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ABSTRACT

MapReduce based clusters is an emerging paradigm for big data analytics to 

scale up and speed up the big data classification, investigation, and processing o f the 
huge volumes, massive and complex data sets. One of the fundamental issues of 

processing the data in MapReduce clusters is to deal with resource heterogeneity, 
especially when there is data inter-dependency among the tasks. Secondly, 

MapReduce runs a job in many phases; the intermediate data traffic and its migration 

time become a major bottleneck for the computation o f jobs which produces a huge 
intermediate data in the shuffle phase. Further, encountering factors to monitor the 

critical issue of straggling is necessary because it produces unnecessary delays and 
poses a serious constraint on the overall performance of the system. Thus, this 

research aims to provide a low latency fast data computation scheme which 
introduces three algorithms to handle interdependent task computation among 

heterogeneous resources, reducing intermediate data traffic with its migration time 
and monitoring and modelling job straggling factors. This research has developed a 

Low Latency and Computational Cost based Tasks Scheduling (LLCC-TS) algorithm 

of interdependent tasks on heterogeneous resources by encountering priority to 
provide cost-effective resource utilization and reduced makespan. Furthermore, an 

Aggregation and Partition based Accelerated Intermediate Data Migration (AP- 
AIDM) algorithm has been presented to reduce the intermediate data traffic and data 

migration time in the shuffle phase by using aggregators and custom partitioner. 
Moreover, MapReduce Total Execution Time Prediction (MTETP) scheme for 

MapReduce job computation with inclusion of the factors which affect the job 
computation time has been produced using machine learning technique (linear 

regression) in order to monitor the job straggling and minimize the latency. LLCC- 
TS algorithm has 66.13%, 22.23%, 43.53%, and 44.74% performance improvement 

rate over FIFO, improved max-min, SJF and MOS algorithms respectively for 
makespan time of scheduling o f interdependent tasks. The AP-AIDM algorithm 

scored 66.62% and 48.4% performance improvements in reducing the data migration 
time over hash basic and conventional aggregation algorithms, respectively. 

Moreover, an MTETP technique shows the performance improvement in predicting 

the total job execution time with 20.42% accuracy than the improved HP technique. 
Thus, the combination o f the three algorithms mentioned above provides a low 

latency fast data computation scheme for MapReduce based clusters.
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ABSTRAK

Kluster berasaskan MapReduce adalah paradigma yang muncul untuk 
menganalisis data besar bagi meningkatkan dan mempercepatkan klasifikasi, 
penyiasatan dan pemprosesan data besar dalam jumlah yang banyak, besar dan
kompleks. Salah satu daripada isu asas dalam pemprosesan data besar dalam kluster 
MapReduce adalah menangani kepelbagaian sumber, terutama ketika ada 
kebergantungan data antara tugasan. Kedua, MapReduce menjalankan tugas dalam 
banyak fasa; trafik data perantaraan dan masa penghijrahannya menjadi hambatan 
utama untuk pengiraan kerja yang menghasilkan data perantaraan yang banyak 
dalam fasa perombakan. Seterusnya menghadapi faktor-faktor untuk memantau isu 
kritikal pertelingkahan adalah perlu kerana ia menimbulkan kelewatan yang tidak 
perlu dan menimbulkan kekangan yang serius terhadap prestasi keseluruhan sistem. 
Oleh itu, kajian ini bertujuan untuk menyediakan skema pengiraan data besar kurang 
tangguhan yang memperkenalkan tiga algoritma untuk menangani perhitungan tugas 
yang saling bergantung antara sumber-sumber yang pelbagai, mengurangkan trafik 
data perantaraan dengan masa penghijrahan dan pemantauan dan permodelan faktor- 
faktor pertelingkahan kerja. Kajian ini telah membangunkan algoritma Penjadualan 
Tugasan Berasaskan Kurang Tangguhan dan Kos Komputasi (LLCC-TS) bagi 
tugasan saling bergantung pada sumber yang pelbagai dengan memberi keutamaan 
untuk menyediakan penggunaan sumber yang menjimatkan kos dan pengurangan 
masa. Seterusnya, Algoritma Migrasi Data Perantaraan Dipercepat yang Berasaskan 
Pengumpulan dan Pemisahan telah dibentangkan untuk mengurangkan trafik data 
perantaraan dan masa pemindahan data dalam fasa rombakan dengan menggunakan 
pengumpul dan pemisah tersuai. Selain itu, Skema Penjumlahan Masa Ramalan 
MapReduce (MTETP) untuk pengiraan kerja MapReduce telah dihasilkan dengan 
menggunakan teknik pembelajaran mesin (regresi linear) dengan menghadapi faktor- 
faktor yang mempunyai kesan pada masa pengiraan kerja untuk memantau 
pertelingkahan kerja dan meminimumkan kelewatan. Algoritma LLCC-TS 
mempunyai kadar peningkatan prestasi 66.13%, 22.23%, 43.53% dan 44.74% 
berbanding FIFO, penambahbaikan max-min, SJF dan Algoritma MOS yang 
ditingkatkan masing-masing untuk jangka masa penjadualan tugasan saling- 
bergantungan. Algoritma AP-AIDM mencatat peningkatan prestasi 66.62% dan 
48.4% dalam mengurangkan masa pemindahan data berbanding algoritma 
pengumpulan konvensional masing-masing. Selain itu, teknik MTETP menunjukkan 
peningkatan prestasi dalam meramalkan jumlah masa pelaksanaan kerja dengan 
ketepatan 20.42% daripada teknik HP yang ditambah baik. Oleh itu, kombinasi tiga 
algoritma tersebut memberikan skema pengiraan data besar kurang tangguhan untuk 
kelompok data besar berasaskan MapReduce.
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CH APTER 1

