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ABSTRACT 

 Malaysia is a developing country which relies on the monetary approach to 

measure poverty. The approach is simple to measure but it is insensitive towards 

changes of the poor in multiple dimensions such as education, health and living 

standards especially in urban areas. Several current issues in classifying the urban poor 

include rigid dichotomy of the poor and non-poor, unable to capture changes that 

happens in various sub-groups of urban poor population and misclassified poverty 

indicators. This study developed a multidimensional poverty measurement framework 

which integrated i) Alkire-Foster approaches in quantification of multidimensional 

urban poor,  ii) Adaptive Neural Fuzzy Inference Systems (ANFIS) to predict 

classification of urban poor and resolve the misclassification of urban poor and iii) 

ensemble ANFIS. 300 questionnaires were distributed to targeted households in 

Bandar Tasik Selatan, Kuala Lumpur. This study started with a comparison of data-

driven Fuzzy Rule-Based System (FRBS) with the domain expert comprising FRBS 

classification. Next, the Alkire-Foster method was introduced which included 

parameter selection, dual cut off identification and aggregation of the poor. Then, the 

ANFIS prediction was carried out using various ANFIS combination models such as 

Genfis 1, Genfis 2 and Genfis 3 to predict the classification of urban poor. This study 

proceeded to improve the classification by proposing the ensemble ANFIS that 

included ensemble weighting and ensemble integration method. The performance of 

this proposed framework was evaluated using Root Mean Square Error (RMSE), Mean 

Square Error (MSE), and R-Squared. For validation purposes, this study was reviewed 

by officers at the Zakat Collection Centre, Kuala Lumpur as the domain experts. The 

findings showed that the Genfis 3 using Fuzzy C-Means clustering algorithm in ANFIS 

outperformed all the ANFIS models, by obtaining the least MSE and RMSE values 

and highest R-Squared. These results included the Health dimension which was 

excluded in the current poverty measurement. Overall, this study has managed to 

address the urban poor classification by providing multiple dimensions of the poor and 

produce robust prediction results. 
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ABSTRAK 

 Malaysia adalah sebuah negara yang bergantung kepada pendekatan kewangan 

apabila dikaitkan dengan pengukuran kemiskinan. Pendekatan kewangan semasa 

adalah lebih mudah untuk diukur, namun ianya tidak sensitif kepada perubahan 

kemiskinan bagi pelbagai dimensi kemiskinan termasuk pendidikan, kesihatan dan 

taraf hidup. Beberapa isu semasa di dalam mengklasifikasikan miskin bandar 

termasuklah pembahagian yang ketat untuk miskin dan bukan miskin, kegagalan untuk 

mengenalpasti perubahan yang berlaku di pelbagai subkumpulan miskin bandar dan 

pengkelasan petunjuk kemiskinan yang salah. Kajian ini mencadangkan rangka kerja 

pengukuran kemiskinan multidimensi yang mana merangkumi tiga bahagian, 

mengintegrasi i) pendekatan Alkire-Foster dalam pengiraan miskin bandar dalam 

multidimensi, ii) Adaptive Neural Fuzzy Inference Systems (ANFIS) dalam 

meramalkan pengkelasan miskin bandar; dan menyelesaikan masalah tersalah 

klasifikasi miskin bandar dengan menggunakan iii) “ensemble ANFIS”. Sebanyak 300 

soal selidik telah diedarkan kepada isi rumah yang disasarkan di kawasan urban di 

Bandar Tasik Selatan, Kuala Lumpur. Kajian ini dimulakan dengan “Fuzzy Rule-Based 

