPdf 

  poly<-list() 

  defcrs<- crs(Y) 

  poly1<-lapply(X,Polygon) 

  for (i in 1:length(X)) { 

    poly[i]<- Polygons(poly1[i], ID=paste('polygon',i,sep='')) 

  } 

  df=data.frame(rep(1,length(X))) 

  SP<- SpatialPolygons(poly,proj4string=crs(defcrs)) 

  return(SpatialPolygonsDataFrame(SP,data=df,match.ID=F)) 

} 

 

 

 



 

69 

Appendix B Calculation of planimetric accuracy using ground reference data 

and detection result 

 

Reference 
ID 

Longitude, 
(Pg) 

Latitude, 
(Pg) 

Detect 
ID 

Longitude, 
(Pd) 

Latitude, 
(Pd) 

Distance 
Error 
(D), m 

D-
squared, 
m2 

1407 103.3851906 1.9410789 78 103.3851918 1.9410843 0.61 0.37 

1402 103.3853242 1.9410344 79 103.3853222 1.9410393 0.58 0.34 

1503 103.3797677 1.9414165 74 103.3797716 1.9414137 0.52 0.27 

1606 103.3793538 1.941686 66 103.3793489 1.9416801 0.85 0.71 

1604 103.3793506 1.9418419 64 103.3793442 1.9418429 0.72 0.52 

1505 103.3797023 1.9414587 72 103.3797041 1.9414544 0.52 0.27 

1409 103.3851416 1.9409282 77 103.385147 1.940926 0.65 0.42 

1701 103.3796877 1.9423717 59 103.3796898 1.9423678 0.49 0.24 

1608 103.3792875 1.9417203 65 103.3792814 1.9417162 0.81 0.66 

1508 103.3796369 1.9414124 73 103.3796502 1.9414136 1.49 2.22 

1702 103.3796905 1.9422817 58 103.3796943 1.9422818 0.43 0.19 

1509 103.3796423 1.9413266 76 103.3796413 1.9413232 0.40 0.16 

1506 103.3797078 1.9413756 75 103.3796997 1.9413775 0.92 0.85 

1504 103.3797009 1.9415378 69 103.379704 1.9415403 0.44 0.20 

1507 103.3796355 1.941501 70 103.3796322 1.9414995 0.41 0.16 

1502 103.3797691 1.9414928 71 103.379776 1.9414906 0.80 0.64 

1607 103.379282 1.9418001 62 103.3792813 1.9418067 0.73 0.54 

1501 103.3797677 1.9415775 68 103.3797669 1.9415856 0.90 0.81 

1601 103.3794192 1.9418835 67 103.3794206 1.9418927 1.03 1.06 

1602 103.3794141 1.9418038 63 103.3794207 1.9417978 1.00 0.99 

1707 103.3795555 1.9422954 60 103.379555 1.9422908 0.51 0.26 

1704 103.3796223 1.9423281 57 103.3796224 1.942327 0.12 0.01 

1708 103.3795596 1.9422123 55 103.3795551 1.9422094 0.59 0.35 

1703 103.3796959 1.9422027 56 103.3796944 1.942214 1.26 1.59 

1705 103.3796264 1.9422518 61 103.3796315 1.9422456 0.88 0.78 

607 103.3739343 1.9591382 95 103.3739302 1.9591335 0.70 0.49 

2202 103.3733939 1.956297 3 103.3733891 1.9563113 1.68 2.81 

2201 103.3733913 1.9563702 1 103.373389 1.9563792 1.02 1.05 

2204 103.3733246 1.9563297 2 103.3733261 1.9563384 0.98 0.96 

2104 103.372866 1.9559293 11 103.3728681 1.95594 1.21 1.47 

2109 103.3728148 1.9557102 18 103.3728189 1.955723 1.48 2.19 

2203 103.3734044 1.9562081 6 103.3734116 1.9562209 1.63 2.66 

2102 103.3729327 1.9558874 13 103.3729356 1.9558949 0.88 0.78 

2105 103.3728739 1.9558521 14 103.3728817 1.9558587 1.13 1.28 

2101 103.3729223 1.9559737 10 103.372931 1.9559808 1.25 1.56 

2205 103.3733325 1.9562552 5 103.3733352 1.956257 0.37 0.14 

605 103.3739932 1.9591081 96 103.3739886 1.9591019 0.86 0.74 

2009 103.3722009 1.9553905 88 103.3722035 1.9554013 1.23 1.51 



70 

2209 103.3732684 1.9561218 9 103.3732724 1.9561213 0.46 0.21 

709 103.3803436 1.9541889 27 103.3803481 1.9541884 0.50 0.25 

2206 103.3733416 1.9561689 8 103.3733443 1.9561756 0.81 0.65 

2106 103.3728734 1.9557523 17 103.3728773 1.9557637 1.33 1.77 

2207 103.3732618 1.9562878 4 103.3732543 1.9562886 0.84 0.71 

2107 103.3727967 1.9558848 12 103.3727918 1.9558948 1.23 1.51 

2008 103.3721953 1.9554737 85 103.3721944 1.9554827 1.00 0.99 

2006 103.3722703 1.9554404 87 103.3722664 1.9554375 0.54 0.29 

1307 103.3894637 1.9441698 48 103.3894628 1.9441723 0.29 0.09 

601 103.3740612 1.9592166 93 103.3740694 1.959215 0.93 0.87 

603 103.3740677 1.9590611 94 103.3740696 1.9590522 1.00 1.00 