INTRODUCTION

1.1 Overview

The present era has witnessed a dramatic advancement in scientific frontiers. 

MapReduce based clusters is an emerging paradigm for big data analytics to scale up 

and speed up the big data classification, investigation, and processing o f the huge 

volumes, massive and complex data sets. A plethora o f developments have occurred 

in digital technologies such as social media and networks, financial transactions,

sensor data, business and financial dealings, and person to person communications 

through digital platforms. These developments resulted in the generation o f massive 

amounts o f data and production of such data in several formats like text messages, 

videos, sound, pictures, social content, XML, and so forth. Such data are growing 

enormously, leading to difficulties in storing, processing, and analysing them by 

using traditional databases and conventional tools and techniques. The pace of the

evolution o f currently integrated applications has posed a great challenge to the 

researchers to think critically and provide efficient design methodologies to handle 

such data. Big Data analytics is an emerging technology to extract useful information 

from substantial volumes and a variety o f raw data (Thomas and Leiponen, 2016;

Fernandez et al., 2019). Fast data is the application o f big data analytics to smaller 

data sets and it gathers and mine structured and unstructured data so that required 

action can be taken to get the desired result (Miloslavskaya, 2016).

The International Data Corporation Gens and Predictions claimed that there 

might be forty folds data growth from the year 2012 to 2020 and expected that it 

would double for every two years interval as depicted in Figure 1.1 (Gens et al.,

2017). This challenge urged the need for processing, storing, and investigating the
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large bulk o f data in almost all fields with the help o f smart and efficient platforms 

and techniques. Furthermore, reducing time to analyze the growing amount o f data, 

with less cost of the computational resources, is the biggest challenge faced by both

researchers and industrialists (Salih et al., 2019). The volume of data production is 

tremendous, and a significant part o f the delivered data is not utilized because o f the 

limited resources to store and process them. It is almost impossible to store all the 

data created due to the high cost. The processing issue is beginning to see an 

attainable horizon, yet at the same time has space to evolve. Thus the vital issue isn't 

to store all of the data produced but to extract meaningful information and process 

them efficiently with the given resources. The volume of data created is massive, and 

considerable amounts o f the generated data have not been utilized due to the lack of 

resources to store and process them (Ahmad et al., 2019). The need to store, 

investigate, and process the complex and huge sets o f information-rich data is 

common to all fields o f studies in the present age. For the huge amount o f data, 

effective and efficient schemes and methodologies need to be developed to analyze 

and extract valuable information hidden within the data.

Several frameworks have been proposed for processing huge volumes o f data. 

Some of the widely used frameworks are MapReduce (Goudarzi, 2017), Dryad 

(Microsoft, 2004; Isard et al., 2007), Spark (Karau and Warren, 2017; Garcia-Gil et 

al., 2017), Dremel (Melnik et al., 2010) and Pregel (Agneeswaran, 2014; Zhao et al., 

2016; Whang, 2018). The most well-known framework is MapReduce. MapReduce 

is emerging as an efficient big data processing platform (Kang et al., 2015; Hashem 

et al., 2018a). It has initially introduced by Google and it was designed for 

processing huge amounts o f data by exploiting the parallelism among a cluster of 

machines. MapReduce provides an extendable and efficient data processing 

technique that significantly improves the performance of the massive data-driven 

applications (Koutroumpis et al., 2017).
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Figure 1.1 Data volume growth versus years (Gens et al., 2017)

1.2 Problem  Background

During the last few years, MapReduce has gained attention for data-intensive 

applications in a variety of fields (Amirian et al., 2017; Espinosa et al., 2019). 

