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Abstract

Unsteady two-dimensional stagnation point flow of an incompressible viscous fluid over a flat de-

formable sheet is studied when the flow is started impulsively from rest and the sheet is suddenly stretched

in its own plane with a velocity proportional to the distance from the stagnation point. After a similarity

transformation, the unsteady boundary layer equation is solved numerically using the Keller-box method

for the whole transient from s ¼ 0 to the steady state s ! 1. Also, a complete analysis is made of the

governing equation at s ¼ 0, the initial unsteady flow, at large times s ¼ 1, the steady state flow, and a
series solution valid at small times s (�1). It is found that there is a smooth transition from the initial

unsteady state flow (small time solution) to the final steady state flow (large time solution).

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The production of sheeting material arises in a number of industrial manufacturing processes
and includes both metal and polymer sheets. In the manufacture of the latter, the material is in a
molten phase when thrust through an extrusion die and then cools and solidifies some distance
away from the die before arriving at the collecting stage. The tangential velocity imported by the
*
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Nomenclature

a constant proportional to free stream velocity far away from the sheet
b proportionality constant of the velocity of the stretching sheet
Cf skin friction coefficient
f reduced stream function
Rex local Reynolds number
t time
u velocity component along the sheet
ue free stream velocity
uw velocity of the sheet
v velocity component normal to the sheet
x coordinate along the sheet
y coordinate normal to the sheet

Greek letters

g pseudo-similarity variable
�g transformed variable
k parameter
m kinematic viscosity
n non-dimensional transformed variable
s non-dimensional time
q density

Subscript

w conditions at the sheet

Superscript
0 derivation with respect to g or �g
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sheet induces motion in the surrounding fluid, which alters the convection cooling of the sheet.
Similar situations prevail during the manufacture of plastic and rubber sheets where it is often
necessary to blow a gaseous medium through the not-yet solidified material, and where the
stretching force may be varying with time. Another example that belongs to this class of problems
is the cooling of a large metallic plate in a bath, which may be an electrolyte. In this case the fluid
flow is induced due to shrinking of the plate. Glass blowing, continuous casting, and spinning of
fibers also involve the flow due to a stretching surface. Due to the much higher viscosity of the
fluid near the sheet, one can assume that the fluid is affected by the sheet but not vice versa. Thus
the fluid dynamic problem can be idealized to the case of a fluid disturbed by a tangentially
moving boundary. Experiments show that the velocity of the boundary is approximately pro-
portional to the distance from the orifice (Vleggaar [1]). The quality of the resulting sheeting
material, as well as the cost of production, is affected by the speed of collection and the heat
transfer rate, and knowledge of the flow properties of the ambient fluid is clearly desirable.
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The steady state solution of this problem belongs to an important class of exact solutions of the
Navier–Stokes equations (Wang [2,3]). Since the tangential velocities are proportional to the
distance from the orifice, the Navier–Stokes equations reduce to an ordinary differential equation
through a similarity transformation. The two-dimensional steady flow due to stretching of a sheet
is particularly interesting because there is a closed form solution, which has been obtained by
Crane [4]. Brady and Acrivos [5] investigated the similarity exact solutions of the steady flow
inside a stretching channel and inside a stretching cylinder. The steady two-dimensional boundary
layer flow, due to non-uniform stretching surfaces, was discussed by Kuiken [6], Banks [7], Banks
and Zaturska [8], and Magyari and Keller [9]. On the other hand, the steady two-dimensional
stagnation point flow of an incompressible viscous fluid towards a stretching plate, has been
studied by Chiam [10], while Mahapatra and Gupta [11] studied the heat transfer situation. It is
worth mentioning that existence, uniqueness and multiple similarity solutions for the steady
pressure gradient driven flows over a stretching surface in a viscous and incompressible fluid of
the Blasius and Falkner-Skan type flows, have been established by Klemp and Acrivos [12,13],
Hussaini et al. [14], McLeod and Rajagopal [15], and Riley and Weidman [16]. The paper by
McLeod and Rajagopal [15] has then been used by Troy et al. [17] to investigate uniqueness of
the steady flow of an incompressible second-order fluid past a stretching sheet.

