THE YIELD AND BIOLOGICAL ACTIVITY (LC₅₀) OF ROTENONE EXTRACTED FROM *Derris elliptica*

SAIFUL IRWAN BIN ZUBAIRI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

AUGUST 2006

To my most beloved sayang and mak

ACKNOWLEDGEMENTS

'In the name of Allah, the most gracious and the most merciful. Selawat and salam to Prophet Muhammad s.a.w.' I owe first and foremost my profound gratitude to almighty Allah s.w.t the source of all inspiration and help and without whose assistance; this study would not have come into existence.

Deep obligation and indebtedness and most sincere gratitude are offered to my supervisor Professor Dr. Mohammad Roji Sarmidi for his continuous guidance during all stages of my research work and for his willingness to help. Without his continue support, interest, wisdom and idea during our discussion, this thesis would not have been implemented and executed well.

I would also like to acknowledge the Chemical Engineering Pilot Plant (CEPP) staff, in particular Professor Ramlan Abdul Aziz for his moral support and motivation as well as Mr. Khairul Annuar Mohd, Ms. Nor Idamalina Ahamad Nordin and Mr. Rafizan Latip for their assistance on the batch solid-liquid extraction process, qualitative analysis of Vacuum Liquid Chromatography-Thin Layer Chromatography (VLC-TLC) and biological activity (LC₅₀) of rotenoids resin.

Last but not least, I would like to express my heartfelt gratitude to my most beloved parents and wife, *Allahyarham* Zubairi Abdul Wahid, Zaiton A. Man and Nurhafzan Anis Ismail respectively, through which the guidance of the spiritual, mental and physical training that has allowed me to established and continue throughout this study.

ABSTRACT

The objective of this research was to determine the effect of the processing parameters on the extraction yield of rotenoids resin, rotenone and their biological activities (LC_{50}). The research was divided into three stages: preliminary, optimization and verification phases. Preliminary study was carried out to determine the most appropriate processing parameters for the optimization study. The optimization study was carried out using a Central Composite Design (CCD) employing the Design-Expert[®] software version 6.0 to determine the effects of processing parameters on the three selected response variables which were the yield of rotenoids resin, yield of rotenone and biological activity (LC_{50}) of rotenoids resin. The processing parameters studied were the types of solvent (acetone, chloroform and ethanol), solvent-to-solid ratio (2.0 ml/g to 10.0 ml/g) and raw material particles size (0.5 mm to 5.0 mm in diameter). The theoretical maximum yield of rotenoids resin in dried roots obtained from the optimization phase was 12.26 % (w/w) and 5.99 % (w/w) for the rotenone. The multiple response variables analysis have consistently verified the theoretical results in the range of 3.62 ml/g to 4.72 ml/g (solvent-to-solid ratio) and 0.83 mm to 1.41 mm in diameter (raw material particles size) using the acetone extract. The biological activity (LC_{50}) value of rotenoids resin was indirectly correlated to the optimum processing parameters due to inconsistency of rotenone content (mg) and the low value of LC_{50} which was less than 100 ppm for all treatments. This is due to the presence of other constituents in the rotenoids resin (tephrosin, $12\alpha\beta$ -rotenolone and deguelin) which contributed to the low LC₅₀ values. The optimization of the processing parameters resulted in an increase of yield of rotenoids resin but reduced yield of rotenone.

ABSTRAK

Objektif kajian ini adalah untuk menilai kesan parameter pemprosesan terhadap pengekstrakan keberhasilan resin rotenoids, rotenone dan aktiviti biologikalnya (LC₅₀). Kajian ini dibahagikan kepada tiga peringkat: fasa saringan, pengoptimuman dan penentusahan. Kajian saringan dijalankan untuk menentukan parameter pemprosesan yang paling relevan untuk kajian pengoptimuman. Kajian pengoptimuman dijalankan menggunakan analisis 'Central Composite Design (CCD)' menggunakan perisian 'Design-Expert[®] version 6.0' bagi menilai kesan parameter pemprosesan bagi tiga variabel respon yang dipilih iaitu keberhasilan resin rotenoids, keberhasilan rotenone dan aktiviti biologikal (LC_{50}) bagi resin rotenoids. Parameter pemprosesan yang dikaji adalah jenis pelarut (aseton, kloroform dan etanol), nisbah pelarut terhadap pepejal (2.0 ml/g hingga 10.0 ml/g) dan saiz partikel bahan mentah (0.5 mm hingga 5.0 mm dalam diameter). Keberhasilan maksimum teori resin rotenoids di dalam akar kering yang diperolehi daripada fasa pengoptimuman adalah 12.26 % (w/w) dan 5.99 % (w/w) untuk Analisis kepelbagaian variabel respon mengesahkan secara konsisten rotenone. keputusan teori di dalam julat 3.62 ml/g hingga 4.72 ml/g dan 0.83 mm hingga 1.41 mm dalam diameter menggunakan pengekstrakan aseton. Nilai aktiviti biologikal (LC₅₀) resin rotenoids tidak berkaitan secara langsung dengan parameter pemprosesan optimum disebabkan oleh kandungan rotenone (mg) yang tidak konsisten dan nilai LC₅₀ yang rendah di mana kurang daripada 100 ppm bagi semua rawatan. Ini disebabkan oleh kewujudan kandungan lain di dalam resin rotenoids (tephrosin, 12αβ-rotenolone dan deguelin) di mana turut menyumbang kepada nilai LC₅₀ yang rendah. Pengoptimuman parameter pemprosesan di dapati telah menyebabkan peningkatan keberhasilan resin rotenoids tetapi mengurangkan keberhasilan rotenone.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF FIGURES	xiv
	LIST OF TABLES	xix
	LIST OF ABBREVIATIONS	xxii
	LIST OF APPENDICES	xxiv