Researchers from different fields utilized MapReduce to manage their large amounts 

o f the data and their complexity (Hashem et al., 2016). The massive amounts o f data 

stored in a distributed fashion require processing in parallel (Chen and Zhang, 2014), 

such that new knowledge and innovation can be mined within an acceptable time

span. Extracting meaningful and valuable information from huge datasets is 

important for providing attractive new services and improving the quality o f the 

existing ones (Kambatla et al., 2014). Data processing has been successfully adopted 

in a number o f applications (Kobusinska et al, 2018) such as data mining, data 

analytics, scientific computation, and search engine. However, processing of massive 

amounts o f data has been challenged by these applications because of the complexity 

o f the data that should be processed and the scalability of the underlying algorithms 

that support such processes (Talia et al., 2019). MapReduce is possibly the most 

popular framework for processing the existing large-scale data primarily because of
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its important features that include scalability, fault tolerance, parallel processing and 

flexibility (Bonner et al., 2017). Nowadays, MapReduce is used for expressing 

distributed computations on massive amounts of data. It is mainly based on the 

parallel processing o f the computing infrastructure that exploits parallelism among 

computing infrastructure to handle many major issues introduced by the increasing 

use o f vast amounts of data (Alabdullah et al., 2018). The default implementation of 

MapReduce is Hadoop (Apache, 2008a).

The overall process workflow o f the MapReduce is shown in Figure and 

explained as follows:

i. Map Phase: It is the first phase o f the MapReduce, where the input data is

collected and divided into sub-tasks to process it in parallel. The scheduling 

o f the tasks over the compute mapper units are performed in the Map phase.

ii. Shuffle Phase: It is the intermediate phase o f MapReduce. This phase 

transfers the output data o f the mappers to the reduce units for its further

processing.

iii. Reduce Phase: In this phase of the MapReduce, all the intermediate data is 

gathered and data reduction for the final outcome is performed, according to 

the requirements o f the application or the program running over it. This phase 

also extracts the desired results (Deshai et al., 2019).

For the past few years, big data corporations such as IBM, Google, Amazon, 

and Microsoft have set foot in cloud computing, and have provided some data 

processing solutions based on cloud computing services (IBM, 2018). MapReduce in 

conjunction with cloud computing is emerging as a promising solution to process 

large amounts of data sets (Geczy, 2014; Kobusinska et al., 2018). MapReduce 

services in cloud, allows enterprises to process their data without dealing with the 

complexity o f building and managing large installations o f MapReduce platforms. 

Using virtual machines (VMs) and storage hosted in the cloud, enterprises can 

simply create virtual MapReduce clusters to process their data. A general view of the 

scenario, when different tasks have been submitted for execution on the given

resources is shown in Figure 1.2.
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Figure 1.2 MapReduce workflow (Deshai et al., 2019)

The group o f machines having similarity for some specification constitutes a 

cluster. It can be seen from Figure 1.3 that the resources could be homogeneous or 

heterogeneous sets of machines. The submitted tasks for the execution could be 

independent or inter-dependent in nature. When different tasks are submitted for 

computation, then the next step is to assign these tasks to available resources for their 

computation. It is challenging to proficiently allocate a variety o f assets to tasks of 

diverse nature QoS assurance, minimal makespan and effective resource utilization. 

Consideration and restriction o f input data copies transfer between different phases 

o f the MapReduce are important in the MapReduce framework (Afrati et al., 2015) 

and thus it can help optimize the communication cost between map and reduce 

phases. There is a need to establish an efficient mapping scheme that can minimize 

the communication cost without affecting the performance o f a specified task.
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Figure 1.3 Resource distribution for tasks