However, the unsteady two-dimensional boundary layer flow due to a suddenly stretched plane
surface in a viscous fluid has received much less attention. To our best knowledge, only Pop and
Na [18], and Wang et al. [19] have considered this problem. The case of the three-dimensional
unsteady flow with heat and mass transfer over a continuous stretching surface has been studied
by Lakshmisha et al. [20]. The case of unsteady flow due to a stretching surface in a rotating fluid,
where the unsteadiness is caused by the suddenly stretched surface has been recently considered
by Nazar et al. [21]. Therefore, the aim of this paper is to study the unsteady two-dimensional
stagnation point flow of a viscous and incompressible fluid towards a stretching surface. It is
assumed that both the sheet and the velocity distribution in the potential flow start impulsively
from rest. As time approaches infinity, the unsteady (transient) solution should approach the
steady state solution reported by Mahapatra and Gupta [11]. Although strictly impulsive motion
does not occur in practice (infinite stresses at time zero), it is nevertheless an excellent approxi-
mation of sudden changes in the boundary conditions. Due to nonlinear convection, there are no
analytical solutions for impulsive start, except for parallel or concentric flows, where the nonlinear
are identically zero. Most solutions are found by a variety of numerical schemes. For a very short
time interval after impulsive start, nonlinear effects are secondary to diffusion and a perturbation
method may be used to obtain an analytic solution. Numerous authors used small-time expansion
to solve impulsive starting problems (see Pop and Na [18]). The solution, as the method suggests,
is valid only for small times. As time s approaches infinity, the solution, which is a power series
in s, becomes infinite.

As we have mentioned above, the objective of this paper is to present a detailed study of the
development of the two-dimensional boundary layer flow of a viscous and incompressible fluid in
the region of the stagnation point on a stretching sheet. The unsteadiness in the flow field is caused
by impulsively creating motion in the free stream and at the same time suddenly stretching the
surface. The governing continuity and momentum equations are transformed using semi-similar
coordinates originated by Williams and Rhyne [22], and very recently used by Seshadri et al. [23]
to study the unsteady mixed convection boundary layer flow of a viscous and incompressible fluid
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near the stagnation point on a vertical surface. Following Mahapatra and Gupta [11], the
boundary layer structure of the present problem is found to depend on the parameter k, which
defines the ratio of the velocity of the stretching surface to that of the frictionless potential flow
in the neighborhood of the stagnation point. A complete analysis is made of the transformed
boundary layer equation for a wide range of values of the parameter k. A closed form solution of
this equation has been shown to exist at s ¼ 0 (initial unsteady flow), as s ! 1 (the steady state
flow) and for small times s (�1). It is shown that for the steady state flow (large times), the
analytical behavior of the solution approaches Crane’s solution for small values of k (�1) and
Hiemenz’s solution for large values of k (�1), respectively. A numerical solution of the trans-
formed equation using the Keller-box method was then obtained for the whole transient regime.
The results show that there is a smooth transition from the small time solution to the large time
solution. Particular cases of the present results are compared with those of Mahapatra and Gupta
[11], and the agreement is very good.
2. Governing equations

Consider the unsteady flow of a viscous and incompressible fluid near the stagnation point of a
flat sheet coinciding with the plane y ¼ 0, the flow being confined to y > 0. Velocity is zero for
t < 0. For t > 0, the sheet is suddenly stretched such that the local tangential velocity is uw ¼ bx,
where b is a positive constant, keeping the origin fixed, as shown schematically in Fig. 1. It is also
assumed that for t > 0, the velocity distribution in the potential flow (free stream velocity), given
by ue ¼ ax, where a is a positive constant, starts impulsively in motion from rest.

