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ABSTRACT

Labour is a fundamental input to any construction project to achieve the highest level of 
productivity. Productivity remains as one of the most important ways to measure the overall 
performance of construction project. Construction productivity is directly related to labour and 
thus, it is mainly dependent on human effort and performance. Improvement of Construction 
Labour Productivity (CLP) can directly help to improve the performance of construction 
companies, become more competitive, besides contributes to national economy. The aim of the 
research is to develop and introduce a new framework for systematic assessment of the factors 
influencing construction labour productivity and use the collected data to create models by 
applying state-of-art techniques and comparing the accuracies in predicting the labour 
productivity in construction. The scope of the study was limited to Malaysia only. A thorough 
literature survey was conducted to list the factors related to CLP with different studies throughout 
the globe. The factors were filtered using two-stage procedures - first the factors were shortlisted 
based on the relevance of labour and then a survey was conducted among project managers to 
rank the factors based on the importance of Malaysian context using a 3-point Likert scale on 
each factor. The ranks of the factors were analysed using statistical tools. The top class factors 
were identified using Jenks Optimization Techniques. The classified CLP factors were used to 
design a field survey to collect data from construction workers. Five state-of-arts of models were 
developed to predict the CLP from the factors including three data mining models, one 
conventional model and one multi-criteria model. Salary of labour was considered as a proxy to 
the productivity to develop the models. The performance of the models were assessed using five 
categorical indices. The results of literature review revealed that a total of 112 factors related to 
productivity in construction industry have been identified throughout the globe. Ten factors were 
identified through the analysis of preliminary survey data using different methods. Among them, 
seven factors were found common for all the methods which were identified as the important CLP 
factors for Malaysian construction industry. The factors are (1) Lack of Work Experience (2) Job 
Category (3) Education/Training (4) Nationality (5) Worker Skills (6) Age and (7) Marital Status. 
The relative performance of different models was compared to identify the best model in term of 
the rate of accuracy in prediction of labour productivity. Data mining models were found to 
perform better compared to other models. The Percentage of Correct (PC) for data mining models 
were found in the range of 0.735-0.835, Probability of Detection (POD) between 0.741 and 0.911, 
Heidke Skill Score (HSS) between 0.792 and 0.802 and Peirce Skill Score (PSS) in the range of 
0.792 to 0.799, while the False Alarm Ratio (FAR) were found in the range of 0.102 to 0.279. 
The values were found better than that obtained using Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS) (PC=0.739, POD=0.740, HSS=0.794, PSS=0.725 and 
FAR=0.256) and much better than that obtained using Linear Regression (LR) (PC=0.577, 
POD=0.618, HSS=0.533, PSS=0.498 and FAR=0.533). Among the data mining models, Support 
Vector Machine (SVM) was found to provide the best results in term of all statistical metrics 
used. The POD for SVM was found above 90% in predicting different categories of productivity. 
The method discussed in this research can serve as a newly developed framework to predict the 
level of construction labour productivity for project.
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ABSTRAK