System (FRBS)” berasaskan data, dengan membanding beza klasifikasi daripada ahli 

domain dan juga FRBS. Kemudian, kaedah “Alkire-Foster” diperkenalkan, dengan 

pemilihan parameter, identifikasi pemotongan berganda dan pengagregatan kumpulan 

miskin menjadi antara kaedah yang terlibat. Kemudian disusuli dengan peramalan 

ANFIS menggunakan pelbagai model kombinasi ANFIS iaitu Genfis 1, Genfis 2 dan 

Genfis 3 untuk meramalkan klasifikasi miskin bandar. Kajian ini diteruskan dengan 

menambahbaik pengkelasan dengan mencadangkan “ensemble ANFIS” dengan 

menggunakan ensemble pemberat dan ensemble integrasi. Prestasi rangka kerja yang 

dicadangkan ini dinilai dengan menggunakan Ralat Kesilapan Punca Kuasa (RMSE), 

Ralat Panjang Persegi (MSE) dan R-Kuasa Dua. Untuk tujuan pengesahan, kajian ini 

telah melalui ahli domain  iaitu pegawai dari Pusat Pungutan Zakat. Keseluruhannya, 

keputusan kajian ini mencatatkan Genfis 3 yang menggunakan algoritma “Fuzzy C-

Means” yang terbukti mengalahkan model ANFIS yang lain, dengan nilai MSE dan 

RMSE yang paling rendah dan R-Kuasa Dua yang paling tinggi. Selain itu, keputusan 

kajian turut memasukkan dimensi Kesihatan yang dikeluarkan dari penilaian 

kemiskinan semasa. Keseluruhannya, kajian ini berupaya untuk mengenalpasti 

pengkelasan miskin bandar dengan menyediakan pelbagai dimensi kemiskinan dan 

menghasilkan jangkaan keputusan yang bagus.   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Problem Background 

 

 Malaysia has experienced tremendous economic development in recent years, 

as it gears towards becoming a fully industrialised nation by the year 2020. Primarily, 

poverty has only been associated with rural phenomena and is biased agriculturally. 

This is due to rural household involvement in small-scale agricultural production. 

Although poverty alleviation strategies in Malaysia have been recognised as an 

acclaimed success by the United Nations, new forms of poverty have emerged in urban 

areas as a result of rapid economic growth and development. Extensive poverty studies 

in Malaysia have previously focused on the poverty line and evaluation particularly in 

rural communities (Solaymani and Kari, 2014; Hatta and Ali, 2013; Nawai and Duasa, 

2009). However, several researchers have also highlighted the incidence of relative 

poverty studies in Malaysia (Lazim, 2010; Lazim and Osman, 2009) using macro data 

released by the Economic Planning Unit, which is a major large-scale data source for 

the country. There are also poverty studies based on smaller datasets, e.g. studies on 

poverty in individual cities (Samat et al., 2012; Othman et al., 2010). During the Asian 

Financial Crisis in 1997, the Malaysian economy suffered a high rate of 

unemployment, hence income and wealth inequality also worsened. Consequently, 

poverty emerged as an urban phenomenon despite being predominantly eminent in 

rural areas. Hence, there are numerous studies that local scholars have conducted that 

highlight urban poverty (Tarmizi et al., 2014; Shiraishi, 2014; Yusof, 2012; Zainal et 

al., 2012, Mok et al., 2007). 
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 According to Belhadj (2010), poverty and welfare can be defined using 

welfarist and non-welfarist approaches. The standard welfarist approach uses the 

money metric measure, which assesses the minimum consumption levels for survival, 

while the non-welfarist approach focuses on the multiple dimensions of society. 

However, the monetary aspect often lacks the provision of deprivations in other 

dimensions. Too focusing on monetary aspects results in false assumptions of the 

consumption poor people, that they are almost the same level as those who suffer 

malnutrition, are ill educated, or are disempowered. On the other hand, the 

multidimensional poverty measure considers the deprivation experiences of poor 

people (e.g. poor health, inadequate education, insufficient living standards, income 

deficiency, disempowerment, and poor quality of work) and how they interrelate. 

Hence, this approach provides an accurate representation of multiple deprivations that 

different people suffer from.  