INTRODUCTION

1

1.1	Research background	1
1.2	Scopes of research	7
1.3	Contribution of the research	8

2

3

2.1	Overv	Overview of the phytochemicals		
	2.1.1	Metabolic pathway of the		
		phytochemical insecticides	10	
2.2	Derris	s elliptica or 'Tuba'	12	
2.3	Scient	ific classification (taxonomy) and species	13	
	2.3.1	Plant growth, development and ecology	13	
	2.3.2	The cultivation condition of Derris elliptica	14	
	2.3.3	Current development on the cultivation		
		of Derris elliptica	16	
2.4	Phyto	chemistry of Derris species	16	
	2.4.1	Outline of rotenone as an active chemical		
		constituents	16	
	2.4.2	Physico-chemical properties of rotenoids	17	
	2.4.3	Rotenone stability in water	20	
	2.4.4	Rotenone stability in soil and groundwater	21	
	2.4.5	Rotenone stability in vegetation	22	
	2.4.6	Types of rotenone formulation	22	

PROCESSING, ANALYSIS AND TOXICOLOGY

3.1	3.1 Introduction		24
	3.1.1	Extraction method	25
3.2	Extrac	ction mechanism	26
	3.2.1	Principles of solid-liquid extraction	28
		3.2.1.1 Types of solid-liquid extraction	28
		3.2.1.2 Desirable features for the	
		extracting solvent	28

	3.2.1.3 Lead	ching process	
	(soli	d-liquid extraction)	29
3.2.2	Extraction of	of the rotenone and rotenoids	
	resin: An ov	verview of pilot and industrial	
	plant scale p	production	30
Analy	tical methods		34
Toxic	ology		34
3.4.1	The use of t	biological assays to	
	evaluate bot	anicals	34
	3.4.1.1 Dose	e-response curves	36
	3.4.1.2 Haza	ard indicator categories	38
	3.4.1.3 Toxi	city assessment by probit	
	anal	ysis	40
3.4.2	Brine Shrim	p (Artemia salina)	
	Lethality stu	ıdy	41
	3.4.2.1 Arte	mia life history	41
	3.4.2.2 Hate	hing the Artemia	41
	3.4.2.3 Harv	vesting the nauplii	42
	3.4.2.4 Main	ntenance of brine shrimp	43
	3.4.2.5 Opti	mum Artemia survival	
	cond	lition	44
3.4.3	Rotenone to	xicology data	45
	3.4.3.1 Mod	le of action	45
	3.4.3.2 Toxi	city	45
	(a)	Human data	45
	(b)	Aquatic life data	46
	(c)	Relevant animal data	46
	(c)	Relevant in vitro data	47
	(d)	Workplace standards	47
	(e)	Acceptable Daily	
		Intake (ADI)	47

3.3

3.4

	(f)	Carcinogenicity	47
	(g)	Mutagenicity	47
	(h)	Interactions	47
3.4.4	CASE STUE	OY: Laboratory and field	
	efficacy stud	ies on the toxicity of the	
	formulated re	otenone	48
	3.4.4.1 Laboratory studies (bioassay)		
	3.4.4.2 Field	efficacy studies	50

4 METHODOLOGY

4.1	Introd	uction		51
	4.1.1	Preliminary ex	periments	52
	4.1.2	Optimization p	bhase	53
		4.1.2.1 Design	of Experiments (DOE)	54
		4.1.2.2 Factors	and experimental matrix	55
	4.1.3	Verification pl	nase	58
4.2	Sampl	ing		58
4.3	Proces	ss description		58
	4.3.1	Pre-processing	g of <i>Derris</i> roots	60
	4.3.2	Extraction of r	otenoids resin	61
	4.3.3	Analysis of the	e response variables	63
		4.3.3.1 Determ	nination of extraction yield	
		(roteno	ids resin)	63
		4.3.3.2 Determ	nination of extraction yield	
		(yield o	of rotenone)	64
		(a)	Qualitative analysis of	
			rotenone using Thin Layer	
			Chromatography (TLC)	64