Tenaga pekerja merupakan input asas kepada projek pembinaan bagi mencapai 
produktiviti. Produktiviti merupakan cara paling penting untuk mengukur prestasi projek 
pembinaan. Produktiviti pembinaan berkait dengan sumber tenaga kerja secara langsung bagi 
menilai prestasi manusia. Penambahbaikan Produktiviti Pekerja Pembinaan (CLP) dapat 
membantu untuk menambah baik prestasi kerja syarikat pembinaan, menjadikan syarikat 
pembinaan kita lebih berdaya saing dan mampu menyumbang kepada pembangunan ekonomi 
negara. Tujuan penyelidikan ini adalah membangunkan dan memperkenalkan rangka kerja 
baharu dengan menilai faktor yang mempengaruhi produktiviti buruh pembinaan secara 
sistematik dan membuat model kajian dengan menggunakan teknik moden dan membandingkan 
ketepatan dan keberkesanan teknik dalam meramalkan produktiviti buruh pembinaan berdasarkan 
data yang dikumpul. Skop kajian ini hanya meliputi di negara Malaysia sahaja. Kajian literatur 
yang teliti telah dilakukan dengan menyenaraikan faktor yang berkaitan dengan CLP yang dikenal 
pasti daripada kajian yang berbeza di seluruh dunia. Faktor tersebut telah ditapis menggunakan 
prosedur secara dua peringkat: faktor tersebut disenarai pendek berdasarkan kaitannya dengan 
buruh terlebih dahulu. Kemudian, satu kaji selidik telah dijalankan antara orang berkalangan 
pengurus projek untuk menentukan faktor berdasarkan kepentingan mereka dalam konteks 
Malaysia menggunakan skala 3-point Likert bagi setiap faktor. Kedudukan factor tersebut 
dianalisis dengan menggunakan alat-alat statistik. Faktor berkepenthgan dikenal pasti dengan 
kaedah Teknik Jenks Optimization. Faktor CLP yang diklasifikasikan telah digunakan beg 
merancang tinjauan lapangan untuk mengumpulkan data daripada pekerja pembinaan. Lima 
model telah dibangunkan untuk meramalkan CLP daripada faktor yang diperoleh dengan 
penggunaan tiga model perlombongan data, satu model konvensional, dan satu model multi- 
kriteria. Gaji buruh dianggap sebagai proksi untuk produktiviti semasa pembamgvnan model. 
Prestasi model dinilai dengan menggunakan lima kategori indeks. Hasil daripada kajian literatur, 
sejumlah 112 faktor yang berkaitan dengan produktiviti dalam industri pembinaan telah dikenal 
pasti di seluruh dunia. Sepuluh faktor telah dikenal pasti melalui analisis daripada pelbagai 
kaedah bancian data pada peringkat awal. Tujuh daripada faktor tersebut telah dikenal pasti 
sebagai faktor CLP yang penting dalam industri pembinaan Malaysia daripada semua kaedah. 
Antara faktornya ialah (1) Kekurangan Pengalaman Pekerja (2) Kategori Pekerjaan (3) 
Pendidikan/Latihan (4) Kewarganegaraan (5) Kemahiran Pekerja (6) Umur dan (7) Status 
Perkahwinan. Prestasi relatif yang dikaji menggunakan model yang lain juga dibandingkan untuk 
mengenal pasti model yang paling berkesan untuk meramalkan produktiviti pekerja secara tepat. 
Model perlombongan data telah dikenal pasti sebagai model yang terbaik untuk mengendalikan 
analisis ini. PC untuk model perlombongan data didapati dalam lingkungan 0.735-0.835, POD di 
antara 0.741 dan 0.911, HSS di antara 0.792 dan 0.802, dan PSS dalam lingkungan 0.792 hingga
0.799, manakala FAR didapati dalam lingkungan 0.102 hingga 0.279. Hasil daripada kajian 
melalui kaedah ini didapati adalah lebih baik daripada hasil kajian yang diperoleh daripada 
penggunaan kardah TOPSIS (PC=0.739, POD=0.740, HSS=0.794, PSS=0.725 and FAR=0.256) 
dan jauh lebih baik daripada penggunaan kaedah LR (PC=0.577, POD=0.618, HSS=0.533, 
PSS=0.498 and FAR=0.533). Antara pelbagai model perlombongan data yang digunakan, kaedah 
SVM didapati memberi hasil kajian yang paling baik dari segi metrik statistik yang diguna pakai. 
POD bagi kaedah SVM didapati mampu mencapai tahap prestasi lebih daripada 90% dalam 
ramalan kategori produktiviti yang berlainan. Dengan itu, Metod yang dibahaskan dalam kajian 
ini dapat menjadi sebagai suatu rangka kerja yang baharu untuk meramalkan tahap produktiviti 
pekerja pembinaan bagi sesuatu projek pembinaan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The productivity of a major industry like construction is of significant 

importance for the economic growth of a nation (Naoum, 2016). The construction 

sector not only makes a remarkable contribution to the performance of the overall 

economy, but it also serves as a significant source of employment (Giang and Pheng, 