 

 Given the dimensionality and complexity of the various dimensions involved 

in identifying the urban poor, this study proposes a relative poverty approach in 

determining the poor. Urban multidimensional poverty involves several dimensions; 

in Malaysia, this involves education, living standard, monetary, and health dimesions 

(Lazim and Osman, 2009). As per the definition of urban poor, the related issue 

touches on how to classify the poor in urban areas so that they could also receive the 

welfare benefits and not miss out. This study sees Malaysia as a unique case where the 

urban poverty classification can be drawn into three classes: i) the needy – one who 

has neither material possessions nor means of livelihood; one who suffers, and has no 

means to sustain his or her daily needs, ii) the poor – one who has insufficient means 

of livelihood to meet his or her basic needs, and iii) the non-poor. The classification 

of multidimensional urban poverty in Malaysia could play a role in the setting up of 

policies in regard to the redistribution of assets and opportunities and provision of 

income support. Income support should be used for households that are unable to earn 

a living due to physical or mental disabilities. 

 

 The multidimensional poverty measures could reveal the different range of 

poverty that the poor are experiencing. The Alkire-Foster method measures on 

multidimensional poverty based on the Foster-Greer-Thorbecke poverty measures. 

The Alkire Foster method is a way of measuring multidimensional poverty (OPHI, 
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2014). This method includes on counting the multiple types of deprivation of the 

particular household as well as the lack of education and poor health or living standards 

(Alkire and Foster, 2007). The poor are identify through these deprivation profiles, 

which is to be used in creating the multidimensional index of poverty (MPI). 

These deprivation profiles are analysed to identify the poor, and then used to construct 

a multidimensional index of poverty (MPI). The Alkire Foster approach is a flexible 

approach, which can be adapted to cater variety of deprived situations by selecting 

different dimensions (e.g. living standards), indicators of poverty (e.g. does the 

household own or rent a house), and poverty cut offs (e.g. the household that rents a 

house is considered to be in poverty).  

 

 There are vast number of studies that are focusing on welfare investigation 

particularly via an econometrics approach. Some of the methods include the partial 

equilibrium model (BuShehri and Wohlgenant, 2012), the multivariate ordinary least 

squares model (Fang, 2011), the bootstrap methodology (Jeong et al., 2003), the cost–

benefit analysis and life satisfaction approach (Welsch, 2007), and the behavioural 

micro simulation modelling method (Creedy et al., 2011). However recently, the 

application of Artificial Intelligence methods has generated waves in the economic 

welfare field, fusing both fields into unique studies. The Adaptive Network-based 

Fuzzy Inference (ANFIS) method is an artificial neural network based on the Takagi-

Sugeno fuzzy inference system. This method integrates both neural networks and 

fuzzy logic principles and thus makes the most of both techniques. The ANFIS is an 

inference system, which corresponds to a set of fuzzy if-then rules, enabling learning 

capability to approximate nonlinear functions (Abraham, 2005). ANFIS has been 

widely used in various economic areas, namely e-commerce (Chan et al., 2012), stock 

market and trading (Alizadeh et al., 2012; Tan et al., 2011; Atsalakis and Valavanis, 

2009) as well as macroeconomics (Keles et al., 2008).  

 

 The motivation and challenges of the urban poor classification are discussed in 

the following sections. Next, this chapter discussed on the current methods in poverty 

measurement. This is followed by addressing the problems in this study. 

Consequently, goals and objectives of this study are presented. This is followed by the 

scope of this study and finally an overview of the organisation of this thesis is given. 
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1.2 Challenges in Urban Poverty Classification 

 

  Since the 1970s, poverty in Malaysia has been measured using an absolute 

measure, which includes the money metric measure, and is based on the headcounts 

and basic needs approach (Atkinson, 2016). In other words, poverty is a result of an 

inadequacy of income or consumption (Dollar et al., 2014; Kraay and McKenzie, 

2014). Inadequacy of such a variable could be accounted for in explaining poverty; 

however, it is not exactly correct to measure income in terms of household. The current 

Poverty Line Income (PLI) approach used in Malaysia only focuses on measuring the 

minimum standard of living for food and non-food items. A household is considered 

poor if it falls below the poverty line, without taking into consideration overall 

household preferences. Thus, the first challenge of this study is to solve the dichotomy 

of the urban poor and non-poor classes, which has resulted in consumption bias and 

less focus on human capability and potential. Hence, a solid approach of classifying 

the urban poor needs to be developed to overcome this challenge.  

