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ABSTRACT 

An ocean current is a continuous, directed movement of ocean water 

generated by the forces acting upon this mean flow, such as breaking waves, wind, 

Cariole’s force, temperature and salinity differences and tides caused by the 

gravitational pull of the Moon and the Sun. Depth contours, shoreline configurations 

and interaction with other currents influence a current's direction and strength. 

However, one of ocean current characteristic is varying-speed which will also vary 

the output of an energy converter. This project presents the comparison of two power 

electronic converter designs for hydrokinetic turbine system equipped with a 

permanent magnet synchronous generator (PMSG), to harvest ocean current energy 

by injecting ocean current speed data as input of overall system. An AC-DC 

uncontrolled rectifier is used as first stage of power conversion while two DC-DC 

converters (Buck-boost and SEPIC) are being compared for second stage. The 

proposed power conversion system model is designed to maintain constant DC 

output voltage with almost zero ripples for battery charging by using PI-control 

method. MATLAB/Simulink is used to simulate the proposed systems. The obtained 

result shows that the averaged output voltage is at 25.85V. With PI-control method, 

the output voltage maintains at small ripple.  
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ABSTRAK 

Arus lautan adalah pergerakan air laut yang berterusan yang juga mempunyai 

aliran yang purata, bergantung pada daya yang bertindak pada, seperti gelombang 

putus, angin, daya Cariole, perbezaan suhu dan kemasinan dan pasang surut yang 

disebabkan oleh tarikan graviti Bulan dan Matahari. Kontur kedalaman, konfigurasi 

garis pantai dan interaksi dengan arus lain juga mempengaruhi arah dan kekuatan 

arus. Walau bagaimanapun, salah satu ciri arus laut adalah kelajuan yang berbeza-

beza yang juga akan mengubah pengeluaran penukar tenaga seperti alat jana-kuasa. 

Projek ini membentangkan perbandingan dua reka bentuk sistem penukar kuasa 

turbin hidrokinetik yang dilengkapi dengan Penjana Segerak Magnet Kekal (PMSG), 

untuk menuai tenaga arus lautan dengan menggunakan data kelajuan arus lautan 

sebagai data pemasukan keseluruhan sistem. ‘AC-DC Converter’ yang tidak 

memerlukan kawalan, digunakan sebagai tahap pertama penukaran kuasa, sementara 

‘DC-DC Converter’ (Buck-boost dan SEPIC) dibandingkan untuk tahap kedua. 

Model sistem penukaran kuasa yang telah dicadangkan adalah dirancang untuk 

mengekalkan voltan keluaran berterusan dengan riak hampir sifar untuk pengecasan 

bateri dengan menggunakan kaedah kawalan PI. MATLAB/Simulink digunakan 

untuk mensimulasikan sistem yang dicadangkan. Hasil yang diperoleh menunjukkan 

bahawa voltan keluaran rata-rata berada pada 25.85V. Dengan kaedah kawalan PI, 

voltan keluaran mengekalkan pada riak yang sangat kecil.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Renewable energy sources are well-known by community nowadays and 

some sources come from ocean, which are known as tidal and wave that have been 

currently active supplying energy for daily demands on certain countries. However, 

these two sources can be categorized as non-continuous energy source as both are 

depending on wind and gravity-interaction. A big problem for electrical systems is 

temporary variability in renewable energy. Tides are considered predictable because 

of their daily periodicity. However, the durability and quality of the electricity 

produced by the tidal stream is unknown. To counter the problem, ocean has another 

source of renewable energy which is ocean-current or sometimes known as deep-sea 

current or marine current. The ocean-current flows continuously 24 hours which 

could be a great opportunity to counteract non-linear energy sources. 

