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ABSTRACT 

Many people may not be aware of the adverse effects of noise pollution on 

their health which include hearing impairment, negative social behaviour, anxiety, 

sleep disturbances and intelligibility to understand speech. Machine learning (ML) is 

the concept of making the machine determines, classifies, and does operations 

without being explicitly programmed. It is used in many fields such as intelligent 

transportation system and autonomous driving. Research in audio recognition has 

traditionally focused on the domains of speech and music. Comparatively, little 

research was done towards recognizing non-speech environmental sounds. For this 

reason, this project aims to develop an ML based classifier of sounds originated from 

the environment and compares the sound levels with the recommended levels by 

international standards via a created Graphical User Interface (GUI). Noise Capture 

mobile application will be used to record four sources of environmental noise, that 

are from highway, railway, lawn mowers and birds. Then, Python programming will 

be used to simulate the classification model using Scikit-learn. The trained data 

entered Scikit-learn gathered from Support Vector Machine (SVM), K-Nearest 

Neighbours (KNN), Bootstrap Aggregation (Bagging) and Random Forest (RF) 

classifiers, as well as Artificial Neural Network (ANN) algorithm from Keras and 

TensorFlow libraries for comparative performances in the accuracy test. In addition 

to ML, a noise pollution survey is conducted to provide qualitative analysis of 

community perceptions. The findings of ML are presented in terms of confusion 

matrix, accuracy, precision, recall and F1 score. The results show that the noise 

classification accuracy for all models exceeded 95%. The best ML models are RF 

and ANN due to its high accuracy and the least computational time. The findings of 

survey are also presented, which indicates that there is no correlation between 

gender, age, location with knowledge of noise pollution and the effect of noise on 

people. People are bothered by noise regardless of their age and gender. 
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ABSTRAK 

Ramai orang mungkin tidak menyedari kesan buruk pencemaran bunyi 

terhadap kesihatan mereka yang merangkumi masalah pendengaran, tingkah laku 

sosial yang negatif, kegelisahan, gangguan tidur dan kesukaran memahami ucapan. 

Pembelajaran mesin (ML) adalah konsep membuat mesin menentukan, 

mengklasifikasikan, dan melakukan operasi tanpa diprogram secara eksplisit. Ia 

digunakan dalam banyak bidang seperti sistem pengangkutan pintar dan pemanduan 

autonomi. Penyelidikan dalam pengecaman audio secara tradisional memfokuskan 

pada bidang pertuturan dan muzik. Secara perbandingan, sedikit kajian dilakukan 

untuk mengenali bunyi persekitaran bukan pertuturan. Atas sebab ini, projek ini 

bertujuan untuk membangunkan pengkelas berasaskan ML untuk bunyi yang berasal 

dari persekitaran serta membandingkan tahap bunyi dengan tahap yang disyorkan 

oleh piawaian antarabangsa melalui perantara muka pengguna grafik (GUI) yang 

dicipta. Aplikasi mudah alih Noise Capture akan digunakan untuk merakam empat 

punca bunyi persekitaran, iaitu dari jalan raya, kereta api, mesin pemotong rumput 

dan burung. Kemudian, pengaturcaraan Python akan digunakan untuk 

mensimulasikan model klasifikasi menggunakan Scikit-learn. Data terlatih yang 

dimasukkan ke dalam Scikit-learn dikumpulkan dari pengkelas Mesin Vektor 

Sokongan (SVM), K-Jiran Terdekat (KNN), Pengumpulan Bootstrap (Bagging) dan 

Hutan Rawak (RF) dan juga algoritma Rangkaian Saraf Buatan (ANN) dari Keras 

dan perpustakaan TensorFlow untuk pembandingan prestasi dalam pengujian 

ketepatan. Selain ML, soal selidik pencemaran bunyi dilakukan untuk mendapatkan 

analisis kualitatif persepsi masyarakat. Penemuan dari ML dipersembahkan dari segi 

matrik kekeliruan, ketepatan, kejituan, ingat semula dan skor F1. Hasil kajian 

menunjukkan bahawa ketepatan klasifikasi bunyi melebihi 95%. Model ML terbaik 

ialah RF dan ANN yang mempunyai ketepatan tinggi dan masa pengiraan terendah.  