 

 The migration of low-income groups from rural to urban areas has resulted in 

the emergence of the urban poor. Low-level education, large family size, influx of 

foreign workers, and an increase in unemployment rate are among the factors that 

cause urban poverty. According to the Malaysian Economic Planning Report 2012, the 

income poverty line for urban areas is RM860. However, the cost of living tends to be 

higher in urban areas, forcing urbanites to have a higher income in order to have better 

access to basic amenities, health care, and education. Many urban households suffer 

from conditions associated with poverty even though they earn incomes that are above 

the poverty line. Hence, this triggers the second challenge in this study, which is the 

misfit urban poor classification, which has resulted in inaccurate welfare allotment by 

the government (Alkire and Seth, 2009).  

 

 In view of urban poverty classification, the third challenge is to minimise the 

predictive error rate for the proposed method in this study. Fundamentally, it is crucial 

to understand the concepts of urban poverty for the proposed method. The multiple 

predictive models are trained and combined to produce a more stable and robust model. 

Currently, there are very limited literatures that attempt on multidimensional poverty 

by using artificial intelligence, especially in by local researchers. Therefore, at the end 
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of this study, the proposed method is compared with standard classification methods 

so that future researchers may improve upon the findings of this study.  

 

 

 

1.3 Current Method of Urban Poverty Classification 

 

 According to Sen (1976), poverty measurement can be classified into two 

distinct steps: i) the identification step for defining the cut offs to distinguish the poor 

from the non-poor; and ii) the aggregation step that brings together the data of the poor 

as a summary of poverty indicators. The identification process is indeed very critical 

and thus poverty needs to be clearly defined. Each poverty definition describes the 

poor differently and results in different estimations and extents of poverty (Rasool et 

al., 2011). In order to comprehend urban poverty, the established definitions and 

concepts of poverty must first be understood. 

(a) Monetary approach: this is the most commonly used approach by economists 

to explain poverty, and is based on the income/expenditure approach (Trani 

and Cannings, 2013). Thus, the poverty line serves as the minimum level of 

income deemed necessary to achieve an adequate standard of living in a given 

country. The most fundamental approach in the monetary approach is absolute 

poverty and relative poverty. Absolute poverty is based on the rigid poor/non-

poor dichotomy, for which most of the literature on poverty measurement uses 

poverty thresholds (Jolliffe and Prydz, 2016). The concept of absolute poverty 

is that there is a minimum standard, which no one should ever fall under. This 

approach is commonly used in developing countries such as Malaysia. On the 

other hand, relative poverty is used to assess the general standard of living that 

prevails in society. This approach refers to a standard, which is defined in terms 

of the society and an individual’s life, and therefore differs between countries 

and over time.   

(b) Basic needs approach: fundamentally, basic needs approach is materialistic. 

This approach focuses on the well-being by identifying the basic consumption 

(e.g. clean water, shelter, and food) and the availability of those for the 
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population. The household is considered poor if no adequate access into these 

commodities. 

(c) Capability approach: this approach focuses on non-income items such as life 

expectancy, literacy, and infant mortality (Sen, 1985). Sen (1985) deliberates 

on the freedom to do necessary basic activities as a basic capability as to avoid 

poverty. The capability approach has been highly influential thus far (Dowding 

et al., 2012), and has led to the creation of a few major indices such as the 

Human Development Index, Gender-related Development Index, Gender 

Empowerment Measure, and Gender Inequality Index. 

(d) Multidimensional Poverty Approach: this approach describes poverty in wider 

perspectives. The poor people are defined by including on deprivation in 

education, health, housing and employment. The multiple dimensions that 

contribute into poverty cannot be exclusively defined by monetary indicator. 

The Multidimensional Poverty Index (MPI) is an index that is designed to 

measure acute poverty (Alkire and Santos, 2011). 