In MapReduce, intensive disk input/output during the shuffling phase 

increases the overall execution time, which in turn degrades the performance of 

overall systems. Reducing the execution time has become challenging. Many 

solutions have been proposed to address this problem, but no solution has solved this 

problem completely in an efficient manner. Research in this area can increase the 

performance of MapReduce by reducing the shuffle phase time. Moreover, in a 

distributed framework the impact of a stragglers on the speed of a parallelized 

processing can be quite significant. Specifically, it decreases resource utilization and 

increases job completion time. While performing configuration, an inappropriate 

approach can cause inefficient execution of jobs, which leads to performance 

degradation (Shi et al., 2016). Creating such algorithms that receive input from the 

user, understanding the characteristics of underlying hardware. The following 

sections discussed the issues of fast data computations in MapReduce based clusters 

in detail.
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1.2.1 M apReduce W orkflow Scheduling Algorithms for D ata Com putations

MapReduce has been designed to accommodate large-scale data-intensive 

workloads running on large single-site homogeneous nodes. For MapReduce, the 

problem arises when computations have to be commenced across a different set of 

resources (Pandey and Saini, 2018). Some of the researchers provided certain 

solutions to extend the horizons of MapReduce for heterogeneous environments i.e., 

when there are different computing mappers used in terms of its capability to handle 

the task, but their schemes provide large computational overheads and in-efficient 

resource utilization. The main cause o f in-efficient resource utilization is that tasks 

are allocated to the resources in a way that some resources (processing units) are 

overloaded and some are under-utilized (Gaur et al., 2018). In addition to it, their 

priority criteria worked well either for small jobs or for long types o f jobs. The vast 

piles of data are a consequence of the data from diverse sources. Moreover, it is 

imperative to proficiently compute diverse nature o f tasks for a variety of compute 

nodes and to satisfy the customer’s requirements at an acceptable time and 

computational cost without penalizing some resources with computational overheads.

Scheduling is one of the processing techniques which deals with the ordering 

and assignment o f tasks to the available resources for execution. In the map phase, 

the scheduling o f the tasks has been commenced. For instance, if  some users submit 

their tasks for processing to a cloud data centre, which has some resources to execute 

the submitted tasks. A general view of the scenario would be like as shown in Figure 

1.4. As can be seen from Figure 1.4, when different users submit their requests to a 

data centre to accomplish a job. Each user request is considered to be a task in the 

scenario and by the help o f scheduler, will be assigned to a resource (processing 

machine) available in the data centre. If  all tasks have been submitted at same time 

for the processing to a single data centre. Then, there is a need for a suitable 

scheduler to process all submitted requests in an appropriate manner with the 

objective of providing the services in a minimum time period.
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If the submitted tasks have some inter-dependency then it is needed to handle 

these tasks in a proper way. Inappropriate handling of inter-dependent tasks during 

scheduling will not yield significant results which will eventually lead to the overall 

system’s poor utilization. There is a need of finding an optimal assignment of a 

variety of tasks to the diverse set of resources (mappers) and it becomes more

challenging when there is some inter-dependency among the tasks.

Figure 1.4 General view of the scenario of task submission

Many researchers put forward different scheduling algorithms like first in 

first out (FIFO). In this scheduler, all tasks are given to a solitary queue, and the task 

from the head of the queue is scheduled to the first available resource. FIFO the 

default scheduler of Hadoop MapReduce was having the similar bases of the First 

Come First Serve (FCFS) scheduler. The upside of the FIFO scheduler is that the 

algorithm is very simple and clear. However, it mostly brings starvation when the 

shorter tasks come after the long jobs/task. Thus, a short task may need to wait for a 

long time until the resource gets free. Another point is that some tasks give different 

execution times on different resources thus the scheduling of the first task on a 

second or other available machine may provide better results with minimum
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makespan (Apache, 2008b). Many simulators like CloudSim (Calheiros et al., 2010), 

Hadoop and iFogSim (Gupta et al., 2017) used it as a default scheduler.

A scheduling algorithm named as Chess was proposed by Zacheilas and 

Kalogeraki (2016) which focuses more to increase the throughput by minimizing the 

overall cost. Their algorithm worked well for up to the certain addition o f the jobs to 

the pool. However, their algorithm does not appear to produce the same quality of 

results among the high number o f jobs like with the rapid increase in the number of 

jobs the search space o f Chess grows exponentially. Thus, the cluster leads to the 

higher execution time. Further, Balagoni and Rao (2017) presented a multi-objective 

scheduling algorithm for heterogeneous environments. Their schemes mainly 

encountered the two factors i.e. load locality and fairness. Generally, to handle these 

two factors at one time is a tangible task. Their mechanism distributes the tasks by 

balancing the load ratio among the whole cloud environment. Unfortunately, their 

algorithms also among all others ignores the inter-task dependency issue.