		(b)	Quantitative analysis of	
			rotenone using High	
			Performance Liquid	
			Chromatography (HPLC):	
			Measurement of the	
			rotenone content (mg)	65
		(c)	Biological activity (LC ₅₀)	
			of rotenoids resin	67
4.4	Statist	ical analysis		69
	4.4.1	Response Sur	face Methodology (RSM)	70
	4.4.2	Model adequa	acy checking	71
		4.4.2.1 F-dist	ribution test	71
		4.4.2.2 Coeffi	icient of multiple	
		detern	ninations (\mathbf{R}^2)	72
		4.4.2.3 Lack of	of fits test	72
	4.4.3	Pearson's cor	relation coefficient, r	73

5 **RESULT AND DISCUSSION**

Introduction		
Preliminary experiment results		
5.2.1	Effects of the plant parts and types	
	of solvent on yield	75
5.2.2	Extraction yield model and the effect	
	of extraction duration on yield	77
5.2.3	Effects of the extraction and concentration	
	operating temperature on yield	82
5.2.4	Effect of the raw material particles size	
	and solvent-to-solid ratio on yield	86
	Introdu Prelim 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4	 Introduction Preliminary experiment results 5.2.1 Effects of the plant parts and types of solvent on yield 5.2.2 Extraction yield model and the effect of extraction duration on yield 5.2.3 Effects of the extraction and concentration operating temperature on yield 5.2.4 Effect of the raw material particles size and solvent-to-solid ratio on yield

	5.2.5	Summary of the preliminary experiments	94
5.3	Optim	ization phase results:	
	Effect	of processing parameters on the response	
	variabl	les	98
	5.3.1	Effect of processing parameters on the	
		yield of rotenoids resin in dried roots	100
	5.3.2	Effect of processing parameters on the	
		yield of rotenone in dried roots	109
	5.3.3	Summary of the optimization phase	118
5.4	Multi 1	response analysis of the yield of rotenone	
	in drie	d roots; % (w/w) and rotenone concentration	
	(mg/m	1)	120
	5.4.1	Analysis of solvent-to-solid ratio (ml/g)	
		for the ethanol + oxalic acid solution	
		extract in relation with the yield of	
		rotenone in dried roots; % (w/w) and	
		rotenone concentration; mg/ml	121
	5.4.2	Analysis of solvent-to-solid ratio (ml/g)	
		for the acetone extract in relation with	
		the yield of rotenone in dried roots;	
		% (w/w) and roten one concentration; mg/ml	122
	5.4.3	Analysis of raw material particles size	
		(mm in diameter) for the ethanol +	
		oxalic acid solution extract in relation	
		with the yield of rotenone in dried roots;	
		% (w/w) and roten one concentration; mg/ml	125
	5.4.4	Analysis of raw material particles size	
		(mm in diameter) for the acetone extract	
		in relation with the yield of rotenone in	
		dried roots; % (w/w) and rotenone	
		concentration; mg/ml	127

5.5	Biological activity (LC ₅₀) of rotenoids resin results 12					
	5.5.1	The effect of raw material particles size				
		and types of solvent on the biological				
		activity (LC ₅₀) and yield of rotenone				
		in dried roots, % (w/w) respectively	132			
	5.5.2	The effect of solvent-to-solid ratio				
		and types of solvent on the biological				
		activity (LC ₅₀) and yield of rotenone				
		in dried roots, % (w/w) respectively	135			
	5.5.3	Biological activity (LC $_{50}$) of the				
		verification phase parameters and				
		rotenone standard (SIGMA-Aldrich™)	143			
5.6	Verifi	cation phase results:				
	Confi	rmation of the optimization	143			
5.7	Comp	arison of the optimum response variables	144			
5.8	Correl	lation between the yield of rotenoids				
	resin a	and yield of rotenone	148			

6 CONCLUSIONS AND RECOMMENDATIONS

	6.1	Conclusions	151
	6.3	Recommendations	154
REFERENCES			155
APPENDICES			173

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Biosynthetic origin of some commercially important plant-derived compounds	11
2.2	<i>Derris</i> species that abundantly available in Peninsular of Malaysia: (A) <i>Derris elliptica</i> and (B) <i>Derris malaccensis</i>	13
2.3	Rotenone molecular structures	18
3.1	Schematic diagram of vegetal cell structures	27
3.2	Layout of the pilot plant scale production of the Concentrated Liquid Crude Extract (CLCE)	32
3.3	Dose-response curve	36
3.4	An adult of Artemia salina: (A) male; (B) female	41
3.5	Example of the Brine Shrimp hatchery system	44
3.6	The leaf-dipped method	49
3.7	The larvae of diamondback moth (Plutella xylostella)	49
3.8	Field efficacy of formulated rotenone against <i>Spodotera litura</i>	50
4.1	Phases of the experiment	59
4.2	Flow diagram and overview of the study	59
4.3	Various particles size of Derris roots	60