2011). Labour is a fundamental input to any construction project to achieve the highest 

level of output in terms of the level of productivity (Hwang and Soh, 2013, Gerek et 

al., 2015). Labour is part of, but distinct from, other resources, because it has 

specific characteristics (Kaming et al., 1998). It constitutes the largest portion of the 

project cost. Studies show that it shares about 20-50% of total project cost (Buchan et 

al., 1993; Zakeri et al., 1997; Kaming et al., 1998), and therefore the project costs can 

be reduced significantly by improving labour productivity (Kazaz and Ulubeyli, 2004; 

Kim et al., 2015). The importance of construction labour productivity (CLP) in success 

for construction project has been reported in numerous studies (Neelima, 2018; Sweis 

et al. 2009; Fayek and Tsehayae, 2012; Ma et al., 2016). CLP has been reported as one 

of the key components and an effective indicator of efficiency in construction industry. 

It has a direct impact on the competitiveness of small and medium enterprises. Labour 

will continue to be a key factor for the success of construction projects in future 

(Tsehayae and Robinson Fayek, 2014). Therefore, improvement of CLP would be a 

major issue of concern in future as it is now (Attar et al., 2012).

There are many challenges facing the construction industry, but one of the most 

significant is low levels of productivity (Jarkas and Bitar 2011). Construction 

industries in many countries across the world are greatly concerned about low level of 

productivity (Lim and Alum 1995; Egan 1998; Thomas and Sudhakumar 2013; Ayele 

and Fayek 2019). There is nothing as dangerous to an economy as a decrease in
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productivity because it creates inflationary pressure, social conflict and mutual 

suspicion (Drucker 2012; Dixit et al. 2019; Shoar and Banaitis 2019). By 

acknowledging the factors that cause low levels of construction labour productivity, 

project managers can address the problems at an early stage, thus minimise the time 

and cost overruns (Kaming et al. 1997; Kaming et al. 1998; Abdul Kadir et al. 2005; 

Palikhe et al. 2019; Seddeeq et al. 2019). CLP significantly influences the profitability 

of construction companies; however, CLP exhibits the highest variability among 

project resources and thus is a major source of project risk (Tsehayae 2015). Labour 

in projects is also the most difficult element to define, manage and quantify on their 

impact. In this sense, it still remains important to determine the factors affecting 

labour-productivity to manage labour-forces effectively (Kazaz and Acikara 2015).

CLP has been identified as one of the major factors related to project delay and 

loss of finance. Hence, slight advancement in the level of CLP on construction projects 

will enhance the contractor’s profit and serve the national economy (Abdel-Razek and 

Abdel-Hamid, 2007). The evaluation of CLP rates and identification of factors 

affecting CLP are critical in project control and improvement of productivity in 

construction. CLP is the dominating aspect in the construction industry as it 

encourages cost savings and effective utilization of resources (Alaghbari et al., 2019). 

It is a key element in determining the success and failure of any construction project 

(Golnaraghi et al., 2019). This is the main reason why CLP related research has 

benefited from a lot of attention in the industry/academia in past and recent years 

(Abraham, 2005; Moselhi et al., 2005; Muqeem et al., 2012; Gundecha, 2013; Gupta 

and Kansal, 2014; Gerek et al., 2015; Tsehayae and Fayek, 2016; Parthasarathy et al., 

2018; Hamza et al 2019).

Understanding critical factors that affect CLP can help to develop strategies to 

reduce inefficiencies and to more effectively manage construction labour forces. This 

will not only improve the project performance of construction companies, but also 

make them more competitive and consequently increase the chances of survival within 

this highly competitive sector (Wilcox et al. 2000; Ailabouni et al. 2007; Robles et al. 