The dependency factor was addressed by Tan et al. (2014) and their solution 

has provided an optimization scheme to handle the dependencies between map and 

reduce tasks and introduced the MapReduce enabled workflow scheduler. Their 

solution lacks effective resource utilization due to waiting for a long time for the

dependent (map) tasks completion time. In addition, this scheduling algorithm fails 

to work if  there is some inter-dependency among the input data side. A multi-target 

scheduling scheme of MapReduce jobs (MOS) was presented by Hashem et al. 

(2018b). Their scheduling algorithm focused more on the earliest finishing o f the

individual task and has not assigned priority to tasks. Thus, in this way, it results in 

higher schedule length (makespan) for the execution o f all the map tasks. The 

scheduling algorithm lacks in the effective utilization o f the heterogeneous resources 

because o f ignorance o f balancing the whole workload dispersal among the

computing nodes.

In light of the aforementioned related works, it is revealed when map tasks 

computations have to be commenced on a heterogeneous set of resources, the
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computational overhead increases with higher value of makespan. As can be deduced 

from the previously discussed related work, many o f the existing scheduling 

algorithms which are designed for MapReduce sometimes result in in-efficient 

resource utilization and incurring high makespan and computational cost. In 

addition, the existing MapReduce scheduling algorithms have no consideration for 

task interdependencies on the input side (Carrillo, 2017), though the big data tasks 

are mostly diverse in nature and have dependencies among them. However, there are 

some studies which have considered dependencies between Map and Reduce tasks 

(Jlassi, 2015; Tan et al., 2014). Thus, there is a need to provide a solution for the 

problem of the allocation o f the variety o f data centre assets to diverse nature o f tasks 

proficiently with minimal makespan, computational cost and effective resource 

utilization.

1.2.2 D ata Traffic O verhead of M apReduce Interm ediate Phase H andling 

Algorithms

MapReduce as indicated by the name has two main phases that is. Map and 

Reduce. However, between the map and reduce phase, there exists another 

intermediate phase named as shuffle. In the shuffle phase, the output o f mappers is 

migrated from the mappers to reducers. For the long type o f jobs i.e. having a very 

large size o f data sets, the intermediate data traffic produced in the shuffle phase is 

enormous as shown in Figure .
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Figure 1.5 MapReduce intermediate traffic problem insight

Further, if  all the intermediate data will be forwarded to the reducers directly, 

there will be huge traffic congestion and it deteriorates the overall MapReduce 

performance severely. Inappropriate migration scheme for large intermediate data 

transfer, results in extra migration time. Though several attempts have been made by 

researchers for the improvement o f MapReduce performance, much attention has not 

been paid to the intermediate data traffic produced in the shuffle phase. 

Conventionally, distribution o f metadata to the reducers was done by the hash 

function which does not encounter the data size associated with keys and results in 

high network traffic in the shuffle phase. Encountering and introducing the factors

which can improve the shuffle’s phase execution time is necessary.
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To solve the traffic congestion issue, Ibrahim et al. (2010) have built up a 

reasonableness mindful key segment approach that monitors the circulation o f the

middle o f the keys' frequencies. This algorithm has used a fairness-aware key 

partition approach that keeps track of the distribution o f intermediate keys’ 

frequencies. Thus, it results in excessive burden o f key distribution records. Then, 

some researchers put forward the solutions which used the aggregators for reducing 

traffic. A specific kind of administration supplier that concentrates on the collection, 

and redistribution o f data by reducing the similar entities are known as data 

aggregators. Authors Costa et al. (2012) used aggregation for the reduction of 

intermediate data but the scheme limits the use o f servers by putting the condition of 

directly connected servers i.e. it was applicable to only those topologies in which 

servers have direct linkage with the other servers.

Moreover, Yan et al. (2013) have presented a sketch oriented information 

structure for catching MapReduce key size measurements and produced the groups 

for the allotment to reduce tasks. The compelling burden adjusting way to deal with 

information skew was put forward by Hsueh et al. (2014). But the both solution 

proposals were limited to single map task, disregarding the information accumulation 

openings from various mappers. A shuffle-aware scheduling algorithm has been 

presented by Ahmad et al. (2014) that lessens the measure o f intermediate data to be 

rearranged by some shapes and dimensions to converge to reduce assignments. His 

work produces certain delays by elongating the traffic in different shapes for the 

heavy loadedjobs.