4.4	Extraction of rotenoids resin from Derris elliptica roots	62
4.5	Evaluation of rotenoids resin	63
4.6	Techniques of spotting the sample on silica plate	65
4.7	External standard method template calculations	66
4.8	Example of the dilution principles to prepare the biological activity concentration	68
4.9	Mortality of <i>Artemia salina</i> when exposed to extracts of the <i>Derris elliptica</i> : (A) dose response curve; (B) probit analysis curve	69
5.1	Yield of rotenone in dried roots, % (w/w) using the Normal Soaking Extraction (NSE) method for different types of solvent	76
5.2	Kinetic equilibrium of the rotenone extraction process (second order polynomial)	80
5.3	Kinetic equilibrium of the rotenone extraction process: Yield of rotenone content in dried roots, $\%$ (w/w)	81
5.4	Kinetic equilibrium of the rotenone extraction process: Concentration of rotenone, mg/ml	81
5.5	Kinetic equilibrium of the rotenone extraction process: Yield of rotenone in dried roots, mg	82
5.6	Degradation of rotenone content (mg) during the concentration process at 40 0 C and 0.3 mbar of operating temperature and vacuum pressure respectively	83
5.7	Degradation of rotenone content (mg) during the concentration process at 50 0 C and 80 mbar of operating temperature and vacuum pressure respectively	84
5.8	Kinetics of the rotenone extraction process from <i>Derris elliptica</i> - Ethanol + oxalic acid solution: (A) rotenone concentration, mg/ml; (B) yield of rotenone, % (w/w)	85
5.9	Kinetics of the rotenone extraction process from <i>Derris elliptica</i> - Chloroform: (A) rotenone concentration, mg/ml; (B) yield of rotenone, % (w/w)	90

5.10	Kinetics of the rotenone extraction process from <i>Derris elliptica</i> - Acetone: (A) rotenone concentration, mg/ml; (B) yield of rotenone, % (w/w)	92
5.11	Response surface three-dimensional graphs and contour plot	99
5.12	Normal probability plots of residuals (Yield of rotenoids resin)	104
5.13	The residual versus the predicted response (Yield of rotenoids resin)	104
5.14	Surface plot of the yield of rotenoids resin in dried roots, % (w/w) as a function of raw material particles size and solvent-to-solid ratio: Ethanol + oxalic acid solution extract	105
5.15	Surface plot of the yield of rotenoids resin in dried roots, % (w/w) as a function of raw material particles size and solvent-to-solid ratio: Acetone extract	105
5.16	Normal probability plots of residuals (Yield of rotenone)	113
5.17	The residual versus the predicted response (Yield of rotenone)	114
5.18	Surface plot of the yield of rotenone in dried roots, % (w/w) as a function of raw material particles size and solvent-to-solid ratio: Ethanol + oxalic acid solution extract	114
5.19	Surface plot of the yield of rotenone in dried roots, % (w/w) as a function of raw material particles size and solvent-to-solid ratio: Acetone extract	115
5.20	Selected processing parameters that obtain maximum yield of rotenoids resin in dried roots, % (w/w) and yield of rotenone in dried roots, % (w/w) based on the desirability values of a given solution	120
5.21	The yield of rotenone in dried roots; % (w/w) and rotenone concentration; mg/ml versus the solvent-to-solid ratio (ml/g) of ethanol + oxalic acid solution extract	123

concentration; mg/ml versus the solvent-to-solid ratio (ml/g) of acetone extract	125
5.23 The yield of rotenone in dried roots; % (w/w) and rotenone concentration; mg/ml versus the raw material particles size (mm in diameter) of ethanol + oxalic acid solution extract	e 127
5.24 The yield of rotenone in dried roots; % (w/w) and rotenone concentration; mg/ml versus the raw material particles size (mm in diameter) of acetone extract	e 129
5.25 Relationship between the probit of <i>Artemia salina</i> mortality proportion and log ₁₀ dose of rotenoids resin (S1) at 24 hours of treatment	130
5.26 Relationship between the probit of <i>Artemia salina</i> mortality proportion and log ₁₀ dose of the rotenoids resin (S1, S7, S20 and S23) at 12 hours of treatment	130
5.27 Relationship between the probit of <i>Artemia salina</i> mortality proportion and log ₁₀ dose of rotenoids resin (S7, S11, S13, S19, S23, S24, S25, S28 and S29) at 12 hours of treatment: Continued	131
5.28 Relationship between the probit of <i>Artemia salina</i> mortality proportion and log ₁₀ dose of rotenoids resin (S3, S8 and S12) at 6 hours of treatment	132
5.29 Effect of the raw material particles size, mm in diameter against the biological activity (LC_{50}) of acetone extract (A_1) and ethanol + oxalic acid solution extract (A_2) respectively	133
5.30 Effect of the raw material particles size, mm in diameter against the yield of rotenone in dried roots, % (w/w) obtained from the extract of acetone (B_1) and ethanol + oxalic acid solution (B_2) respectively	135
5.31 Effect of the solvent-to-solid ratio, ml/g against the biological activity (LC_{50}) of acetone extract (C_1) and ethanol + oxalic acid solution extract (C_2) respectively	y 137
5.32 Effect of the solvent-to-solid ratio, ml/g against the yield of rotenone in dried roots, $\%$ (w/w) obtained from the extract of acetone (D ₁) and ethanol + oxalic acid solution (D ₂) respectively	139

Pearson's correlation coefficients (r) between the yield of	
rotenone in dried roots; % (w/w) and yield of rotenoids	
resin in dried roots; % (w/w)	149