The unsteady two-dimensional Navier–Stokes equations can be written under the boundary
layer approximation as
ou
ox

þ ov
oy

¼ 0; ð1Þ
0

y

ue = ax

x

uw = bx

Fig. 1. Physical model and coordinate system.
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ou
ot

þ u
ou
ox

þ v
ou
oy

¼ a2xþ m
o2u
oy2

; ð2Þ
subject to initial and boundary conditions
t < 0 : u ¼ v ¼ 0;

tP 0 : u ¼ bx; v ¼ 0 at y ¼ 0 u ! ax as y ! 1;
ð3Þ
where u and v denote the velocity components along x and y axes, respectively, with x being
measured along the sheet and y measured normal to it, and m is the kinematic viscosity.

To solve Eqs. (1) and (2) for tP 0, it is convenient to choose a new time scale n so that the
region of time integration may become finite. Thus, following Williams and Rhyne [22], we
introduce the variables
g ¼ ðb=mÞ1=2n�1=2y; u ¼ bxf 0ðn; gÞ; v ¼ �ðbmÞ1=2n1=2f ðn; gÞ;
n ¼ 1� expð�sÞ; s ¼ bt:

ð4Þ
Substituting these variables into Eq. (2) we get
f 000 þ 1

2
ð1� nÞgf 00 þ nðk2 þ ff 00 � f 02Þ ¼ nð1� nÞ of

0

on
; ð5Þ
which must be solved over the range of n with 06 n6 1, and subject to the boundary conditions
f ðn; 0Þ ¼ 0; f 0ðn; 0Þ ¼ 1; f 0ðn; gÞ ! k as g ! 1; ð6Þ
where k ¼ a=b is a positive constant and primes denote partial differentiation with respect to g.
The wall shear stress sw can be related to the non-dimensional skin friction coefficient Cf

according to
Cf ¼
sw

qðbxÞ2
¼ m

ðbxÞ2
ou
oy

� �
y¼0

; ð7Þ
where q is the density of the fluid. Using variables (4), we obtain
CfRe1=2x ¼ n�1=2f 00ðn; 0Þ; ð8Þ
where Rex ¼ ðbxÞx=m is the local Reynolds number.
3. Solution

The governing partial differential equation (5) and the boundary conditions (6) permit separate
reductions to ordinary differential systems governing the velocity profiles in the initial unsteady
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flow at n ¼ 0 (s ¼ 0), and the final steady state flow at large times (s ! 1) given by n ¼ 1. The
equation for the initial unsteady flow admits a closed form analytical solution, while the equation
for the steady state flow cannot be solved explicitly. This case is studied using series solutions for
both k small (k � 1) and k large (k � 1). A numerical solution of Eq. (5) subjected to the
boundary conditions (6) is then obtained for 06 n6 1 using the Keller-box method described in
the book by Cebeci and Bradshaw [24].
3.1. Initial unsteady solution at n ¼ 0

The initial solution profile at n ¼ 0, corresponding to s ¼ 0, can be obtained by taking
f ð0; gÞ ¼ gðgÞ in Eq. (5), where gðgÞ satisfies the ordinary differential equation
g000 þ 1

2
gg00 ¼ 0; ð9Þ
subject to
gð0Þ ¼ 0; g0ð0Þ ¼ 1; g0 ! k as g ! 1: ð10Þ
The closed form solution of these equations is given by
gðgÞ ¼ kgþ ð1� kÞgerfc g
2

� �
þ 2ffiffiffi

p
p ð1� kÞ

�
1� e�g2=4

�
; ð11Þ
where erfcð�Þ is the complementary error function defined as
erfcðzÞ ¼ 2ffiffiffi
p

p
Z 1

z
e�s2 ds: ð12Þ
The non-dimensional velocity profiles at n ¼ 0, given explicitly as
g0ðgÞ ¼ kþ ð1� kÞerfc g
2