2014; Langmade 2017). The factors related to CLP can be used for the development 

of CLP models for estimation and prediction of CLP from different factors (Kim et al.,
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2015; Ma et al., 2016; Tsehayae and Fayek, 2018). The CLP prediction models can be 

used in construction planning and scheduling and eventually in improvement of CLP. 

Besides, the models are often used as an effective tool in the estimation and monitoring 

of manpower and equipment resources in construction (Parthasarathy et al., 2018).

Hypothetically, the equation of productivity is the output of production per unit 

of input. At the industrial level, the equation of productivity remains the same as the 

ratio between total product output and total input resource from an economic 

perspective (Hanna et al., 2005, Ayele and Fayek, 2019). The composition of 

personnel in construction projects and its connection to various networks make CLP 

very difficult to measure and understand the concept of productivity and find the 

correct correlation (Bernstein, 2003). The construction projects even of identical type 

and nature carry an uncommon site, design methods, which makes the assessment of 

CLP very difficult to measure. Productivity models are even more problematic and 

laborious to create, especially due to its dependency on various environmental, 

physical, economic, social and behavioural factors. In addition, to date, there has been 

no line drawn on the correct interpretation and meaning of work activities nor a 

standard productivity measurement system (Park et al., 2005). Hence, identification of 

productivity factors and modelling of productivity in construction is a major challenge 

in the construction industry. A number of studies have been conducted in recent years 

where different methodologies have been used for assessment of different aspects of 

construction productions and influential factors responsible for productivity in 

different socio-economic contexts have been identified (Wilcox et al. 2000; Ailabouni 

et al. 2007; Robles et al. 2014; Langmade 2017; Afolabi et al. 2018; Ohueri et al. 2018; 

Momade 2019; Alaghbari et al. 2019; Palikhe et al. 2019). The CLP models can be 

used for forecasting activity durations and thus, project scheduling. It can help in 

efficient planning and management of construction project in order to improve overall 

productivity of project.
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1.2 Problem Statement

Application of computer in construction has increased rapidly with the increase 

of computational capacity and ability to solve construction-related challenges. 

Considering productivity as the major challenge in construction, sufficient 

advancements have also been achieved in computational modelling of construction 

productivity. Different methods in including fuzzy logic, neural network, etc. have 

been used for modelling labour productivity from various productivity-related factors. 

However, choice of appropriate modelling tools and selection of labour-related factors 

remain major challenges (Portas and AbouRizk, 1997; Tsehayae and Fayek, 2016; 

Golnaraghi et al., 2019; Shoar and Banaitis, 2019). There are many influential factors 

that determine labour productivity in the construction sector. The factors may change 

depending on market conditions, social context and geographical location of the 

construction project. Therefore, labour productivity factors should be linked to the 

surrounding environment. Screening out the factors based on their relevance and 

significance according to location and socio-economic context is often disputable. A 

systematic framework for the selection of appropriate factors relevant to labour 

productivity is therefore sought.

A large number of factors related to labour are responsible for productivity. A 

parsimonious system should be able to predict productivity from a minimum number 

of factors. Therefore, identification of most influencing factors from the whole set of 

labour factors responsible for productivity is a challenging task. The approach 

generally used are highly subjective and biased to human judgement. Therefore, 

finding factors that most suitable for the development of a good production model 

remains a challenge in construction productivity modelling. There is a need to explore 

a new method for the identification of the optimum number of factors which can avoid 

subjectivity in the selection of factors.

The major goal in any construction project is to improve productivity. A CLP 

model can help to stimulate the productivity from labour characteristics to optimize 

the work schedule and maximize the benefit. Researchers to date have used different 

forms of linear regression-based models which are not able to capture the non-linear

4



relationship between labour related factors and productivity. Non-linear models can 

be used for better simulation of construction labour productivity from labour related 

factors. However, the relationship between the labour factors with productivity is often 

highly complex which emphasizes the need for exploration of a new method for the 

improvement of the performance of CLP models.