2005 103.372261 1.9555131 84 103.3722573 1.9555144 0.43 0.18 

2007 103.372187 1.9555541 83 103.3721809 1.9555505 0.79 0.63 

2003 103.3723369 1.955482 86 103.3723338 1.9554828 0.36 0.13 

706 103.3804164 1.9542177 26 103.3804245 1.9542201 0.94 0.88 

2103 103.3729442 1.9558203 15 103.3729491 1.9558271 0.93 0.87 

2001 103.3723237 1.9556497 80 103.3723291 1.9556546 0.81 0.65 

2004 103.3722592 1.9556041 81 103.3722572 1.9556003 0.47 0.22 

609 103.3739278 1.9589879 91 103.3739303 1.9589888 0.30 0.09 

2208 103.3732684 1.9562068 7 103.3732678 1.9562072 0.07 0.01 

2108 103.3728059 1.9558011 16 103.3728053 1.9558043 0.36 0.13 

806 103.3761849 1.9470001 104 103.3761844 1.9469947 0.61 0.37 

1302 103.3896078 1.9441664 49 103.3896066 1.9441679 0.21 0.04 

2002 103.3723285 1.955568 82 103.3723337 1.9555733 0.82 0.66 

708 103.3803431 1.9542535 24 103.380348 1.9542517 0.59 0.35 

703 103.3804895 1.9542506 25 103.3804918 1.9542518 0.29 0.08 

803 103.3762333 1.9470558 103 103.3762383 1.947058 0.61 0.37 

1303 103.3896006 1.9440759 52 103.3895977 1.9440775 0.37 0.13 

1008 103.3778405 1.9497206 33 103.3778356 1.949732 1.37 1.87 

809 103.3761232 1.9469494 105 103.3761215 1.9469539 0.53 0.28 

804 103.3761742 1.9471851 98 103.3761752 1.9471846 0.13 0.02 

704 103.3804205 1.9543765 20 103.3804198 1.9543829 0.71 0.50 

1006 103.3779047 1.9496705 35 103.3779121 1.9496642 1.08 1.16 

807 103.3761147 1.9471549 99 103.3761078 1.9471664 1.49 2.22 

604 103.3739919 1.9591853 90 103.373993 1.9591923 0.79 0.62 

802 103.3762468 1.9471521 100 103.3762427 1.9471485 0.60 0.36 

1304 103.3895401 1.9442146 47 103.3895437 1.9442221 0.92 0.85 

701 103.3804891 1.9544011 19 103.3805007 1.954401 1.29 1.65 

1003 103.3779717 1.9497127 34 103.3779705 1.949714 0.20 0.04 

805 103.376176 1.9471114 101 103.3761753 1.9471168 0.59 0.35 

1305 103.3895325 1.944119 50 103.3895303 1.9441226 0.48 0.23 

1007 103.3778372 1.9498118 30 103.3778356 1.9498133 0.25 0.06 

1004 103.37791 1.94985 29 103.3779074 1.9498586 0.99 0.99 

1005 103.3779089 1.949741 32 103.377912 1.9497411 0.35 0.12 

608 103.3739317 1.959065 89 103.3739302 1.9590702 0.59 0.35 
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1308 103.3894571 1.9440851 51 103.3894539 1.9440864 0.38 0.15 

1309 103.3894545 1.9440016 54 103.3894405 1.9440005 1.57 2.45 

801 103.3762486 1.9472296 97 103.3762426 1.9472299 0.67 0.45 

1306 103.3895271 1.9440309 53 103.3895214 1.9440277 0.73 0.53 

702 103.3804835 1.9543162 22 103.3804783 1.9543241 1.05 1.11 

707 103.3803431 1.9543339 21 103.3803524 1.9543376 1.12 1.25 

1009 103.3778378 1.9496396 36 103.3778312 1.9496415 0.76 0.58 

808 103.3761148 1.9470653 102 103.3760989 1.9470715 1.89 3.59 

1001 103.3779777 1.9498843 28 103.3779748 1.9498813 0.46 0.22 

1002 103.3779755 1.9498092 31 103.3779749 1.9498135 0.48 0.23 

1301 103.3896115 1.9442458 46 103.3896155 1.9442448 0.46 0.21 

606 103.3739958 1.9590284 92 103.3739932 1.9590205 0.92 0.85 

705 103.3804085 1.9542848 23 103.3804109 1.9542924 0.88 0.77 

1209 103.3850028 1.9475914 45 103.3850014 1.947591 0.17 0.03 

1206 103.3851215 1.9476707 44 103.3851226 1.947668 0.32 0.10 

1208 103.3850543 1.9477125 43 103.3850552 1.9477132 0.13 0.02 

1203 103.3851851 1.9477234 42 103.38519 1.9477223 0.55 0.31 

1202 103.3851906 1.9478033 40 103.3851899 1.9478083 0.55 0.31 

1205 103.3851215 1.9477633 41 103.385127 1.9477675 0.77 0.59 

1207 103.3850561 1.9478087 39 103.3850551 1.9478217 1.44 2.06 

1201 103.3851924 1.9478887 37 103.3851898 1.9478942 0.67 0.45 

1204 103.3851197 1.9478451 38 103.385118 1.9478398 0.61 0.37 

      Sum 74.69 

      Average 0.71 

      RMSE: 0.84 
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