� �
ð13Þ
can then be used to obtain
g00ð0Þ ¼ � 1� kffiffiffi
p

p : ð14Þ
3.2. Steady state solution at n ¼ 1

The flow at n ¼ 1, corresponding to s ! 1, is steady and hence f ð1; gÞ ¼ hðgÞ, where hðgÞ
satisfies the following ordinary differential equation
h000 þ hh00 � h02 þ k2 ¼ 0; ð15Þ
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subject to the boundary conditions
hð0Þ ¼ 0; h0ð0Þ ¼ 1; h0ðgÞ ! k as g ! 1: ð16Þ
For k ¼ 0, Eqs. (15) and (16) reduce to those found by Crane [4] with the closed form solution
hðgÞ ¼ 1� e�g: ð17Þ
It is also possible to obtain an approximate solution of Eqs. (15) and (16) for small values of k
(�1). In this case, we seek a power series solution of Eq. (15) of the form
hðgÞ ¼ h0ðgÞ þ h1ðgÞkþ h2ðgÞk2 þ h:o:t: ð18Þ
Substituting (18) into Eq. (15) and the boundary conditions (16) leads to the following three sets
of ordinary differential equations defining the first three functions h0, h1 and h2 namely,
h0000 þ h0h000 � h020 ¼ 0 h0ð0Þ ¼ 0; h00ð0Þ ¼ 1; h00ð1Þ ¼ 0; ð19Þ

h0001 þ h0h001 � 2h00h
0
1 þ h000h1 ¼ 0 h1ð0Þ ¼ h01ð0Þ ¼ 0; h01ð1Þ ¼ 0; ð20Þ

h0002 þ h0h002 � 2h00h
0
2 þ h000h2 þ h1h001 � h021 þ 1 ¼ 0 h2ð0Þ ¼ h02ð0Þ ¼ 0; h02ð1Þ ¼ 0: ð21Þ
The solution h0ðgÞ of the system (19) is exactly the k ¼ 0 solution given by expression (17). Eqs.
(20) and (21) are solved numerically, so that we can obtain the skin friction coefficient for the final
steady state flow (n ¼ 1) as
CfRe1=2x ¼ �1þ 0:1840kþ 1:3831k2 þ h:o:t ð22Þ
for k � 1.
A solution of the system (15) and (16), which is valid for large values of k (�1) can be also

obtained by first introducing the function �hð�gÞ defined according to
hðgÞ ¼ k1=2�hð�gÞ; �g ¼ k1=2g: ð23Þ
Using this transformation, Eq. (15) becomes
�h000 þ �h�h00 � �h02 þ 1 ¼ 0; ð24Þ
subject to the boundary conditions
�hð0Þ ¼ 0; �h0ð0Þ ¼ k�1; �h0ð�gÞ ! 1 as �g ! 1; ð25Þ
where now primes denote differentiation with respect to �g.
We look for a solution of Eq. (24) of the form
�hð�gÞ ¼ �h0ð�gÞ þ �h1ð�gÞk�1 þ �h2ð�gÞk�2 þ h:o:t; ð26Þ
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where the function �h0 is given by
�h0000 þ �h0�h000 � �h020 þ 1 ¼ 0 �h0ð0Þ ¼ �h00ð0Þ ¼ 0; �h00ð�gÞ ! 1 as �g ! 1 ð27Þ
and these equations describe the steady state flow near the forward stagnation point of a fixed
semi-infinite wall first studied by Hiemenz [25]. From (27), we get h000ð0Þ ¼ 1:232627 (see Lok et al.
[26]).

The equations for the functions �h1 and �h2 are
�h0001 þ �h0�h001 � 2�h00�h
0
1 þ �h000h1 ¼ 0 �h1ð0Þ ¼ 0; �h01ð0Þ ¼ 1; �h01ð�gÞ ! 0 as �g ! 1; ð28Þ

�h0002 þ �h0�h002 � 2�h00�h
0
2 þ �h000h2 þ �h1�h001 � �h021 ¼ 0 �h2ð0Þ ¼ �h02ð0Þ ¼ 0; �h02ð�gÞ ! 0 as �g ! 1