 

 

 

1.4 Problem Statement 

 

 The problem in classifying urban poverty is described as follows: 

 “Given a household data in an urban area, the challenge is to develop a 

multidimensional poverty measurement framework, which complements the 

money-metric measurement by considering overlapping deprivations to the 

poor. Therefore, the rigid dichotomy of the poor and non-poor, which results 

in insensitive poverty changes, needs to be overcome. A good poverty measure 

should be able to capture changes that happen to the urban poor in various sub-

groups of the population, so that precise summary statistics of economic 

welfare can be produced, and hence overcoming the misfit urban poor problem. 

Finally, enhancements to the proposed approach should be able to minimise 

the predictive urban poverty error rate and increase the accuracy of 

classification results.” 
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 Based on the above challenges, some factors need to be addressed. The first 

factor is related to the current poverty measurement approach, which is the money-

metric measure, which has led to the current use of the national poverty line. Malaysia 

uses the poverty line based on the absolute poverty measurement in order to monitor 

the country’s progress in eradicating poverty. A household is considered poor if it falls 

below the poverty line, without taking into consideration overall household 

preferences. The circumstances of households vary with respect to their needs, thus 

the implementation of the rigid poverty line is actually irrelevant. The problem occurs 

when the poverty line is held constant, and even if the statistical rate of poverty remains 

the same, the composition of the poor population can change, with some of the poor 

climbing above the poverty line as others slip below it. A good poverty line should 

take into account other poverty preferences in reference to the poor. Consequently, the 

use of the poverty line cannot be used to accurately estimate the proportion of the 

society that is in poverty. Therefore, this study proposes a multidimensional poverty 

measure that considers the multifaceted conditions that the urban poor suffer from.  

 

 The second factor is related to the misfit urban poor issue, which arises as a 

result of the increase in unemployment, influx of low-income group from rural to urban 

areas, low education levels, and large family size. Urban poverty is more serious, 

harsh, and extreme compared to rural areas due to the higher cost of living in urban 

areas, hence urbanites need to have higher incomes to gain better basic amenities, 

health care, and child education. There are many households that do not have access 

to basic amenities even though their income is above the poverty line. These 

households suffer from conditions associated with poverty. Often, these groups are 

overlooked by national organisations and excluded from poverty eradication 

programmes. Thus, this study aims to predict multidimensional urban poverty 

indicators using an intelligent system. The result of this study highlights the prominent 

indicators that cause urban poverty in Bandar Tasik Selatan, Kuala Lumpur.  

 

 The third factor is related to improving upon the predictive error of the 

proposed method in this study. A larger predictive error rate is linked to the 

misclassification of data; hence, this study attempts to overcome this problem via a 

combination of predictive models. As this study combines elements from both the 

economic and Artificial Intelligence domain, it is essential to fully manipulate the 
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variables from both domains in order to yield the best urban poverty analysis. At the 

end of this study, the aim is to produce a new urban poor predictive classification 

method, with appropriate deprivation indicators to generate accurate input-output 

results.  

 

 

 

1.5 Goal and Objectives of Study 

 

 The goal of this study is to better classify the urban poor population, produce 

a flexible national poverty line, and implement the proposed multidimensional poverty 

measures in neighbouring developing countries.  

 

 In order to reach this goal, several objectives have to be completed: 

(a) To classify the urban poor that will solve the dichotomy of poor and non-poor 

by using data-driven fuzzy rule-based system for multidimensional urban 

poverty classification. 

(b) To resolve the problem of misfit urban poor by predicting the poverty 

indicators present in an urban area by combining Alkire Foster method with 

ANFIS algorithm. 

(c) To integrate the enhancements in (a) and (b) with ensemble ANFIS in order to 

minimise predictive error rate. 

 

 

 

1.6 Scope of the Study 

 

 This study uses household data acquired from the data collection phase. The 

household welfare data is used to analyse situations, which describe the characteristics 

of the situation, hence modelling the possible range of solution. However, acquiring 

information and knowledge on poverty measures for welfare distributions is an 

ongoing process, and information and knowledge need to be fed continuously. Hence, 

the more data gathered, and the more sophisticated the analysis, the more such 

decisions can be made with little or no human intervention. Data-driven poverty 
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research is dependent on human domain experts that deal with the growth of multiple 

situations and find ways to deal with these problems and make better decisions. 

