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ABSTRACT 

 

 

 

 

Ultrasonic sensor is one of the electronic components used in designing a 

mobile robot navigation system to assist visually impaired person. However, no 

guideline or algorithm has been established so far to ease the selection and 

determination of optimum number of ultrasonic sensors to be used and the layout for 

the sensors. The purpose of this study is to obtain an algorithm that can be used as a 

guideline for selecting appropriate ultrasonic component model. The algorithm is 

used for determining the optimum numbers and optimum layout for ultrasonic 

sensors of interest when used for a mobile robot navigation system for a 180° 

obstacle detection using theoretical calculations. All theoretical values obtained are 

compared with real-time data using an actual ultrasonic sensor placed on  

experimental platform. This set up is used with different numbers and placements 

using the selected ultrasonic sensor, HC–SR04 and is compared with the theoretical 

values for validation. Then, relevant equations are used to calculate the number of 

sensors and layout used for another ultrasonic sensor, MA40B8 to show the 

correctness of the equations used in this study. The MA40B8 ultrasonic sensor was 

originally used for a 360° obstacle detection system.  It is proven that the equations 

used in this study are valid theoretically and experimentally. The algorithm can also 

be used to decide the optimum numbers and optimum layout for ultrasonic sensors 

for a 180° obstacle detection.  
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ABSTRAK 

 

 

 

 

Penderia ultrasonik adalah salah satu komponen elektronik yang digunakan 

dalam mereka bentuk sistem navigasi robot mudah alih untuk membantu orang cacat 

penglihatan. Walau bagaimanapun, tiada garis panduan atau algoritma telah 

diwujudkan setakat ini untuk memudahkan pemilihan dan penentuan bilangan 

optimum penderia ultrasonik untuk digunakan dan susun atur untuk penderia. Kajian 

ini bertujuan mendapatkan satu algoritma yang boleh digunakan sebagai garis 

panduan untuk memilih model komponen ultrasonik yang sesuai. Algoritma ini 

digunakan untuk menentukan bilangan dan susun atur optimum untuk penderia 

ultrasonik yang diingini apabila digunakan untuk sistem navigasi robot mudah alih 

untuk mengesan halangan 180° menggunakan pengiraan secara teori. Semua nilai 

teori yang diperolehi dibandingkan dengan data masa nyata menggunakan penderia 

ultrasonik sebenar yang diletakkan di atas pelantar eksperimen. Pemasangan ini 

digunakan dengan bilangan dan susun atur yang berbeza menggunakan penderia 

terpilih ultrasonik, HC–SR04 dan dibandingkan dengan nilai teori untuk pengesahan. 

Kemudian, persamaan-persamaan yang berkaitan digunakan untuk mengira bilangan 

penderia dan susun atur untuk penderia ultrasonik yang berbeza, MA40B8 untuk 

menunjukkan ketepatan persamaan yang digunakan dalam kajian ini. Penderia 

ultrasonik MA40B8 pada asalnya digunakan untuk sistem pengesanan halangan 360°. 

Ia terbukti bahawa persamaan yang digunakan dalam kajian ini adalah sah secara 

teori dan uji kaji. Algoritma ini juga boleh digunakan untuk menentukan nombor 

optimum dan susun atur optimum untuk penderia ultrasonik untuk pengesanan 

halangan 180°. 
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CHAPTER 1 

 

  

 

 

INTRODUCTION 

 

 

 

 

1.1 Problem Background 

 

 

Total blindness is the inability to tell light from dark, or the total inability to 

see. Visual impairment or low vision is a severe reduction in vision that cannot be 

corrected with standard glasses or contact lenses and reduces a person's ability to 

function at certain or all tasks (Farlex Inc., 2012). According to the latest statistics, 

for Malaysia, there is a prevalence of 0.5% of the population to become blind which 

are mainly caused by cataract, glaucoma, and retinal and corneal problems 

(International Agency for the Prevention of Blindness, 2015). 

 

One of the biggest challenges by blind people is when they are moving 

outdoors where there are uneven terrains, obstacles such as cars, rocks and holes and 

not knowing where to go without the ability to see.  Traditionally, blind people use 

walking sticks or guide dogs to help them move around and they are limited to move 

only around familiar places. Navigation is the science (or art) of directing the course 

of a mobile robot as it traverses the environment (Ratner and McKerrow, 2003).   

Inherent in any navigation scheme is the desire to reach a destination without getting 
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lost or crashing into another object. Thus in conclusion, the navigation problem is to 

find a path from start to goal, which meets the task constraints, and to traverse that 

path without collision. 

