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ABSTRACT 

Human reidentification in multiple cameras with disjoint views is to match a 

pair of humans appearing in different cameras with non-overlapping views. Human 

reidentification has been extensively studied in recent years because it plays a 

significant role in many applications such as human tracking and video retrieval. 

However, human re-identification is a challenging task due to varying factors such as 

color, pose, viewpoint, lighting conditions, low resolution and partial occlusion. Most 

of the existing methods in handling human re-identification task are based on various 

handcrafted features and metric learning. However, hand-crafted features method 

requires expert knowledge and requires a lot of time to tune the features and metric 

learning methods are not powerful enough to exploit the nonlinear relationship of 

samples. The main objective of this thesis is to implement Siamese Convolutional 

Neural Network (SCNN) for person re-identification task in multiple cameras on the 

NVIDIA® GeForce RTX™ 2060 platform, including person detection. This 

continuous with validation of the applicability of SCNN and compare with existing 

techniques. In this work, global and local features of human images are extracted from 

SCNN. The proposed SCNN consists of two identical Convolution Neural Networks 

with common parameters that can automatically learn hierarchical feature 

representations from image pixels directly which has advantages than the hand-crafted 

design and metric learning method. Experiments were conducted with CUHK02 

offline database with non-overlapping cameras. The proposed technique demonstrated 

a person re-identification using SCNN on the NVIDIA® GeForce RTX™ 2060 

platform.  
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ABSTRAK 

Pengenalpastian manusia dalam beberapa kamera dengan pandangan yang 

tidak sama adalah untuk memadankan sepasang manusia yang muncul dalam kamera 

yang berbeza dengan pandangan yang tidak bertindih. Pengenalpastian manusia telah 

banyak dikaji dalam beberapa tahun kebelakangan ini kerana memainkan peranan 

penting dalam banyak aplikasi seperti penjejakan manusia dan pengambilan video. 

Walau bagaimanapun, identifikasi semula manusia adalah tugas yang mencabar 

kerana pelbagai faktor seperti warna, pose, sudut pandang, keadaan pencahayaan, 

resolusi rendah dan oklusi separa. Sebilangan besar kaedah yang ada dalam menangani 

tugas mengenal pasti semula manusia adalah berdasarkan pelbagai ciri handcraft dan 

pembelajaran metrik. Walau bagaimanapun, kaedah ciri handcraft memerlukan 

pengetahuan pakar dan memerlukan banyak masa untuk menyesuaikan ciri dan kaedah 

pembelajaran metrik tidak cukup kuat untuk mengeksploitasi hubungan sampel yang 

tidak linear. Objektif utama thesis ini adalah untuk melaksanakan Siamese 

Convolutional Neural Network (SCNN) untuk tugas pengenalan semula orang dalam 

beberapa kamera pada platform NVIDIA® GeForce RTX ™ 2060, termasuk 

pengesanan orang. Ini berterusan dengan pengesahan penerapan SCNN dan 

bandingkan dengan teknik yang ada. Dalam thesis ini, ciri global dan tempatan dari 

gambar manusia diekstrak dari SCNN. SCNN yang dicadangkan terdiri daripada dua 

Convolutional Neural Network yang serupa dengan parameter umum yang secara 

automatik dapat mempelajari perwakilan ciri hierarki dari piksel gambar secara 

langsung yang mempunyai kelebihan daripada reka bentuk handcraft dan kaedah 

pembelajaran metrik. Eksperimen dilakukan dengan data CUHK02 secara offline 

dengan kamera yang tidak bertindih. Teknik yang dicadangkan menunjukkan 

pengenalan semula seseorang menggunakan SCNN pada platform NVIDIA® GeForce 

RTX ™ 2060. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Human Re-identification 

The demand for the installation of closed-circuit television (or CCTV) 

camera networks has increased recently to address variety of security issues. CCTV 

camera networks are being installed at home, office, shopping centers, sport centers 

and airports. However, it is not an easy task for human operators to continually 

observe CCTV over multiple cameras especially when tracking human of interest. 

