
 

 

 

 

THE YIELD AND BIOLOGICAL ACTIVITY (LC50) OF ROTENONE    

EXTRACTED FROM Derris elliptica 

 

 

 

 

SAIFUL IRWAN BIN ZUBAIRI 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of  

Master of Engineering (Bioprocess) 

 

 

 

 

Faculty of Chemical and Natural Resources Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

AUGUST 2006 

 



 iii

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

To my most beloved sayang and mak 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

 

 

 

 

ACKNOWLEDGEMENTS 
 
 
 
 

 

 ‘In the name of Allah, the most gracious and the most merciful.  Selawat and 

salam to Prophet Muhammad s.a.w.’  I owe first and foremost my profound gratitude to 

almighty Allah s.w.t the source of all inspiration and help and without whose assistance; 

this study would not have come into existence. 

 

 Deep obligation and indebtedness and most sincere gratitude are offered to my 

supervisor Professor Dr. Mohammad Roji Sarmidi for his continuous guidance during 

all stages of my research work and for his willingness to help.  Without his continue 

support, interest, wisdom and idea during our discussion, this thesis would not have been 

implemented and executed well. 

 

 I would also like to acknowledge the Chemical Engineering Pilot Plant (CEPP) 

staff, in particular Professor Ramlan Abdul Aziz for his moral support and motivation as 

well as Mr. Khairul Annuar Mohd, Ms. Nor Idamalina Ahamad Nordin and Mr. Rafizan 

Latip for their assistance on the batch solid-liquid extraction process, qualitative analysis 

of Vacuum Liquid Chromatography-Thin Layer Chromatography (VLC-TLC) and 

biological activity (LC50) of rotenoids resin. 

 

 Last but not least, I would like to express my heartfelt gratitude to my most 

beloved parents and wife, Allahyarham Zubairi Abdul Wahid, Zaiton A. Man and 

Nurhafzan Anis Ismail respectively, through which the guidance of the spiritual, mental 

and physical training that has allowed me to established and continue throughout this 

study. 



 v

 

 

 

 

ABSTRACT 
 

 
 
 
The objective of this research was to determine the effect of the processing parameters 

on the extraction yield of rotenoids resin, rotenone and their biological activities (LC50).  

The research was divided into three stages: preliminary, optimization and verification 

phases.  Preliminary study was carried out to determine the most appropriate processing 

parameters for the optimization study.  The optimization study was carried out using a 

Central Composite Design (CCD) employing the Design-Expert® software version 6.0 to 

determine the effects of processing parameters on the three selected response variables 

which were the yield of rotenoids resin, yield of rotenone and biological activity (LC50) 

of rotenoids resin.  The processing parameters studied were the types of solvent 

(acetone, chloroform and ethanol), solvent-to-solid ratio (2.0 ml/g to 10.0 ml/g) and raw 

material particles size (0.5 mm to 5.0 mm in diameter).  The theoretical maximum yield 

of rotenoids resin in dried roots obtained from the optimization phase was 12.26 % 

(w/w) and 5.99 % (w/w) for the rotenone.  The multiple response variables analysis have 

consistently verified the theoretical results in the range of 3.62 ml/g to 4.72 ml/g 

(solvent-to-solid ratio) and 0.83 mm to 1.41 mm in diameter (raw material particles size) 

using the acetone extract.  The biological activity (LC50) value of rotenoids resin was 

indirectly correlated to the optimum processing parameters due to inconsistency of 

rotenone content (mg) and the low value of LC50 which was less than 100 ppm for all 

treatments.  This is due to the presence of other constituents in the rotenoids resin 

(tephrosin, 12αβ-rotenolone and deguelin) which contributed to the low LC50 values.  

The optimization of the processing parameters resulted in an increase of yield of 

rotenoids resin but reduced yield of rotenone. 
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ABSTRAK 
 
 
 

 

Objektif kajian ini adalah untuk menilai kesan parameter pemprosesan terhadap 

pengekstrakan keberhasilan resin rotenoids, rotenone dan aktiviti biologikalnya (LC50).  