ð29Þ
and these equations were solved numerically. Thus, the skin friction coefficient is given by
CfRe1=2x ¼ k3=2½1:2326� 0:8236k�1 � 0:4915k�2 þ h:o:t:� ð30Þ
for k � 1.
3.3. Small n and s time solutions

On the other hand, an approximate solution of Eq. (5) subjected to the boundary condi-
tions (6) which is valid in the region n � 1, equivalent to small time s � 1 solution, can be
expressed as
f ðn; gÞ ¼ �f0ðgÞ þ �f1ðgÞnþ �f2ðgÞn2 þ h:o:t:; ð31Þ
where �f0 coincides with Eqs. (9) and (10), while �f1 and �f2 are given by the following two sets of
ordinary differential equations
�f 000
1 þ 1

2
g�f 00

1 � �f 0
1 ¼

1

2
g�f 00

0 � �f0�f 00
0 þ �f 02

0 � k2 �f1ð0Þ ¼ �f 0
1ð0Þ ¼ 0; �f 0

1ðgÞ ! 0 as g ! 1;

ð32Þ

�f 000
2 þ 1

2
g�f 00

2 � 2�f 0
2 ¼

1

2
g�f 00

1 � �f1�f 00
0 þ 2�f 0

0
�f 0
1 � �f 0

1
�f2ð0Þ ¼ �f 0

2ð0Þ ¼ 0; �f 0
2ðgÞ ! 0 as g ! 1:

ð33Þ
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The analytical solution of Eq. (32) is given by
f 0
1ðgÞ ¼

ð1� kÞð1þ 3kÞ
2

"
� 2ð1� kÞ2

3p

#
1

��
þ 1

2
g2
�
erfcðg=2Þ � 1ffiffiffi

p
p ge�g2=4

�

� 1

2
ð1� kÞ2 1

�
� 1

2
g2
�
erfc2ðg=2Þ � ð1� kÞ 2k

�
þ 3

2
ffiffiffi
p

p ð1� kÞge�g2=4

�
erfcðg=2Þ

þ 2

p
ð1� kÞ2e�g2=2 � 1� kffiffiffi

p
p 1

2

1

2

��
� k

�
gþ 4

3p
ð1� kÞ

�
e�g2=4; ð34Þ
where
f 00
1 ð0Þ ¼

1� kffiffiffi
p

p
�
� 7

4
þ 4ð1� kÞ

3p

�
ð35Þ
and Eq. (33) can be easily solved numerically. Thus, the skin friction coefficient can be expressed
as
CfRe1=2x ¼ 1� kffiffiffi
p

p
�
� n�1=2 þ

�
� 7

4
þ 4ð1� kÞ

3p

�
n1=2 þ h:o:t:

�
ð36Þ
for n � 1. Using the approximate polynomial relationship
n ¼ s� 1

2
s2 þ 1

6
s3 þ h:o:t: ð37Þ
between n and s, which follows from the definition (4), we can easily obtain the evolution of the
skin friction coefficient (36) for the initial unsteady flow in terms of small s.
4. Results and discussion

Eq. (5) under the boundary conditions (6) is solved numerically for some values of the
parameter k using the Keller-box method described by Cebeci and Bradshaw [24]. In order to
validate our results, we have compared the reduced skin friction f 00ðn; 0Þ when n ¼ 1 (final steady
state flow) with those of Mahapatra and Gupta [11]. The results are found to be in excellent
agreement. The comparison is shown in Table 1.

The evolution of the velocity profile f 0ðgÞ at the initial unsteady flow (n ¼ 0) is shown in Fig. 2
for some values of k. It is seen that when k > 1, the flow has a boundary layer structure. The
thickness of the boundary layer decreases with the increase in k. According to Mahapatra and
Gupta [11], it can be explained as follows: For fixed value of b, corresponding to the stretching of
the surface, increase in a in relation to b (such that k ¼ a=b > 1) implies increase in straining
motion near the stagnation region resulting in increased acceleration of the external stream, and
this leads to thinning of the boundary layer with increase in k. Further, it is seen from Fig. 2 that