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Existence of rotenone in <i>Derris elliptica</i> Benth plant's organs determined by different analysis methods	15
2.2	Rotenone, methionine and phenylalanine in different organs of <i>Derris</i> plant analyzed by reversed-phase HPLC	15
2.3	The solubility of pure rotenone at 20 0 C	19
2.4	Time of rotenone dissipation versus temperature	20
2.5	Detoxification time of varies rotenone concentration	21
3.1	Rotenone extraction methods	33
3.2	Hazard indicator categories	39
3.3	Toxicity of the botanical insecticides against the larvae of DBM collected from Kluang, Johor	48
3.8	Toxicity of the botanical insecticides against the larvae of DBM collected from Karak, Pahang	49
4.1	Preliminary processing parameters	52
4.2	The preliminary experiment to obtain the rotenoids resin based on the exploratory experiment carried out by Saiful <i>et al.</i> (2003)	52
4.3	Preliminary control processing parameters	53
4.4	Experimental design for the solvent-to-solid ratio of 3.3 ml/g	53

4.5	Experimental design for the solvent-to-solid ratio of 10.0 ml/g	53
4.6	Preliminary response variables	53
4.7	Specification of Central Composite Design (CCD)	54
4.8	Optimization processing parameters	55
4.9	Optimization control processing parameters	56
4.10	Optimization response variables	56
4.11	Experimental matrix for the extraction of rotenoids resin: CCD (2^3)	57
4.12	Parameters of RP-HPLC recommended by Baron and Freudenthal (1976)	66
5.1	Processing parameters involved in the kinetic of rotenone extraction process	79
5.2	Response variables result in the kinetic of rotenone extraction process	80
5.3	The average yield of rotenone in dried roots, % (w/w)	95
5.4	The preliminary experiments result	95
5.5	The design layout and experimental results (Yield of rotenoids resin)	100
5.6	ANOVA response surface linear model [responses: Yield of rotenoids resin in dried roots, % (w/w)]	101
5.7	The design layout and experimental results (Yield of rotenone)	109
5.8	ANOVA response surface 2FI model (responses: Yield of rotenone in dried roots) (backward)	110
5.9	Selection criteria of the processing parameters solution	119
5.10	The effects of solvent-to-solid ratio (ml/g) of ethanol + oxalic acid solution extract on the two response variables	122

5.11	The effects of solvent-to-solid ratio (ml/g) of acetone Extract on the two response variables	124
5.12	The effects of raw material particles size (mm in diameter) of ethanol + oxalic acid solution extract on the two response variables	126
5.13	The effects of raw material particles size (mm in diameter) of acetone extract on the two response variables	128
5.14	Biological activity (LC ₅₀) of rotenoids resin at varies time of treatment (6 hours, 12 hours and 24 hours)	140
5.15	Effect of rotenoids resin against <i>Artemia salina</i> at varies time of treatment (6 hours, 12 hours and 24 hours)	141
5.16	Effect of rotenoids resin against <i>Artemia salina</i> on the 24 hours of treatment established by McLaughlin (1991)	142
5.17	List of selected processing parameter that produced theoretical maximum yield of rotenoids resin in dried roots; % (w/w) and yield of rotenone in dried roots, % (w/w)	143
5.18	The verification phase results based on the most appropriate processing parameters	144
5.19	Comparison of the optimum response variables with Different phases of experiment	147
5.20	Pearson's correlation coefficients (r) of the response variables	148

LIST OF ABBREVIATIONS

ANOVA	-	Analysis of Variance
A.i	-	Active ingredient
CEPP	-	Chemical Engineering Pilot Plant
CCD	-	Central Composite Design
CLCE	-	Concentrated Liquid Crude Extract
СР	-	Centre point
DAT	-	Days after treatment
DBM	-	Diamondback Moth
DF	-	Dilution factor
DIW	-	Deionized water
DOE	-	Design of Experiments
EPA	-	Environmental Protection Agency
EC	-	Emulsifiable Concentrates
IS	-	Internal standard
IPM	-	Integrated Pest Management
Kg	-	Kilogram
LC ₅₀	-	Lethal Concentration of 50 % mortality
LD ₅₀	-	Lethal Dose of 50 % mortality
LCE	-	Liquid Crude Extract
L	-	Litre
Ib _m	-	Pound-mass
NSE	-	Normal Soaking Extraction
NPK	-	Nitrogen, Phosphorus and Kalium
ND	-	Not determined

m.p	-	Melting point
OA	-	Oxalic acid
ppm	-	Part per millions
PDA	-	Photo Diode Array
R_{f}	-	Retardation factor
RSM	-	Response Surface Methodology
RP-HPLC	-	Reversed-Phase High Performance Liquid Chromatography
RCBD	-	Randomized Complete Block Design
SFE	-	Supercritical Fluid Extraction
SST	-	Total of Sum of Squares
SSR	-	Sum of Squares due to Regression
SSE	-	Sum of Squares of Residuals
SF	-	Sensitivity factor
SF	-	Safety factor
SD	-	Standard deviation
SG	-	Specific gravity
SHD	-	Safe Human Dose
TLC	-	Thin Layer Chromatography
ThD _{0.0}	-	Threshold Dose
UTM	-	Universiti Teknologi Malaysia
UPM	-	Universiti Putra Malaysia
UV	-	Ultra Violet
VLC	-	Vacuum Liquid Chromatography