Kajian ini dibahagikan kepada tiga peringkat: fasa saringan, pengoptimuman dan 

penentusahan.  Kajian saringan dijalankan untuk menentukan parameter pemprosesan 

yang paling relevan untuk kajian pengoptimuman.  Kajian pengoptimuman dijalankan 

menggunakan analisis ‘Central Composite Design (CCD)’ menggunakan perisian 

‘Design-Expert® version 6.0’ bagi menilai kesan parameter pemprosesan bagi tiga 

variabel respon yang dipilih iaitu keberhasilan resin rotenoids, keberhasilan rotenone 

dan aktiviti biologikal (LC50) bagi resin rotenoids.  Parameter pemprosesan yang dikaji 

adalah jenis pelarut (aseton, kloroform dan etanol), nisbah pelarut terhadap pepejal (2.0 

ml/g hingga 10.0 ml/g) dan saiz partikel bahan mentah (0.5 mm hingga 5.0 mm dalam 

diameter).  Keberhasilan maksimum teori resin rotenoids di dalam akar kering yang 

diperolehi daripada fasa pengoptimuman adalah 12.26 % (w/w) dan 5.99 % (w/w) untuk 

rotenone.  Analisis kepelbagaian variabel respon mengesahkan secara konsisten 

keputusan teori di dalam julat 3.62 ml/g hingga 4.72 ml/g dan 0.83 mm hingga 1.41 mm 

dalam diameter menggunakan pengekstrakan aseton.  Nilai aktiviti biologikal (LC50) 

resin rotenoids tidak berkaitan secara langsung dengan parameter pemprosesan optimum 

disebabkan oleh kandungan rotenone (mg) yang tidak konsisten dan nilai LC50 yang 

rendah di mana kurang daripada 100 ppm bagi semua rawatan.  Ini disebabkan oleh 

kewujudan kandungan lain di dalam resin rotenoids (tephrosin, 12αβ-rotenolone dan 

deguelin) di mana turut menyumbang kepada nilai LC50 yang rendah.  Pengoptimuman 

parameter pemprosesan di dapati telah menyebabkan peningkatan keberhasilan resin 

rotenoids tetapi mengurangkan keberhasilan rotenone. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research background 

  

 One of the important issues facing approximately 6.48 billions world populations   

(Anonymous, 2005) is food security.  The over population in developing countries and 

low food production exacerbated the situation.  Low food production productivity is due 

to many factors.  One of the factors is due to pest and plant diseases. 

 

 Crop protections today rely heavily on synthetic pesticides (Coats, 1994).  Their 

uninterrupted and massive use has led to several side effects such as pesticides resistance 

in pests (Stoll, 1988), elimination of naturally occurring bio control agents, insect 

resurgence, adverse effects on non-target organisms and environment contaminations 

with the potential effect on the entire food chain (Copping, 1998; Harris, 1999).  The 

growing public alarm about the hazards associated with excessive use of synthetic 

pesticides has revived the interest in the use of environmental-friendly crop protection 

products or well known as phytochemical pesticides.  Phytochemical pesticides are 

considered environmentally benign, biodegradable (Devlin and Zettel, 1999), maintain 
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biological diversity of predators (Grainge and Ahmad, 1998) and safer to higher animals 

including human beings.  Thus, to help meet the food requirements of the 21st century, 

scientist throughout the world is looking for ecologically safe plant protection 

technologies emphasizing use of the botanical insecticides in the integrated pest 

management (IPM) programmes. 

 

  A vast number of plant species produce phytochemicals that are not directly 

beneficial for the growth and development of the plants.  These secondary compounds 

are regarded as a part of the plants defence against plant-feeding insects and other 

herbivores (Dev and Koul, 1997).  The pesticide properties of many plants have been 

known for a long time and natural pesticides based on plant extracts such as rotenone, 

nicotine and pyrethrum have been commonly used in pest control during the earlier half 

of this century.  However, after the World War II, they lost their importance with the 

introduction of the synthetic organic chemicals (Suraphon and Manthana, 2001).  The 

synthetic organic chemicals were concentrated products with a high knockdown effect 

on pest organisms.  These chemicals could be produced in large quantities at relatively 

lower cost and they rapidly substituted most of the other pesticides (especially natural 

pesticides) in the 1950s.  However, with the development of resistant insects, the threat 

of contaminated food and high production cost problems, natural pesticides came back 

again in 1995 (Suraphon and Manthana, 2001).  