Accordingly, the human domain expert in this study is the Zakat Collection Centre 

Kuala Lumpur (PPZ MAIWP). This study also included the profile of PPZ MAIWPs’ 

officials whom validated the proposed method. 

 

 The data collection was conducted in an urban province chosen purposively to 

meet a number of conditions that are of interest for vulnerability studies such as low 

per capita income, poor infrastructure, inequality in wealth, and development 

potential. The data collection was carried out in early March 2014. The targeted area 

was a small urban region, Bandar Tasik Selatan, situated in the centre of Kuala 

Lumpur, Malaysia. Furthermore, this study is done based on the urban area of 

Peninsular Malaysia Poverty Line Index (PLI), which is RM860 as of 2014.  

 

 

 

1.7 Significance of the Study 

 

 Since the introduction of the New Economic Policy 1971-1990 (NEP), 

Malaysia has achieved outstanding progress in poverty eradication. However, many 

problems and challenges still exist in urban areas even though the incidence of urban 

poverty has shrank from 3.3 percent in 1999 to 2.5 percent in 2004. The rigid national 

poverty line has resulted in the urban poor, who earn just above the line, being 

classified as ‘near poor’. This group is vulnerable and could slide into poverty at any 

time. A household can be income poor but multidimensionally non-poor, or income 

rich but multidimensionally poor. In this study, data-driven FRBS is initially proposed 

to solve the issue of artificial dichotomy between the poor and non-poor. Data from 

human experts is extracted using fuzzy logic and represented as a set of fuzzy 

membership functions. However, the issue of misfit urban poor still exists due to the 

money-metric measure used in the experiment. Therefore, the multidimensional 

poverty measure using the Alkire-Foster approach is used to measure poverty instead 

of the national PLI. This measure has been found to be rigorous and easily flexible for 

application in any policy, making it adaptable to different contexts. Compared to the 

PLI, this approach could be employed flexibly in a variety of different dimensions, 
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indicators, deprivation cut offs, and weights. These could lead to an accurate 

distribution of welfare allotment by the Government. The urban poverty prediction is 

improved upon through combinations of predictive models. The poverty prediction 

results from the proposed model are compared with the standard classification model 

so that other researchers can improve upon this study in the near future.  

 

 In order to predict the effect of economic policies on household welfare, the 

number of deprivations of households needs to be well-understood. A review of 

previous economic welfare studies reveals that almost all of these studies have been 

based on a conventional economics approach. As this study proposes a fusion between 

the Artificial Intelligent and Alkire-Foster approaches, this study is able to predict the 

prominent poverty indicators among urban households to solve national welfare 

inequality. 
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1.7 Organisation of the Thesis 

 

 This thesis is structured into seven chapters. A brief description of each chapter 

is given below: 

 

(a) Chapter 1 defines the challenges, problems, current methods, objectives, scope, 

and significance of the urban poor classification study. 

(b) Chapter 2 reviews the related works for studied domain, which are the 

definition of poverty, poverty in Malaysia, urban poverty, poverty from 

multidimensional perspectives and poverty, econometrics, and Artificial 

Intelligence. The last section of this chapter presents the trend and directions 

related to this study. 

(c) Chapter 3 starts off with a brief review of the proposed urban poor 

classification framework, followed by detailed descriptions of hardware and 

software requirements, data sources, testing and analysis procedures, and the 

performance measurement used. 

(d) Chapter 4 highlights an initial study by proposing a data-driven fuzzy rule-

based system for multidimensional classification. 

(e) Chapter 5 briefly continues on improving upon the proposed method, by 

detailing the Alkire-Foster-based quantification method in measuring 

multidimensional poverty indicators using intelligent ANFIS. 

(f) Chapter 6 fine tunes the predictive results by proposing an ensemble adaptive 

weighting and integration-based system for predicting urban poverty. 

(g) Chapter 7 concludes this study and presents the contributions of the study as 

well as recommended future work. 
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