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Complete results of the optimization phase experimental design	174
В	Mortality of <i>Artemia salina</i> against varies concentration of the rotenone Concentrated Liquid Crude Extract (CLCE)	179
C	Experimental design and results (experimental and predicted values) of Central Composite Design; CCD (Manual calculation)	184
D	The upper critical values of the F-distribution for v_1 numerator degrees of freedom and v_2 denominator degrees of freedom 5 % significance level: $F_{0.05}(v_1, v_2)$	190
E	The biological activity (LC_{50}) of S1 (24 hours of treatment) using probit analysis (manual calculation)	192
F	Mortality of Artemia salina against varies concentration (ppm) of rotenone Concentrated Liquid Crude Extract (CLCE) and rotenone standard (SIGMA-Aldrich [™])	194
G	Complete results of the verification phase and preliminary experiment (yield of rotenoids resin)	196
Н	Chromatograms of rotenone standard [SIGMA-Aldrich [™] , 95 - 98 % (w/w)] and Sample 20 (S20) for the LCE and CLCE	198

Pu	Purification and identification of rotenone from	
Di	<i>Derris elliptica</i> using the Vacuum Liquid	
Cl	Chromatography-Thin Layer Chromatography	
(V	(VLC-TLC) method	
M	olecular structure of $12\alpha\beta$ -rotenolone, tephrosin d deguelin	206

I

J

CHAPTER I

INTRODUCTION

1.1 Research background

One of the important issues facing approximately 6.48 billions world populations (Anonymous, 2005) is food security. The over population in developing countries and low food production exacerbated the situation. Low food production productivity is due to many factors. One of the factors is due to pest and plant diseases.

Crop protections today rely heavily on synthetic pesticides (Coats, 1994). Their uninterrupted and massive use has led to several side effects such as pesticides resistance in pests (Stoll, 1988), elimination of naturally occurring bio control agents, insect resurgence, adverse effects on non-target organisms and environment contaminations with the potential effect on the entire food chain (Copping, 1998; Harris, 1999). The growing public alarm about the hazards associated with excessive use of synthetic pesticides has revived the interest in the use of environmental-friendly crop protection products or well known as phytochemical pesticides. Phytochemical pesticides are considered environmentally benign, biodegradable (Devlin and Zettel, 1999), maintain biological diversity of predators (Grainge and Ahmad, 1998) and safer to higher animals including human beings. Thus, to help meet the food requirements of the 21st century, scientist throughout the world is looking for ecologically safe plant protection

scientist throughout the world is looking for ecologically safe plant protection technologies emphasizing use of the botanical insecticides in the integrated pest management (IPM) programmes.

A vast number of plant species produce phytochemicals that are not directly beneficial for the growth and development of the plants. These secondary compounds are regarded as a part of the plants defence against plant-feeding insects and other herbivores (Dev and Koul, 1997). The pesticide properties of many plants have been known for a long time and natural pesticides based on plant extracts such as rotenone, nicotine and pyrethrum have been commonly used in pest control during the earlier half of this century. However, after the World War II, they lost their importance with the introduction of the synthetic organic chemicals (Suraphon and Manthana, 2001). The synthetic organic chemicals could be produced in large quantities at relatively lower cost and they rapidly substituted most of the other pesticides (especially natural pesticides) in the 1950s. However, with the development of resistant insects, the threat of contaminated food and high production cost problems, natural pesticides came back again in 1995 (Suraphon and Manthana, 2001).

Furthermore, Malaysia is one of the most diverse countries to have plants and animals in the Southeast Asia region. Some of the plants show ability to adapt to and tolerate herbivores and their environment. The adapting ability derived from the production of special chemicals is called allelochemicals, which are parts of the secondary plant substances (Yu and Hsu, 1985). Plant active ingredient that shows hormonal inhibition in insects is such as azadiracthin from neem seed kernels. The other that show repellent property is such as citronella from citrus leaves (Visetson and Milne, 2001). In general, plants with pesticidal properties can be used in three ways. Initially, from the whole plant parts, in powder form or as crude extracts in water or other solvents. Secondly, as purified extracts, such as rotenone and finally as a chemical template which could be produced industrially such as pyrethrins (chemically synthesized). Moreover, natural insecticides have been used for centuries to combat insect's pests that compete for food and affect the public health (WHO, 1997). As for that reason, more than 2,000 plant species are catalogued as having insecticide properties (Heal *et al.*, 1950; Farnsworth, 1966; Sukamar *et al.*, 1991). The most commonly plant extracts such as pyrethrum, nicotine, saponin and rotenone were among the first compounds used to control insects of agricultural importance (Coasts, 1994; Grainage and Ahmed, 1998). Among the ordinary plant extracts that have been studied and commercialized is pyrethrin (which a complex of esters extracted from flowers of *Chrysanthemum cinerariefolium*) which is the one that still be used nowadays to enhance commercial preparations of the household insecticides (Bell *et al.*, 1990). Moreover, nicotine extracted from *Nicotiana glauca* and its nicotinoids derivatives are also among the choice molecules for the manufacture of new insecticides.