To tackle this problem Ke et al. (2015) incurred an aggregator placement 

scheme to reduce network traffic. This scheme has aggregated the mappers output by 

placing an aggregator for each mapper. Though the approach gave the better results 

for reducing the intermediate data traffic but at the cost o f placement of multiple 

aggregators and therefore incurs high aggregation cost. In addition, it cascaded the 

aggregators thus can incur failure o f one to many aggregator problem. Further,

Lavanya (2016) proposed a solution for reducing the data traffic at the latter part of 

MapReduce with an Aggregator and Check function. However, the implementation 

o f this scheme failed to work for complicated jobs with multiple requirements as it
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needs the reducer’s work by means o f check function at the shuffle stage for its 

working. Wu (2018) proposed an incremental data allocation approach to reduce 

partition skew among reducers on MapReduce. This scheme worked for handling the 

load balancing among mappers and then reducer but due to creation a large number 

o f micro-partitioning in the mapping phase and then passing o f such splitted results 

for further steps in multiple rounds it increases the latency o f job computations in 

MapReduce.

Based on the previous discussion, it can be concluded that all types o f jobs 

computations in MapReduce based computing clusters follow the workflow as 

shown in Figure 1.2. In the Shuffle phase, when map phase output has to be 

transferred to Reduce Phase, the intermediate data migration o f huge jobs, i.e. having 

very large size o f data sets, generate high network overhead. Thus, the intermediate 

data migration of large meta data in the intermediate phase of MapReduce by an 

inappropriate migration algorithm results in extra migration time. Thus, for huge jobs 

the intermediate data traffic produced is enormous and its migration becomes a major 

bottleneck and decreases the performance o f big data computations in MapReduce 

based computing clusters rigorously. However, to resolve this congestion and data

migration time issue some aggregation schemes were proposed by researchers but 

their aggregation solutions produce high aggregation cost and lacked to balance 

aggregated intermediate data load among reducers. Moreover, sending data over the 

network without considering the contentious link results in high transmission cost. 

Accordingly, to transfer the intermediate data load with consideration of aggregation 

cost and contentious link, in a balanced way to reducers is necessary.

1.2.3 M apReduce Job Straggling H andling Techniques

Achievability o f the results at the required time is desirable and important as 

well. It has been noticed that the performance o f a big data computing cluster in 

terms of total job completion time often reduces by the delay in completion o f one or 

a number of tasks. These tasks are called stragglers. There could be several reasons
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for the tasks to be like a straggler. Firstly, the task could be allocated to an

inappropriate computational node or it may be the hardware failure on which the task 

is running or it could be a factor which needs to be carefully tuned before the 

execution begins.

Some researches put forward some cloning based speculation execution 

solutions to handle the straggling problem by the detection o f slow running tasks. 

Initially, Google MapReduce i.e. default implementation as Hadoop gave the 

solution which deploys the duplicates o f the tasks near to the job completion 

(Apache, 2008a). That was pretty simple and easiest to implement but having the 

drawback that it produces un-required copies. Next, the Longest Approximate Time 

to End (LATE) scheme was proposed by Zaharia et al. (2008) which measures the 

progress rate for the tasks. It works on the idea of measuring the completion time of 

the slowest task. Major flaw of this algorithm was that it worked for the slow tasks 

and was unable to break the different phases o f MapReduce during its progression. 

Another limitation of LATE was to impose restrictions on the backups.

Self-Adaptive scheduling scheme was proposed by Tang et al. (2015). It 

distinguishes the slower and faster tasks merely and does not provide any effective 

solution to handle the stragglers. Further, a Failure-Aware, Retrospective and 

Multiplicative Speculation (FARMS) is proposed by Fu et al. (2017). FARMS 

measure the responsiveness of each node. In case o f detection of the unresponsive 

node, it copies the whole set of tasks running on that node to the other node. The 

major defect of the FARMS is that it replicates the whole tasks while the cause o f the 

un-responsiveness might be one or more tasks not the whole number of tasks running 

on the given node. Thus, in this way it produces more replication overhead with the 

wastage of resources. Recently, Xu and Lau (2017) presented an optimization for 

speculative execution scheme to mitigate stragglers but their proposed scheme posed 

a limit on the size o f the data and a ratio o f stragglers just cut down under the 

threshold which may affect the system performance abnormally.

Herodotus proposed Starfish (Herodotou et al., 2011) which collects the past 

executed jobs profile information at a fine granularity for job estimation and
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automatic optimization. On the top o f the Starfish, Herodotou proposed Elasticiser 

(Herodotou et al., 2011) which provides Hadoop cluster resources in terms o f VMs. 