 

Nowadays, guide cane and guide dog are still the mainstream of aids and 

appliances for visually impaired people to navigate safely against obstacles and other 

hazards. Guide cane is cheap and portable, but requires in-depth training to use it 

effectively. When blind people are being trained to use a guide cane, there are 

several factors that they will affect how long it will take for them to get use to using 

one to move independently, especially when travelling outdoors. According to 

Bickford (1996), the three main factors that affect the training time needed are the 

background of the blind person with how familiar they are travelling at certain 

outdoor areas, the aptitude of the blind person whether they are willing to be more 

dependent on themselves or are they more comfortable with someone travelling with 

them and the amount of time the blind person puts into applying what they have 

practiced into their daily lives. On the other hand, according to VisionAware (2015), 

a guide dog is very expensive and while it can provide companionship for the blind, 

will add more responsibility for the blind as the guide dogs need grooming, feeding 

and health care for it to remain healthy. In addition, guide dogs also needed to be 

constantly put into use so that the guide dogs do not forget their training and have 

maybe 8-10 years of good service before they are considered too old to be reliable. 

Therefore, the development of an alternative aid that requires minimum maintenance 

and fast to adapt for use in a form of engineering system is strongly required. Figure 

1.1 shows several examples of various navigation systems for the blind people 

developed so far by Bahadir et al. (2012), Galatas et al. (2011) and Georgia Tech 

(Science Daily, 2006). 

 

 

 

 

 



 

 

 

a) Ultrasonic Sensing Approach 

 

b)  Vision – Based Positioning Approach 

Figure 1.1 

 

As of date, as 

created to help the blind people navigate their way around in particular 

obstacles during outdoor 

Several of the most popular approaches to develop an outdoor navigation system are 

the ultrasonic sensing, vision

and the multisensory approach.

 

 

 

 

 

a) Ultrasonic Sensing Approach  

 

c)  Multisensory Fusion Approach   

     

 

Based Positioning Approach  

 Various Outdoor navigation systems for blind people 

as technology continues to evolve, several new systems have been 

created to help the blind people navigate their way around in particular 

obstacles during outdoor excursions using a variety of different sensors or systems

Several of the most popular approaches to develop an outdoor navigation system are 

the ultrasonic sensing, vision-based positioning, global positioning 

and the multisensory approach. 

3 

 

c)  Multisensory Fusion Approach    

Outdoor navigation systems for blind people  

technology continues to evolve, several new systems have been 

created to help the blind people navigate their way around in particular to detect 

excursions using a variety of different sensors or systems. 

Several of the most popular approaches to develop an outdoor navigation system are 

ositioning systems (GPS) 
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One of the known approaches is the vision-based obstacle detection. These 

systems use image processing techniques to enable the system to identify the path to 

be taken and the obstacles in the path. Most people who used this approach normally 

use the images captured to determine if the object is an obstacle. This method need to 

use the correct method of image filtering and processing to differentiate between the 

many objects captured in the image, which in failing to do so will cause improper 

identification of the object or ignoring an obstacle that must be avoided. Some 

systems developed using this method is less effective outdoors to compensate for the 

system’s increase in accuracy and performance (Galatas et al., 2011), false readings 

when conditions are met (Weichselbaum et al., 2013) or inaccurate reading due to 

camera setting used and the environment lighting (Murthy and Varaprasad, 2014). 

 

 Another approach used in designing outdoor navigation systems is using 

Global Positioning Systems (GPS) to determine their location and the path to their 

destination. The outdoor navigation of visually impaired people is based on data 

from the GPS maps and Geographic Information Systems (GIS) such as Wayfinder 

Access (Wayfinder Systems AB), Trekker and BrailleNote GPS (Human Ware), 

MobileGeo (Code Factory) and Drishti (University of Florida) (Ivanov, 2012).  This 

system however is only most effective outdoors and is unable to be used in regions 

with insufficient detailed GPS maps or no existing maps at all. This system also 

normally is paired with voice synthesizer to help guide the user to the desired 

destination.  

 

Ultrasonic approach is another popular method in designing outdoor 

navigation system, in particular detecting objects within the sensors range. This 

approach is one of the most popular approaches used to detect obstacles for an 

outdoor navigation system. The sensor can be placed on a mobile platform or placed 

somewhere on the user’s body or belonging to detect the obstacles in the direction 

the sensor is pointing to. The number of ultrasonic sensors used in each approach 

differs according to sensor specification and system requirement although no proper 
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guideline or algorithm has been established to determine the optimum number of 

sensors used.  

 

 There are also other approaches used for outdoor navigation systems that 

were less well known. Some researchers used a device that records the direction of 

the planned routes and guides the blind person via voice synthesizer. Other 

researchers used Radio Frequency Identification (RFID) approach in developing their 

navigation system for the blind person.  Some even used a laser scanner to detect 

obstacles for their navigation system although it could only be used indoors (Fu et 

al., 2012). 