 

Furthermore, Malaysia is one of the most diverse countries to have plants and 

animals in the Southeast Asia region.  Some of the plants show ability to adapt to and 

tolerate herbivores and their environment.  The adapting ability derived from the 

production of special chemicals is called allelochemicals, which are parts of the 

secondary plant substances (Yu and Hsu, 1985).  Plant active ingredient that shows 

hormonal inhibition in insects is such as azadiracthin from neem seed kernels.  The other 

that show repellent property is such as citronella from citrus leaves (Visetson and Milne, 

2001).  In general, plants with pesticidal properties can be used in three ways.  Initially, 

from the whole plant parts, in powder form or as crude extracts in water or other 

solvents.  Secondly, as purified extracts, such as rotenone and finally as a chemical 
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template which could be produced industrially such as pyrethrins (chemically 

synthesized).  Moreover, natural insecticides have been used for centuries to combat 

insect’s pests that compete for food and affect the public health (WHO, 1997).  As for 

that reason, more than 2,000 plant species are catalogued as having insecticide 

properties (Heal et al., 1950; Farnsworth, 1966; Sukamar et al., 1991).  The most 

commonly plant extracts such as pyrethrum, nicotine, saponin and rotenone were among 

the first compounds used to control insects of agricultural importance (Coasts, 1994; 

Grainage and Ahmed, 1998).  Among the ordinary plant extracts that have been studied 

and commercialized is pyrethrin (which a complex of esters extracted from flowers of 

Chrysanthemum cinerariefolium) which is the one that still be used nowadays to 

enhance commercial preparations of the household insecticides (Bell et al., 1990).  

Moreover, nicotine extracted from Nicotiana glauca and its nicotinoids derivatives are 

also among the choice molecules for the manufacture of new insecticides.  

 

In addition, the one and only plant extracts that in the route of developing its 

niche market to be among the important insecticides is rotenone.  In general, rotenone 

and other toxic constituents in the extract (e.g.: deguelin, tephrosin and 12αβ-

rotenolone) are isoflavonoids occurring in several genera of tropical leguminosae plants 

such as Derris (papilionaceae), Antonia (loganiaceae) and Lonchocarpus (fabaceae).  

Scientifically, rotenone is a bio-active compound that has a strong paralysis action 

(knock-down effect) on cold-blooded animals and used as an insecticide to combat pests 

(John, 1944; Andel 2000).  Other than that, rotenoids-yielding plants have been also 

used for fishing based on their itcthyotoxic properties (Andel, 2000).  For that reason, 

there have been reports of rotenone-containing plants used by the Indians for fishing due 

to its itcthyotoxic effect, as early as the 17th century (Moretti and Grenard, 1982).  

Interestingly, rotenone poisoned fish is edible without any risk of food contamination to 

humans (Costa et al., 1989).  The risk of being poisoned by rotenone on mammalians 

can be strongly justify with the lethality tests resulted in LD50 (value is in milligram per 

kilogram (mg/kg) of body weight in mammal) range from 50 to 300 (Raws, 1986; 

Ellenhorn and Barceloux, 1988) and considered as a moderate hazardous substances 

(WHO, 1992).   
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As for it lethal mechanism, rotenone acts by inhibiting respiratory enzyme in the 

insects resulting in disruption of cellular metabolism and failure of respiratory functions 

(Oberg, 1961; Fukami et al., 1967; Bradbury, 1986).  Although rotenone is toxic to the 

nervous systems of insects, fish and birds, commercial rotenone products presented little 

hazard to humans over many decades (Schmeltz, 1971).  Neither fatalities nor systemic 

poisonings in humans have been reported in relation to ordinary use.  As for that reason, 

human or mammals are not highly susceptible or vulnerable to rotenone because they are 

protected by effective oxidizing enzyme systems (Schnick, 1974) and inefficient 

gastrointestinal absorption (Bradbury, 1986).  This extensive research and thorough 

evidence on its effect against targeted organisms and non-targeted organisms (especially 

human) gives rotenone as one of the botanical insecticide that exceptionally selective 

and environmental-friendly (Schnick, 1974; Bradbury, 1986).  Other reasons that 

accounting safety record of rotenone as a botanical insecticide are low concentration in 

commercial products, highly degradable and poor absorption across gut and skin of 

humans.  Even though rotenone is a naturally occurring chemical with insecticidal, 

acaricidal (mite and spider killing) and piscicidal (fish-killing) properties (Extoxnet, 