However, collecting detailed job profile information with a large set o f metrics 

generates an extra overhead, especially for CPU-intensive applications. As a result, 

Starfish overestimated the execution time o f a Hadoop job.

Few researchers attempted to do predictive based speculation like Verma et 

al. (2011) and Chen et al. (2014) both tried to model the Hadoop MapReduce 

performance. The model name provided by Chen et al. (2014) was CRESP. Though, 

their schemes are using too many assumptions and they ignore the impact o f the 

many factors which were encountered by the later studies. The HP model is restricted 

to a constant number of reduce tasks, whereas CRESP only considers the number of 

reduce tasks to be equal to the number o f reduce slots. It is unrealistic to configure 

the parametric value as constant always rather it varies depending on the type of

application (e.g. CPU intensive, or disk I/O intensive) and user requirements. The 

improved HP model/scheme presented by Khan et al. (2016) appears to be with a 

better prediction in contrast to others as it provided the modelling o f one o f crucial 

factors i.e., the varied number o f reducers but it still ignores many factors which have 

significant impact on job estimation time. IoTDeM, an IoT Big Data-oriented model 

is proposed by Lu et al. (2018) for predicting MapReduce performances using

machine learning techniques and Ceph which is a unified distributed storage system. 

The authors claimed by themselves in their paper that most o f the research was done 

on HDFS (which is basically a core component o f Hadoop MapReduce), thus they 

tried to model with different distributed storage system. The drawback of this 

approach is that it lost the generality and tied itself to specific application and

architecture.

In the light o f the previous discussion, it has been observed that for large 

scale data analysis as part o f their core services for tasks such as log analysis, feature 

extraction or data filtering; Map-Reduce, through its Hadoop implementation, has 

proven to be an efficient framework. One important challenge when performing such 

analysis is to predict the performance o f individual jobs. In addition, the big data 

computations faced latency issues and job completion got delayed due to straggling
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factors. In order to deal with the stragglers, existing studies extensively use two types 

o f speculative execution solutions for handling the stragglers, i.e., cloning based and 

prediction based straggler handling techniques. For cloning one, Researchers have 

proposed some strategies of backing up the slower tasks and speculating the 

performance o f the individual computational nodes. On the other hand, some tried to 

model the different phase’s times to monitor the tasks execution time through 

prediction phenomenon for handling the stragglers in advance. To enhance the 

performance of MapReduce, monitoring and handling the factors which could 

produce straggling is necessary. Thus, accordingly a scheme is required which 

tackles the contributing factors which could become the straggling cause, at the early 

stage o f job computation.

1.3 Problem  Statement

MapReduce based clusters is one o f the emerging paradigms which enables 

the processing o f massive volumes of data in parallel with many low-end computing 

nodes. This thesis addresses the neglected aspects o f MapReduce by the existing 

studies which can significantly improve the data computations in MapReduce based 

clusters. Many scheduling algorithms were proposed, to improve the performance of 

big data computation in MapReduce based clusters but these algorithms resulted in 

longer makespan (scheduling length) and high processing latency leading to 

inefficient resource utilization and high computational and resource cost. Moreover, 

these algorithms do not consider the interdependency o f tasks. In addition, some 

researchers attempted to reduce the network overhead created in the middle phase of 

MapReduce, nevertheless, their solutions generate high data migration time and very 

high aggregation and transfer cost. Moreover, to reduce the unnecessary processing 

delays in the MapReduce based clusters, the straggling issue was addressed by many 

researchers but their schemes does not encounter the straggling created due to 

inappropriate handling of some contributing factors which could become straggling 

cause at later stage. Thus, this research addresses aforementioned issues and provides 

a low latency fast data computation scheme which introduces a combination of
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algorithms and technique, to handle inter-dependent task computation among 

heterogeneous resources, reducing intermediate data traffic with its migration time 

and monitoring and modelling job straggling factors.

1.4 Research Questions

Based on the discussion provided in Section 1.2. The research questions can 

be formulated as follows:

i. How to schedule inter-dependent tasks to the diverse set o f resources with

reduced makespan?

a) How to handle the task inter-dependency while scheduling the jobs of

MapReduce in a heterogeneous resources environment?

b) How to minimize the latency issues for the task scheduling in map phase?

ii. How to reduce the data migration time and network overhead created for 

migration o f large size intermediate data for the intermediate phase of 

MapReduce?

iii. How to minimize the big data processing latency in MapReduce due to job

straggling?