Hence, a computer vision system is required to assist human operators in recognizing 

individual humans throughout an entire camera network. The problem of observing a 

human of interest across multiple camera networks is known as a human 

reidentification problem [1–6].  

Human reidentification divided into two categories which are appearance-

based approach and biometric [7]. Example of biometric approaches for 

reidentification are face [8], gait [9], iris [10] and fingerprint recognition [11]. 

However, iris and fingerprint recognition are not suitable for reidentification at wide 

area video surveillance field of view because recognition of iris and fingerprint 

requires human cooperation in the monitored environment or high-resolution images, 

which are not available in common surveillance systems [12]. Compared to iris and 

fingerprint recognition, gait and face recognition do not require human cooperation 

and can operate without interrupting or interfering with the human’s activity [13]. 

However, face and gait recognition will only achieve good performance of 

recognition when some conditions and constraints are achieved. Unfortunately, some 

of these constraints are not satisfied by most deployed surveillance systems [7]. 
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Biometric approaches are mainly dependent on the camera view and orientation of 

the human with the camera. Based on the reasons above, biometric approaches are 

not very suitable for human reidentification in surveillance systems. 

Appearance based approaches for human reidentification are more suitable 

for wide area video surveillance systems because it is less constrained than biometric 

approaches and more adapted to video surveillance requirements such as does not 

require human cooperation, low resolution images and no specific conditions and 

constraint are required [7]. Human reidentification with appearance-based 

approaches is a central task in surveillance system which is used to match a pair of 

humans appearing in different cameras with non-overlapping views [14]. The 

difference between general camera setup with overlapping views and non-

overlapping views are shown in Figure 1.1. In most surveillance systems, cameras 

with nonoverlapping views are applied because it is impossible to cover all the area 

of interest by using multiple overlapping cameras due to economic and 

computational reasons. Surveillance over wide-areas such as area of law 

enforcement, airport and office buildings requires a network of cameras that are 

sparsely distributed without overlapping field of views. Human reidentification has 

been extensively studied in recent years due to its various applications such as in 

surveillance systems with nonoverlapping views. 

 

 

 

 

        (a)        (b) 

Figure 1.1 Camera network with (a) overlapping views and (b) non-overlapping 

views. 
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1.2 Problem Statement 

Human reidentification problem is a challenging task and received a great 

attention of researchers in recent years. In most practical scenarios, the gap between 

camera views in a surveillance system is quite large due to economic and 

computational reason. Since images obtained from surveillance cameras have low 

resolution region of interest (centering humans) which is around 128x48 pixels 

because taken from long distances, human biometric information such as face and 

gait are not suitable to be used for reidentification purpose. Therefore, appearance of 

human becomes an important feature to solve reidentification task. Moreover, 

appearance of a human varies across multiple cameras due to difference in 

viewpoint, pose and illumination. Moreover, low resolution image has fewer useful 

details for classification and especially in non-overlapping views [15–21]. Thus, a 

better approach is needed for handling the low-resolution issue to increase the 

accuracy and speed of human reidentification task. 

1.3 Objective 

Based on the current issues surrounding human reidentification across 

multiple cameras, the two main objectives of this research can be expressed as 

follows: 

1. To implement SCNN for human reidentification task in multiple cameras, 

including human detection. 

 

2. To validate the applicability of SCNN in NVIDIA® GeForce RTX™ 

2060 and compare with existing techniques. 
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1.4 Scope 

This research focuses on developing a human reidentification system. Hence 

in this research: 

1. The process of human detection is in the scope of this work. 

 

2. The common challenges such as illumination and viewpoint are 

considered in the proposed human reidentification system. 

 

3. The human reidentification system is prototyped on a NVIDIA® GeForce 

RTX™ 2060. 

 

4. The proposed work is based on Siamese Convolution Neural Network. 
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