1996),  it is a selective, non-specific insecticide and also can be used in home gardens 

for insect control, for lice and tick control on pets and for fish eradications as part of 

water body management (Weier and Starr, 1950).  Because of its advantages, the 

extracts material can be formulated into emulsifiable concentrates (EC) and wettable 

powders of rotenone and extensively used in lakes, ponds and reservoirs to control 

undesirable fish as well as to combat the highly resistant insect pests that still posses a 

major threat to farmers all over the world (Kole et al., 1992).   

 

 Nowadays, the production of botanical insecticide especially rotenone (from 

Derris and Lonchocarpus species) and pyrethrum (from Chrysanthemum 

cinerariaefolium) are dominated by the Western country such as Germany, United States 

(US), Canada and South America (Murray, 1997).  They have the technology to extract, 

formulate and purify the bio-active constituents from plant material that have the 

insecticidal properties.  One of the biggest manufacturers in Europe that produced the 

formulated liquid emulsion of rotenone and cube rotenoids resin is SAPHYR S. A. R. L 
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which is based in France.  According to Grinda et al. (1986), the used on a batch solid-

liquid of Accelerated Solvent Extraction (ASE) method has made them produced as 

much as 14 % (w/w) yield of rotenone in dried roots and 36 % (w/w) yield of rotenoids 

resin in dried roots.  This achievement is due to the advanced processing techniques they 

have implemented and the usage of strong chlorinated organic solvent that extract the 

bio-active constituents exhaustively.  They have the technological advantages as 

compared to the other countries (especially in Asia) that also produced botanical 

insecticides product.  

 

In Asia, only several countries are committed on developing the technology and 

pursuing to produce large scale of botanical insecticide such as Thailand and Vietnam.  

According to Hao et al. (1998), in Vietnam, they have conducted and set up a technical 

process to manufacture products from Derris elliptica Benth’s root.  They have included 

the emulsifiable concentrates (EC), water milk and water-soluble powder preparations. 

The technological protocol were established in many ways such as raw material          

pre-processing treatment, extraction procedures, types of solvent used, stability of 

rotenoids resin, biological activity, preservation and packaging.  In fact, they have 

successfully extracted rotenone from their native Derris species with the yield of 

approximately 1.5 % (w/w) to 5.0 % (w/w) in dried roots using varies organic solvent 

such as acetone, chloroform and ethanol on a batch solid-liquid of Normal Soaking 

Extraction (NSE) method (Phan-Phuoc-Hien et al., 2003).  Other processing parameters 

(e.g.: solvent-to-solid ratio, raw material particles size, extraction temperature, 

extraction duration, speed of agitation and etc.) used in the process are unknown but 

generally ethanol is largely used as a solvent in the extraction process due to its low cost 

and simple process (Hien-Phan-Phuoc et al., 1999).  In Thailand, they have also 

established the technological protocol on manufacturing the botanical insecticides.  They 

have also implemented a batch solid-liquid of Normal Soaking Extraction (NSE) method 

with agitation under room temperature of 26 ± 2 0C and administered for 8 hours 

(Suraphon and Manthana, 2001).  Hence, they have managed to extract rotenone 

approximately 5.2 % (w/w) in dried roots.  According to Pitigon and Sangwanit (1997), 

the most desirable solvent for the extraction of rotenone are ethanol and although 
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chloroform is also used as a solvent, it is proven to be dangerous to human health.  