1.5 Research Aim

This research aims at reducing the latency o f data computations in

MapReduce based clusters by providing the Low Latency Fast Data Computation 

(LLFDC) scheme which comprises the scheduling o f the inter-dependent tasks in 

resource heterogeneous environment, reducing the network traffic by shuffle phase 

partitioning and predicting the completion time for MapReduce job computation to 

reduce latency and monitor job straggling.
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1.6 Research Objectives

The following research objectives have been achieved throughout this 

research work:

i. To develop a workflow scheduling algorithm for inter-dependent MapReduce 

tasks for the heterogeneous environment with reduced makespan for the map 

phase and computational cost.

ii. To improve an intermediate data partitioning algorithm to reduce the data

traffic and data migration time in MapReduce intermediate phase.

iii. To improve a time prediction technique for MapReduce job computation to 

monitor the job straggling and minimize the latency.

1.7 Research Contribution

The contributions o f this research are summarized as follow:

i. Low Latency and Computational Cost based Tasks Scheduling (LLCC-TS) 

algorithm for the effective utilization of heterogeneous resources with 

minimizing cost and makespan along with the handling o f the task 

interdependencies and improving the processing workflow of MapReduce 

based clusters.

ii. An Aggregation and Partition Based Accelerated Intermediate Data 

Migration (AP-AIDM) algorithm for the reduction o f data traffic and data 

migration time in the MapReduce intermediate phase.

iii. MapReduce Total Execution Time Prediction (MTETP) technique for 

reducing the data processing latency in MapReduce due to job straggling 

factors.
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1.8 Research Scope

The scope o f the research covers the following.

i. The scheduling considered for the static set of data jobs with having the inter­

dependency among its sub-tasks.

ii. The analysis o f the interdependency is out o f the scope of this research. The

interdependent job cases put assumption on some sub-tasks that will must 

come after certain tasks followed the base restrictions from the latest

literature for the dependent case o f jobs.

iii. The nodes failure-related issues for the straggling is out of the research scope.

1.9 Significance of the Study

This research provides the improved performance of data computations in 

MapReduce based clusters and provision o f the distribution strategy for the resources 

by developing the scheduling algorithms which encounters the interconnection of the 

jobs and gives the solution for effective resource utilization. The proposed 

algorithms can work well for both the homogeneous and heterogeneous environment. 

Moreover, it provides a basis to handle larger types of data sets for certain digital 

applications like Facebook and Tango. Furthermore, the partitioning scheme is 

suitable for processing the different types o f jobs by reducing the extra overhead 

caused during the migration o f the intermediate data. Thus, it would be beneficial for 

many of the business cases by processing the data in a less time with less overhead in 

order to respond the customers in an effective manner. In addition, the detection and 

resolving the problems of slow processing tasks leads the bigger frameworks for 

instance the power houses and grid stations to analyse their system’s abnormal 

response in an optimistic way rather than shutting down the whole system.
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1.10 Thesis Organization

The rest o f the thesis organization is as follows:

Chapter 2 presents an extensive literature review of the study domain namely 

MapReduce based big data computing clusters. In addition, the most recent available 

solutions and their limitations are thoroughly examined and presented.

Chapter 3 describes the research methodology adapted to achieve the 

presented objectives. In addition, it provides an experimental environment used to 

achieve and verify these research objectives.

Chapter 4 provides the design, implementation and evaluation details o f the 

proposed algorithm i.e. Low Latency and Computational Cost based Tasks 

Scheduling (LLCC-TS) algorithm for research objective number one. LLCC-TS 

algorithm is developed to reduce makespan time for the Map phase and 

computational cost.

Chapter 5 presents the design, implementation and evaluation details o f the 

proposed algorithm i.e. Aggregation and Partition Based Accelerated Intermediate 

Data Migration (AP-AIDM) algorithm for research objective number two. AP-AIDM 

algorithm is developed to reduce data migration time and traffic overhead for shuffle 

phase.

Chapter 6 provides the design, implementation and evaluation details o f the 

proposed technique i.e. MapReduce Total Execution Time Prediction (MTETP) 

technique for research objective number three. MTETP technique is designed to 

reduce big data processing latency in MapReduce due to job straggling.
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Chapter 7 is the conclusion chapter which comprises the research 

achievements of this research work. In addition, it provides the limitations and future 

research directions for this research work.
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