 

There also attempt to use multisensory fusion approach to overcome the 

shortcomings of some approaches. This approach uses two or more of the approaches 

mentioned earlier to improve the accuracy and performance of the navigation system 

which at times will lead to an increase in cost. One of the most popular approaches to 

be used in the multisensory fusion approach is the ultrasonic sensor which is used to 

detect the obstacles that the system will find when in use. The ultrasonic sensor gives 

an accurate reading for the distance of the obstacles it will find as long they are at the 

same level as the ultrasonic sensor.  
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1.2 Problem Statement 

 

Considering the range the sensor coverage and price per unit when compared 

to infrared or laser sensors or vision based methods, the ultrasonic sensor is within 

reasonable price and it covers the range within a certain angle range as well as the 

direction the sensor is facing. Ultrasonic sensors are also be used for indoor or 

outdoor navigation. 

 

For an efficient obstacle detection using ultrasonic sensors, an appropriate 

ultrasonic sensor model needs to be selected among the many variations available 

today. Typically the data provided in the datasheet of an ultrasonic sensor includes 

range, detection angle and supply voltage as well as the size of the sensor. However 

among the ultrasonic sensor approaches done so far, none have reported why a 

particular ultrasonic sensor model was selected to be used in their work. The lack of 

studies on factors to be considered in selecting an appropriate ultrasonic sensor 

model needs to be addressed. 

 

  On top of it, the range of a single typical ultrasonic sensor does not cover the 

minimum of 180° coverage in front of the navigation system since most ultrasonic 

sensors beam width does not exceed 90° each and the use of placing a single 

ultrasonic sensor on a rotating platform will leave blind spots on the direction the 

sensor is not facing. Thus, for full coverage multiple ultrasonic sensors will be 

needed to cover the range of 180° to increase the accuracy and decrease the scan time 

(Jung et al., 2007).  
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Even if a suitable ultrasonic sensor model is chosen, it also leads to several 

other problems. Multiple high directivity ultrasonic sensors are more costly 

compared to multiple low directivity ultrasonic sensors especially to ensure all the 

possible obstacles are detected. As a method to reduce the cost of developing the 

system, multiple low directivity ultrasonic sensors would be used instead (Kim and 

Kim, 2011). The use of multiple ultrasonic sensors needs to address the optimum 

layout and number of ultrasonic sensors used as well as the best range for the 

ultrasonic sensors used for a 180° coverage efficient obstacle detection. 

. 

 

 

1.3 Objective 

 

 

The objectives of this research are as follows: 

i. To determine the optimum number of ultrasonic sensors for obstacle 

detection in 180° coverage  

ii. To obtain the optimum layout based on the optimum number of ultrasonic 

sensors for 180° coverage 

iii. To determine the best detection range of 180° coverage for the sensor 

selected 

. 
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1.4 Scope of Work 

 

 

 This research concentrates on the hardware and experimental testing of a 

selected ultrasonic sensor model to compare the theoretical results obtained based on 

the same model.  

 

However, there are several limitations that need to be noted for the 

experiments done in this research. The results obtained are done based on the 

experiments conducted using ultrasonic sensor model HC–SR04. Another limitation 

is that the research concentrates on obstacle detection for only 180° facing the front. 

The sensors are also placed 5 cm above ground, which was determined after several 

testing to ensure that the sensors only detect the obstacles in front of it as the mobile 

platform moves. The size of the platform also depends on the size of the chosen 

ultrasonic sensor and the number of ultrasonic sensors used.  

 

Thus, the research done can be used as a guideline to help select the most 

suitable ultrasonic sensor and determine the optimum number of sensors, layout and 

range for the model used for obstacle detection for a 180° angle. The theoretical 

formulae used in this research can be used for other ultrasonic models by replacing 

the necessary values with the models corresponding specifications. 

 

To process the data from the ultrasonic sensors, an Arduino Mega 2560 

microcontroller is used, as it has sufficient amount of ports that will allow the 

interface between the chosen number of ultrasonic sensor with the microcontroller, to 

convert the distance readings obtained from the sensor to a readable format that can 

be used by the Arduino Interface program at the speed of 16 MIPS throughput at 16 

MHz. The Arduino Interface program is also run from an ACER TravelMate 6292 

laptop which allows the measurements obtained from the sensor to be read and 

allows future adjustments to be made accordingly. 
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1.5 Thesis Layout 

 

 

 The remaining contents of this thesis are presented in this section. 

 

 Chapter 2 will discuss the literature review of researches and theories related 

covering the different approaches used in creating a navigation system for blind 

people such as ultrasonic sensing, vision-based positioning, Global Positioning 

System (GPS) and multisensory approach. 

 

 Chapter 3 explains the methodology used to achieve the objectives of the 

research. It also discusses how to obtain the theoretical values of the optimum 

number of ultrasonic sensors and layout for the sensors in the same chapter. The 

experimental setup used for the data collection as well as the electronics used are 

also explained. 

 

 Chapter 4 discusses the results of the research. Comparisons between the 

experimental results with the theoretical values were also made. 

 

 Chapter 5 concludes the findings based on the research done. 

Recommendations for future research were also suggested. 
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