Penemuan tinjauan juga dibentangkan, di mana menunjukkan tiada hubungan antara 

jantina, usia, lokasi dengan pengetahuan mengenai pencemaran bunyi dan kesan 

bunyi kepada orang ramai. Orang ramai terganggu dengan bunyi bising tanpa 

mengira usia dan jantina mereka.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

With increasing population of 60% by the end of 2030 [1], noise pollution 

will become a serious issue for many cities around the world. This is due to an 

increase of noise exposure (unpleasant, unwanted and often loud) for the people who 

are living in cities. Continuous exposure to high levels of noise may cause 

psychological and physiological issues e.g. hearing impairment, high blood pressure, 

heart disease, inconvenience and sleep annoyance [2] . Children who are living in 

noisy places showed low academic results [3]. Low birth weight of new-born babies 

is associated with noise exposure in pregnant women [3]. Therefore, there is an 

essential need not only to raise awareness of the harmful effects of noise pollution, 

but also to provide them with equipment to monitor their exposure to noise. A 

professional sound levels meter (SLM) is a standard tool for measuring sound 

pressure levels (SPL) in dB or dBA (A weighted to account for low human ear‟s 

sensitivity at low frequencies). However, these tools are expensive, sensitive, large, 

and above all, hard to use for non-professionals. With the development of 

smartphones, all of us carry a powerful mini-computer provided with different 

sensors, including microphones. These sensors can be used with a set of Application 

Programming Interfaces (APIs) provided by the smartphone to create applications to 

measure sound pressure level [4] , coronary heart disease detector [5], earth-quake 

detector [6], and pathological tremor detector [7]. For these apps to accurately 

process audio data, it is necessary to calibrate the smartphone microphone to report 

not only correct sound pressure levels but also correct frequency spectrum. However, 

it is not just necessary for noise measurement to be carried out, it is also essential to 

control the level of exposure to noise in critical areas such as schools, hospitals and 

kindergartens. Hence, there is a need to have a noise pollution measurement data in 

order to assess the level of noise exposure in certain areas. 
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1.2 Problem Statement 

According to recent review by the World Health Organization (WHO), at 

least 100 million of people get disturbed by road traffic noise in the European Union 

and in Western Europe alone, at least 1.6 million years of healthy life have been lost 

due to traffic noise [8]. Noise pollution can affect people psychologically and 

physiologically such as hypertension, ischemic heart disease, annoyance, and most 

importantly, interferes with essential activities such as study, rest, sleep, 

communication and social activities [9], [10]. The sound at the same decibel (dB) 

level may be perceived either as annoying noise or as pleasant music by different 

listeners. Therefore, it is necessary to go beyond the state-of-the-art approaches that 

measure only the dB level [11][12]  and also identifies the type of the sound 

especially when the sound is recorded using Microphone. The issues need to be 

addressed here: What was on the captured sound: human sound, animal sounds, or 

music playing? Is this sound exceeded the recommended levels by international 

standards? What is the community's perception about noise pollution?   

1.3 Research Objectives 

The objectives of this research are: 

(a) To develop a sound classifier of surrounding environment with WHO 

recommended level benchmarking.  

(b) To provide qualitative analysis of community perceptions based on noise 

pollution survey. 
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1.4 Scopes of project  

The following are the considered scopes of this project: 

(a) The developed model considers only noise pollution. 

(b) The focus will be on four kinds of environmental noise originated from 

highway, railway, Lawn mowers and birds 

(c) The measurements will be conducted using smartphone only. 

(d) The developed model using python programming only. 

(e) The algorithms used are only Support Vector Machine (SVM), K-Nearest 

Neighbours (KNN), Bootstrap Aggregation (Bagging), Random Forest (RF) 

and Artificial neural networks (ANN) classifier 

 

1.5 Contribution  

The research in audio recognition has traditionally focused on the domains of 

speech and music. Comparatively, little research was done towards recognizing non-

speech environmental sounds. Therefore, this project aims to develop a Machine 

Learning (ML) sound classification model of sounds originated from the surrounding 

environment such as sound of birds, vehicles, trains and lawn mowers, as well as 

comparing the collected noise levels by smartphone with the recommended levels by 

international standards. A statistical analysis on survey findings is also performed in 

order to gain a better understanding about the community's perspective on noise 

pollution and recommend noise mitigation methods. 
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1.6 Organization of report  

This project report consists of five chapters that are organized as below: 

Chapter 1 consists of a background overview of the project, problem statements, 

objectives, scopes and contribution of the project. Chapter 2 describes the literature 

review on topics related to the project. The topics include Smart Cities, Machine 

learning (ML), Internet of thing (IoT), Cloud platform, fundamental concept of 

sound, available noise measurement tools, Environmental noise guidelines for the 

European region, WHO guidelines values for community noise, existing related work 

and summary with limitation of the previous work. Chapter 3 describes the 

methodology used in the project by explaining the workflow of the project, tools and 

software used. Chapter 4 provides the results and discussions of the project. Chapter 

5 concludes the report with outcomes and future works of the project.   
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