Table 1

Values of f 00ðn; 0Þ for n ¼ 1 (final steady state flow) and different values of k

k Mahapatra and Gupta [11] Present

Numerical Eq. (15) Series small k, Eq. (22) Series large k, Eq. (30)

0.01 )0.9980 )0.9980
0.02 )0.9958 )0.9958
0.05 )0.9876 )0.9873
0.10 )0.9694 )0.9694 )0.9678
0.20 )0.9181 )0.9181 )0.9080
0.50 )0.6673 )0.6673 )0.5622
2.00 2.0175 2.0176 1.9740

3.00 4.7293 4.7296 4.6945

5.00 11.7537 11.7197

10.00 36.2687 36.2191

20.00 106.5744 106.4562

50.00 430.6647 429.9061
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Fig. 2. Velocity profiles in the initial unsteady state flow (n ¼ 0) for some values of k.
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when k < 1, the flow has an inverted boundary layer structure. It results from the fact that when
k < 1, the stretching velocity bx of the surface exceeds the velocity ax of the external stream.

Fig. 3 illustrates the variation with k of the reduced skin friction f 00ðn; 0Þ for the steady state
flow (n ¼ 1) by solving numerically Eqs. (15) and (16), and from the small and large k series
solutions (22) and (30), respectively. It is seen that the three solutions are in excellent agreement.

Finally, Figs. 4 and 5 show the variation of the skin friction coefficient CfRe1=2x with n (Fig. 4)
and with s (Fig. 5), for some values of k obtained by solving numerically Eqs. (5) and (6). The
steady state solution at n ¼ 1 given by Eq. (15) is also included in Fig. 4. This figure shows clearly
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that the transition from the initial unsteady state flow to the final steady state flow takes place
smoothly and without any singularity. Further, Fig. 5 indicates that the small time s solution is in
a very good agreement with the numerical solution for small values of k, while for large values of
k this agreement is not good enough. However, the agreement between these two solutions can
be improved if more terms in the series (36) are considered.

It is worth mentioning at this place that the present results are believed to be very accurate and
consistent, which potentially, make them of importance to future theoretical studies of flow and
heat transfer problems due to stretching surfaces.
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5. Conclusions

Unsteady boundary layer flow in the stagnation point region on a stretching flat sheet, where
the unsteadiness is caused by the impulsive motion of the free stream velocity and by the suddenly
stretched surface, has been analyzed in detail. From an analytical investigation of the governing
boundary layer equation, we have been able to deduce solutions for the non-dimensional velocity
function and the skin friction coefficient in the initial unsteady state flow, the final steady state
flow, and at small times. The numerical Keller-box solutions of the governing boundary layer
equations were found to agree excellently with the analytical small and large time solutions, thus
ensuring the validity of the results presented in this paper. A considerable advantage was found
with the use of a transformed, finite time scale in which s ¼ 1 corresponds to n ¼ 1, when the
governing parabolic equation can be solved by means of smooth transition from the small time
solution to the large time solution.
Acknowledgement

Stimulating discussions with Professor K. Rajagopal are greatly acknowledged.
References

[1] I. Vleggaar, Laminar boundary-layer behaviour on continuous accelerating surfaces, Chem. Engng. Sci. 32 (1977)

1517–1525.

[2] C.Y. Wang, Exact solutions of the unsteady Navier–Stokes equations, Appl. Mech. Rev. 42 (1989) 9269–9282.



R. Nazar et al. / International Journal of Engineering Science 42 (2004) 1241–1253 1253
[3] C.Y. Wang, Exact solutions of the steady-state Navier–Stokes equations, Ann. Rev. Fluid Mech. 23 (1991) 159–

177.

[4] L.I. Crane, Flow past a stretching plate, J. Appl. Mech. Phys. (ZAMP) 21 (1970) 645–657.

[5] J.F. Brady, A. Acrivos, Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to

the Navier–Stokes equations with reverse flow, J. Fluid Mech. 112 (1981) 127–150.