Strong ocean currents are formed by a combination of temperature, salinity, 

wind, bathymetry and earth's rotation. The sun acts as the primary driving force, 

causing differences in winds and temperature which affect ocean currents. Since 

ocean currents are roughly steady in both speed and flow and hold large quantities of 

energy, there are several suitable locations for deploying devices such as turbines for 

energy extraction. Turbines capable of capturing the ocean currents' kinetic energy 

may be indistinguishable from other marine current turbines and operate according to 

the same principles. They may however be planned or engineered in tidal channels 

for lower flow speeds compared to currents and may not need to account for reversal 

flow. A major difference is where the instruments can be placed – geographically as 

well as in the water column. Fast ocean currents appear to be more offshore than 

tidal currents in coastal or inland waters. This results in deployment to deeper water. 

As ocean currents in the water column are strongest higher, fixed substructures to 
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support a turbine are becoming impractical for harnessing ocean energy. Conversely, 

instruments may be suspended or connected to buoyant structures bound to the 

seabed from moored surface platforms. Electricity is generated by coupling a 

generator to the turbine from the ocean currents, and power is delivered back to shore 

through subsea cable. 

The main concern about ocean-current energy is the speed of the seawater 

varies over time. As generator connected to a shaft of mechanical energy converter 

or turbine, the electrical power will be varied in terms of voltage, current and 

frequency. Maximum power point tracker (MPPT) of mechanical part will be 

incapable to catch-up the rapid changes of water speed which is similar to wind 

energy converter. Plus, the absence of MPPT is a method of cost reduction but the 

output remains inconsistent.  

This is when, power electronics converter becomes valuable for the 

adaptation of varying electrical parameters from generator output. Type of converter 

depends on type of electrical source and load, which only either AC-AC, AC-DC, 

DC-AC or DC-DC. In order to decide which converter type to be used, decision of 

generator type to be used has to be prior and load type comes in second place. 

Generator type has to be less maintenance and robust for underwater application.  

Apart from power diode, other power electronics switches are inoperable 

without controller. Open-loop controller is not commonly used as it gives no 

guarantee of desired output towards changes of input and load behavior. Closed-loop 

controller is then reliable technique to get the desired outputs. Most known and 

common control scheme for power electronic sector is PI-control scheme. There are 

others type of proposed control schemes that also gives good control on the output 

but it also depends on the behavior of overall system. This is due to some control 

schemes might not be able to handle complex feedback parameter of a complex 

system at which more complex control scheme is needed. 
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1.2 Problem Statement 

Various topologies of power electronic converter system have been 

discovered to adapt different kind of situations. For application of ocean-current 

harvesting system, it is still unknown of which topologies suitable for ocean-current 

characteristic. Designing of mechanical power converter should be prioritized before 

designing type of generator to be used. Then, type of converter can be properly 

designed with known type of load.  

Ocean-current behavior can be compared with river-current behavior as both 

are continuously flowing. However, river can be considered as having very less 

speed propagations if to be compared with ocean-current. This can be concluded as 

varying ocean-current speed varies generator output voltage. 

Suitable control scheme for ocean-current harvesting system is not yet been 

discovered but similar system such hydrokinetic generation system can be a 

reference. However, the dynamic behavior of ocean-current is needed to design 

controller input parameters. 

 

1.3 Research Objectives 

The objectives of the research are: 

(a) To design and simulate Buck-boost and SEPIC converters to harvest ocean-

current energy.  

(b) To design PI-control scheme for closed-loop feedback control for Buck-boost 

and SEPIC. 

(c) To gain consistent DC output voltage for battery charging. 
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1.4 Scope of Study 

For this project, ocean-current speed data will be focused on Peninsular 

Malaysia North-East Coastal area and it will be used to test proposed control scheme. 

The project focuses on designing two proposed circuit topologies which will also be 

considering cost and components. The size of the system is limited to battery size of 

10Ah. The project is limited to simulation in MATLAB/Simulink and 

MATLAB/PID-Tuner App. 

1.5 Significance of study 

This study helps in analysing appropriate ocean-current energy harvesting 

system by considering the ocean-current speed profile. The analysis of dynamic 

behavior of ocean-current speed may be useful for further studies and commercial 

application. 
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