In addition, the one and only plant extracts that in the route of developing its niche market to be among the important insecticides is rotenone. In general, rotenone and other toxic constituents in the extract (e.g.: deguelin, tephrosin and $12\alpha\beta$ rotenolone) are isoflavonoids occurring in several genera of tropical leguminosae plants such as Derris (papilionaceae), Antonia (loganiaceae) and Lonchocarpus (fabaceae). Scientifically, rotenone is a bio-active compound that has a strong paralysis action (knock-down effect) on cold-blooded animals and used as an insecticide to combat pests (John, 1944; Andel 2000). Other than that, rotenoids-yielding plants have been also used for fishing based on their *itcthyotoxic* properties (Andel, 2000). For that reason, there have been reports of rotenone-containing plants used by the Indians for fishing due to its *itcthyotoxic* effect, as early as the 17th century (Moretti and Grenard, 1982). Interestingly, rotenone poisoned fish is edible without any risk of food contamination to humans (Costa et al., 1989). The risk of being poisoned by rotenone on mammalians can be strongly justify with the lethality tests resulted in LD_{50} (value is in milligram per kilogram (mg/kg) of body weight in mammal) range from 50 to 300 (Raws, 1986; Ellenhorn and Barceloux, 1988) and considered as a moderate hazardous substances (WHO, 1992).

As for it lethal mechanism, rotenone acts by inhibiting respiratory enzyme in the insects resulting in disruption of cellular metabolism and failure of respiratory functions (Oberg, 1961; Fukami et al., 1967; Bradbury, 1986). Although rotenone is toxic to the nervous systems of insects, fish and birds, commercial rotenone products presented little hazard to humans over many decades (Schmeltz, 1971). Neither fatalities nor systemic poisonings in humans have been reported in relation to ordinary use. As for that reason, human or mammals are not highly susceptible or vulnerable to rotenone because they are protected by effective oxidizing enzyme systems (Schnick, 1974) and inefficient gastrointestinal absorption (Bradbury, 1986). This extensive research and thorough evidence on its effect against targeted organisms and non-targeted organisms (especially human) gives rotenone as one of the botanical insecticide that exceptionally selective and environmental-friendly (Schnick, 1974; Bradbury, 1986). Other reasons that accounting safety record of rotenone as a botanical insecticide are low concentration in commercial products, highly degradable and poor absorption across gut and skin of humans. Even though rotenone is a naturally occurring chemical with insecticidal, acaricidal (mite and spider killing) and piscicidal (fish-killing) properties (Extoxnet, 1996), it is a selective, non-specific insecticide and also can be used in home gardens for insect control, for lice and tick control on pets and for fish eradications as part of water body management (Weier and Starr, 1950). Because of its advantages, the extracts material can be formulated into emulsifiable concentrates (EC) and wettable powders of rotenone and extensively used in lakes, ponds and reservoirs to control undesirable fish as well as to combat the highly resistant insect pests that still posses a major threat to farmers all over the world (Kole et al., 1992).

Nowadays, the production of botanical insecticide especially rotenone (from *Derris* and *Lonchocarpus* species) and pyrethrum (from *Chrysanthemum cinerariaefolium*) are dominated by the Western country such as Germany, United States (US), Canada and South America (Murray, 1997). They have the technology to extract, formulate and purify the bio-active constituents from plant material that have the insecticidal properties. One of the biggest manufacturers in Europe that produced the formulated liquid emulsion of rotenone and cube rotenoids resin is SAPHYR S. A. R. L

which is based in France. According to Grinda *et al.* (1986), the used on a batch solidliquid of Accelerated Solvent Extraction (ASE) method has made them produced as much as 14 % (w/w) yield of rotenone in dried roots and 36 % (w/w) yield of rotenoids resin in dried roots. This achievement is due to the advanced processing techniques they have implemented and the usage of strong chlorinated organic solvent that extract the bio-active constituents exhaustively. They have the technological advantages as compared to the other countries (especially in Asia) that also produced botanical insecticides product.