[6] H.K. Kuiken, On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not

vanishingly small, IMA J. Appl. Math. 27 (1981) 387–405.

[7] W.H.H. Banks, Similarity solutions of the boundary-layer equations for a stretching wall, J. M�ec. Th�eoret. Appl. 2

(1983) 375–392.

[8] W.H.H. Banks, M.B. Zaturska, Eigen solutions in boundary-layer flow adjacent to a stretching wall, IMA J. Appl.

Math. 36 (1986) 263–273.

[9] E. Magyari, B. Keller, Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls,

Eur. J. Mech. B-Fluids 19 (2000) 109–122.

[10] T.C. Chiam, Stagnation-point flow towards a stretching plate, J. Phys. Soc. Jpn. 63 (1994) 2443–2444.

[11] T.R. Mahapatra, A.S. Gupta, Heat transfer in stagnation point flow towards a stretching sheet, Heat Mass

Transfer 38 (2002) 517–521.

[12] J.B. Klemp, A.A. Acrivos, A method for integrating the boundary-layer equations through a region of reverse flow,

J. Fluid Mech. 53 (1972) 177–199.

[13] J.B. Klemp, A.A. Acrivos, A moving-wall boundary layer with reverse flow, J. Fluid Mech. 76 (1976) 363–381.

[14] M.Y. Hussaini, W.D. Lakin, A. Nachman, On similarity solutions of a boundary layer problem with an upstream

moving wall, SIAM J. Appl. Math. 47 (1987) 699–709.

[15] J.B. McLeod, K.R. Rajagopal, On the uniqueness of flow of a Navier–Stokes fluid due to a stretching boundary,

Arch. Ratl. Mech. Anal. 98 (1987) 385–393.

[16] N. Riley, P.D. Weidman, Multiple solutions of the Falkner–Skan equation for flow past a stretching boundary,

SIAM J. Appl. Math. 49 (1989) 1350–1358.

[17] W.C. Troy, W.A. Overman, G.B. Ermentrout, Uniqueness of flow of a second-order fluid past a stretching sheet,

Quart. Appl. Math. 45 (1987) 753–755.

[18] I. Pop, T.-Y. Na, Unsteady flow past a stretching sheet, Mech. Res. Comm. 23 (1996) 413–422.

[19] C.Y. Wang, G. Du, M. Miklavi, C.C. Chang, Impulsive stretching of a surface in a viscous fluid, SIAM J. Appl.

Math. 57 (1997) 1–14.

[20] K.N. Lakshmisha, S. Venkateswaran, G. Nath, Three-dimensional unsteady flow with heat and mass transfer over

a continuous stretching surface, J. Heat Transfer 110 (1988) 590–595.

[21] R. Nazar, N. Amin, I. Pop, Unsteady boundary layer flow due to a stretching surface in a rotating fluid, Mech. Res.

Comm. 31 (2004) 121–128.

[22] J.C. Williams, T.H. Rhyne, Boundary layer development on a wedge impulsively set into motion, SIAM J. Appl.

Math. 38 (1980) 215–224.

[23] R. Seshadri, N. Sreeshylan, G. Nath, Unsteady mixed convection flow in the stagnation region of a heated vertical

plate due to impulsive motion, Int. J. Heat Mass Transfer 45 (2002) 1345–1352.

[24] T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York,

1988.

[25] K. Hiemenz, Die Grenzschicht an einem in den gleichenformigen Fl€ussigkeitsstrom eingetauchten geraden

Kreiszilinder, Dingles Polytech. J. 326 (1911) 321–324.

[26] Y.Y. Lok, P. Phang, N. Amin, I. Pop, Unsteady boundary layer flow of a micropolar fluid near the forward

stagnation point of a plane surface, Int. J. Engng. Sci. 41 (2003) 173–186.


	Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet
	Introduction
	Governing equations
	Solution
	Initial unsteady solution at xi=0
	Steady state solution at xi=1
	Small xi and tau time solutions

	Results and discussion
	Conclusions
	Acknowledgements
	References