There are many CLP models available which can be used for prediction of 

labour productivity. The performance of the CLP model depends on the distribution 

and variability of labour-related factors used for the development of CLP model. Thus, 

the performance of the CLP model varies widely for different sets of data. This 

indicates the necessity of assessment of the comparative performance of different CLP 

models to identify the best model for the reliable prediction of productivity. Besides, 

the performance evaluation of CLP models should be based on different characteristics 

such as reliability and precision in prediction for a perfect measure of model 

performance for predicting productivity. This emphasizes the need for comparative 

evaluation of different state-of-art CLP model using robust performance evaluation 

metrics for the selection of the best model to be proposed for use in the construction 

industry.

1.3 Aim & Research Objectives

The aim of the research is to introduce a new framework for systematic 

assessment of the factors influencing construction labour productivity and use the 

collected data to create models by applying state-of-art techniques and compare their 

accuracies in predicting labour productivity in construction. The research objectives 

are stated as follows:

(a) To develop a systematic framework for the selection of construction labour

productivity factors by linking market conditions, social context and

geographical location

5



(b) To apply robust statistical approaches for prioritization of construction labour

productivity factors according to their importance

(c) To construct data-driven models for prediction of labour productivity in 

construction projects

(d) To review the performance of productivity models and identify the best

approach for labour productivity modelling to be used in the construction 

industry for management

1.4 Scope of the Study

Initial identification of the factors which influence labour productivity was 

conducted through a critical analysis of literature. Data was collected through an 

opinion survey using a Likert Scale. The survey questionnaire was designed to 

calculate the effectiveness of the factors which have been identified on the topic of 

labour productivity for the construction industry. The questionnaire was designed in 

both spoken languages: English and Bahasa Malay. The survey was conducted among 

people working in construction project management and construction workers. The 

opinion data of project managers was collected to understand their perception of labour 

productivity. On the other hand, data was also collected through interview of 

construction site workers including both foreign and local to capture their views. 

Foreign labour from Indonesia & Bangladesh (constitute the majority of foreign 

construction workers in Malaysian construction projects) and local Malaysian workers 

involved in residential and factory projects were interviewed.

There are many methods used for modelling of CLP using influencing labour 

related factors. Most of the researchers in the past have used one or two models at most 

for CLP prediction. In the present study, five state-of-arts of models were developed 

to predict the CLP from the factors including three data mining models namely, 

Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine 

(SVM), one conventional model known as generalized Linear Regression (LR), and 

one multi-criteria model called the Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS).
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1.5 Significance of the Study

Labour is the major driving force in any construction project. It also shares the 

major cost of a construction project. The CLP prediction model developed in this study 

can be used for the scheduling and management of a construction project to improve 

the overall productivity of the construction project.

Understanding critical factors that affect labour productivity can help to 

develop strategies to reduce inefficiencies and to manage construction labour force 

more effectively. The outcome can help practitioners to develop a wider and deeper 

perspective of the factors influencing the productivity of operatives and to provide 

guidance to construction project managers for the efficient utilization of the labour 

force.

By understanding the influential CLP factors in the region, the factors 

identified can be used for the selection of labour to improve the productivity of the 

projects in Malaysia and in other geographical regions.

The methodology proposed in this study can serve as a framework for future 

studies in other geographical regions for more accurate identification of CLP factors. 

The methodology adopted can also serve to compare the results of the past studies in 

other countries by researchers.

Machine learning tools can make a great contribution in solving complex 

problems in civil engineering. In the last decade, the application of artificial 

intelligence and predictive models serve as a practical, feasible and quick tool in 

solving engineering problems. By applying machine learning tools in modelling and 

prediction, it can assist to reduce the time, manpower, and materials, resulting in a 

lower cost for the work done.

This study can be used, not only by academics, who are interested in the effect 

of the subject matter on the application of machine learning tools in construction but 

also by both local and international industry practitioners, who may be further keen to 

further understand and explore the applications of AI tools in the field. The study can
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help researchers and practitioners develop machine learning tools which can improve 

the performance and accuracy in prediction and modelling in different aspects.
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