Therefore, ethanol is more suitable solvent for the extraction of rotenone in favour of 

Thailand farmers.  Unfortunately, rotenone based bio-pesticide manufacturer is 

unavailable in Malaysia despite of its environmental-friendly effect and effectiveness to 

treat the persistent insect pests of Diamondback moth (Plutella xylostella Linn.) that 

always infested in the leafy vegetables farms.  Thus, no rotenone based bio-pesticide 

listed in the Pesticide Board of Malaysia registered products until May 2006.  As for that 

reason, Chemical Engineering Pilot Plant (CEPP) in Johor, Malaysia has initiated a 

research on this particular active ingredient (rotenone) since 2001 and also being the 

only research institute in Malaysia that undertake the research systematically by 

commencing the selection of Derris species, pre-treatment, extraction, formulation, 

laboratory bioassay and field trial, toxicity level and risk assessment until product 

registration through the Pesticide Board of Malaysia (Saiful et al., 2003)  

  

 From all manufacturers and researchers that involved on producing the rotenone 

as a potential botanical insecticides, they have one in common which is using a batch 

solid-liquid extraction method even though they have implemented different processing 

parameters and produced varies yield of rotenoids resin in dried roots; % (w/w) and 

yield of rotenone in dried roots; % (w/w).  In addition, not one of them has implemented 

the biological activity (LC50) of brine shrimp (Artemia salina) to acquire rapid general 

toxicity level in which correspond to the effect of processing parameter.    

 

 As for that reason, the objective of this research was to investigate the effect of 

processing parameters (raw material particles size (mm in diameter), solvent-to-solid 

ratio (ml/g) and types of solvent) on the yield and its biological activity (LC50) of 

rotenone extracted from Derris elliptica using a batch solid-liquid extraction process. 
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1.2 Scopes of research 

  

 In order to achieve the objective, four scopes have been formulated in this 

research.  The scopes were: 

 

(1)  To investigate the effect of processing parameters on the yield of rotenoids resin 

in dried roots; % (w/w).               

(2) To investigate the effect of processing parameters on the yield of rotenone in 

dried roots; % (w/w). 

(3)  To investigate the effect of processing parameters on the biological activity 

(LC50) of brine shrimp (Artemia salina). 

(4) To investigate the correlation between the biological activity (LC50) with the 

yield of rotenoids resin in dried roots; % (w/w) and yield of rotenone in dried 

roots; % (w/w).  

 

 The processing parameters studied were solvent-to-solid ratio (ml/g), types of 

solvent and raw material particles size (mm in diameter).  The other relevant parameters 

involved in this research were fixed (control parameter) such as extraction temperature 

(0C), weight of raw material (g) and extraction duration (hour).  The experiments were 

design using experimental design software called Design-Expert® software version 6.0 

(Stat-Ease, 2002).  Each data obtained from each run of experiments was evaluated for 

the yield of rotenoids resin in dried roots; % (w/w), yield of rotenone in dried roots; % 

(w/w) and biological activity (LC50) of rotenoids resin.  Eventually, the correlation 

between these response and independent variables were analyzed and interpreted. 
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1.3  Contribution of the research 

 

 This study contributes new knowledge in the area of phytochemical processing 

and phytochemical pesticide: 

 

(A) This research help to understand the main and interaction effects of the 

processing parameters towards the yield of rotenoids resin, rotenone and their 

biological activities (LC50).  The correlation determined between independent 

variables would further promote and enhance the usage of rotenoids resin as a 

phytochemical pesticide or botanical insecticide products.  Understanding the 

effect of processing parameters against the yield of rotenoids resin, rotenone and 

their biological activities (LC50) are essential in designing a better processing 

technology to maintain and preserve the bio-active constituents in the extracts 

and rotenoids resin effectively. 

 

(B) Although Derris roots have been identified as a potential cash crop due to its 

abundance growth in Malaysia, no research work of its own native species has 

been conducted locally.  The identification of appropriate processing parameters 

to acquire maximum yield of rotenoids resin, rotenone and their biological 

activities (LC50) against targeted and non-targeted organism are also have not 

being studied.  According to the local patent and industrial company database 

related to the botanical insecticides production, there is no rotenone-based 

industry listed in Malaysia until now.  Therefore, the opportunities to develop an 

option to the synthetic pesticides and environmental-friendly natural bio-

pesticide from local plant species are the main rationale why this extensive study 

should be completed and carried out successfully.  