In Asia, only several countries are committed on developing the technology and pursuing to produce large scale of botanical insecticide such as Thailand and Vietnam. According to Hao et al. (1998), in Vietnam, they have conducted and set up a technical process to manufacture products from Derris elliptica Benth's root. They have included the emulsifiable concentrates (EC), water milk and water-soluble powder preparations. The technological protocol were established in many ways such as raw material pre-processing treatment, extraction procedures, types of solvent used, stability of rotenoids resin, biological activity, preservation and packaging. In fact, they have successfully extracted rotenone from their native Derris species with the yield of approximately 1.5 % (w/w) to 5.0 % (w/w) in dried roots using varies organic solvent such as acetone, chloroform and ethanol on a batch solid-liquid of Normal Soaking Extraction (NSE) method (Phan-Phuoc-Hien et al., 2003). Other processing parameters (e.g.: solvent-to-solid ratio, raw material particles size, extraction temperature, extraction duration, speed of agitation and etc.) used in the process are unknown but generally ethanol is largely used as a solvent in the extraction process due to its low cost and simple process (Hien-Phan-Phuoc et al., 1999). In Thailand, they have also established the technological protocol on manufacturing the botanical insecticides. They have also implemented a batch solid-liquid of Normal Soaking Extraction (NSE) method with agitation under room temperature of 26 \pm 2 0 C and administered for 8 hours (Suraphon and Manthana, 2001). Hence, they have managed to extract rotenone approximately 5.2 % (w/w) in dried roots. According to Pitigon and Sangwanit (1997), the most desirable solvent for the extraction of rotenone are ethanol and although

chloroform is also used as a solvent, it is proven to be dangerous to human health. Therefore, ethanol is more suitable solvent for the extraction of rotenone in favour of Thailand farmers. Unfortunately, rotenone based bio-pesticide manufacturer is unavailable in Malaysia despite of its environmental-friendly effect and effectiveness to treat the persistent insect pests of Diamondback moth (*Plutella xylostella* Linn.) that always infested in the leafy vegetables farms. Thus, no rotenone based bio-pesticide listed in the Pesticide Board of Malaysia registered products until May 2006. As for that reason, Chemical Engineering Pilot Plant (CEPP) in Johor, Malaysia has initiated a research on this particular active ingredient (rotenone) since 2001 and also being the only research institute in Malaysia that undertake the research systematically by commencing the selection of *Derris* species, pre-treatment, extraction, formulation, laboratory bioassay and field trial, toxicity level and risk assessment until product registration through the Pesticide Board of Malaysia (Saiful *et al.*, 2003)

From all manufacturers and researchers that involved on producing the rotenone as a potential botanical insecticides, they have one in common which is using a batch solid-liquid extraction method even though they have implemented different processing parameters and produced varies yield of rotenoids resin in dried roots; % (w/w) and yield of rotenone in dried roots; % (w/w). In addition, not one of them has implemented the biological activity (LC₅₀) of brine shrimp (*Artemia salina*) to acquire rapid general toxicity level in which correspond to the effect of processing parameter.

As for that reason, the objective of this research was to investigate the effect of processing parameters (raw material particles size (mm in diameter), solvent-to-solid ratio (ml/g) and types of solvent) on the yield and its biological activity (LC_{50}) of rotenone extracted from *Derris elliptica* using a batch solid-liquid extraction process.

1.2 Scopes of research

In order to achieve the objective, four scopes have been formulated in this research. The scopes were:

- To investigate the effect of processing parameters on the yield of rotenoids resin in dried roots; % (w/w).
- (2) To investigate the effect of processing parameters on the yield of rotenone in dried roots; % (w/w).
- (3) To investigate the effect of processing parameters on the biological activity (LC_{50}) of brine shrimp (*Artemia salina*).
- (4) To investigate the correlation between the biological activity (LC₅₀) with the yield of rotenoids resin in dried roots; % (w/w) and yield of rotenone in dried roots; % (w/w).

The processing parameters studied were solvent-to-solid ratio (ml/g), types of solvent and raw material particles size (mm in diameter). The other relevant parameters involved in this research were fixed (control parameter) such as extraction temperature (0 C), weight of raw material (g) and extraction duration (hour). The experiments were design using experimental design software called Design-Expert[®] software version 6.0 (Stat-Ease, 2002). Each data obtained from each run of experiments was evaluated for the yield of rotenoids resin in dried roots; % (w/w), yield of rotenone in dried roots; % (w/w) and biological activity (LC₅₀) of rotenoids resin. Eventually, the correlation between these response and independent variables were analyzed and interpreted.

1.3 Contribution of the research

This study contributes new knowledge in the area of phytochemical processing and phytochemical pesticide:

- (A) This research help to understand the main and interaction effects of the processing parameters towards the yield of rotenoids resin, rotenone and their biological activities (LC_{50}). The correlation determined between independent variables would further promote and enhance the usage of rotenoids resin as a phytochemical pesticide or botanical insecticide products. Understanding the effect of processing parameters against the yield of rotenoids resin, rotenone and their biological activities (LC_{50}) are essential in designing a better processing technology to maintain and preserve the bio-active constituents in the extracts and rotenoids resin effectively.
- (B) Although *Derris* roots have been identified as a potential cash crop due to its abundance growth in Malaysia, no research work of its own native species has been conducted locally. The identification of appropriate processing parameters to acquire maximum yield of rotenoids resin, rotenone and their biological activities (LC_{50}) against targeted and non-targeted organism are also have not being studied. According to the local patent and industrial company database related to the botanical insecticides production, there is no rotenone-based industry listed in Malaysia until now. Therefore, the opportunities to develop an option to the synthetic pesticides and environmental-friendly natural biopesticide from local plant species are the main rationale why this extensive study should be completed and carried out successfully.