
LOW LATENCY FAST DATA COMPUTATION SCHEME FOR MAP REDUCE

BASED CLUSTERS

AISHA SHABBIR

A thesis submitted in fulfilment o f the

requirements for the award o f the degree of

Doctor of Philosophy

School of Computing

Faculty o f Engineering

Universiti Teknologi Malaysia

JUNE 2020

DEDICATION

To my parents (late), who dreamt to see their daughter as a PhD Doctorate

and serving humanity at her best. Their highly motivating words (said earlier),

intrigued me to continue my research in the moments o f dejection and almost leaving

the assignment. I would like to extend this dedication to my siblings who helped me

to fulfil my parents dream.

IV

ACKNOWLEDGEMENT

First o f all, I would like to express my deepest gratitude to ALLAH almighty

the most affectionate and merciful, for HIS countless blessings upon me. I offer my

praises to the most compassionate and glorious personality, Hazrat MUHAMMAD

(Peace Be upon Him), who is a role model for the entire world.

I would like to express my immense gratefulness and appreciation to my

supervisor Prof. Ts. Dr. K am alrulnizam Abu B akar for his timely contributions,

meticulous supervision and guidance throughout my research journey. It has been a

great opportunity to leam a lot from him during the course of this work. To keep my

research work in the right direction, the credit o f excellent reviews and suggestions

should go to my supervisor Prof. Ts. Dr. Kamalrulnizam Abu Bakar and co­

supervisor Dr. Raja Zahilah binti Raja Mohd. Radzi. I would like to extend my

special thanks and appreciation to my co-supervisor Dr. Raja Zahilah binti Raja

Mohd. Radzi for her guidance and for some research grant.

My heartiest thanks to my siblings and my husband Muhammad Siraj for

their continuous support and motivation which always lightened my way to success.

Without their Duaa, love and encouragement, I would never be able to finish this

thesis. Also, I am indebted to my senior and great friend Dr. Tasneem for her

continuous support and guidance for the research work and every matter. I would

like to thank and acknowledge the support and help o f my lab mates, friends and

research group fellows. I am grateful to Universiti Teknologi Malaysia and all its

staff for their support and help.

v

ABSTRACT

MapReduce based clusters is an emerging paradigm for big data analytics to

scale up and speed up the big data classification, investigation, and processing o f the
huge volumes, massive and complex data sets. One of the fundamental issues of

processing the data in MapReduce clusters is to deal with resource heterogeneity,
especially when there is data inter-dependency among the tasks. Secondly,

MapReduce runs a job in many phases; the intermediate data traffic and its migration

time become a major bottleneck for the computation o f jobs which produces a huge
intermediate data in the shuffle phase. Further, encountering factors to monitor the

critical issue of straggling is necessary because it produces unnecessary delays and
poses a serious constraint on the overall performance of the system. Thus, this

research aims to provide a low latency fast data computation scheme which
introduces three algorithms to handle interdependent task computation among

heterogeneous resources, reducing intermediate data traffic with its migration time
and monitoring and modelling job straggling factors. This research has developed a

Low Latency and Computational Cost based Tasks Scheduling (LLCC-TS) algorithm

of interdependent tasks on heterogeneous resources by encountering priority to
provide cost-effective resource utilization and reduced makespan. Furthermore, an

Aggregation and Partition based Accelerated Intermediate Data Migration (AP-
AIDM) algorithm has been presented to reduce the intermediate data traffic and data

migration time in the shuffle phase by using aggregators and custom partitioner.
Moreover, MapReduce Total Execution Time Prediction (MTETP) scheme for

MapReduce job computation with inclusion of the factors which affect the job
computation time has been produced using machine learning technique (linear

regression) in order to monitor the job straggling and minimize the latency. LLCC-
TS algorithm has 66.13%, 22.23%, 43.53%, and 44.74% performance improvement

rate over FIFO, improved max-min, SJF and MOS algorithms respectively for
makespan time of scheduling o f interdependent tasks. The AP-AIDM algorithm

scored 66.62% and 48.4% performance improvements in reducing the data migration
time over hash basic and conventional aggregation algorithms, respectively.

Moreover, an MTETP technique shows the performance improvement in predicting

the total job execution time with 20.42% accuracy than the improved HP technique.
Thus, the combination o f the three algorithms mentioned above provides a low

latency fast data computation scheme for MapReduce based clusters.

VI

ABSTRAK

Kluster berasaskan MapReduce adalah paradigma yang muncul untuk
menganalisis data besar bagi meningkatkan dan mempercepatkan klasifikasi,
penyiasatan dan pemprosesan data besar dalam jumlah yang banyak, besar dan
kompleks. Salah satu daripada isu asas dalam pemprosesan data besar dalam kluster
MapReduce adalah menangani kepelbagaian sumber, terutama ketika ada
kebergantungan data antara tugasan. Kedua, MapReduce menjalankan tugas dalam
banyak fasa; trafik data perantaraan dan masa penghijrahannya menjadi hambatan
utama untuk pengiraan kerja yang menghasilkan data perantaraan yang banyak
dalam fasa perombakan. Seterusnya menghadapi faktor-faktor untuk memantau isu
kritikal pertelingkahan adalah perlu kerana ia menimbulkan kelewatan yang tidak
perlu dan menimbulkan kekangan yang serius terhadap prestasi keseluruhan sistem.
Oleh itu, kajian ini bertujuan untuk menyediakan skema pengiraan data besar kurang
tangguhan yang memperkenalkan tiga algoritma untuk menangani perhitungan tugas
yang saling bergantung antara sumber-sumber yang pelbagai, mengurangkan trafik
data perantaraan dengan masa penghijrahan dan pemantauan dan permodelan faktor-
faktor pertelingkahan kerja. Kajian ini telah membangunkan algoritma Penjadualan
Tugasan Berasaskan Kurang Tangguhan dan Kos Komputasi (LLCC-TS) bagi
tugasan saling bergantung pada sumber yang pelbagai dengan memberi keutamaan
untuk menyediakan penggunaan sumber yang menjimatkan kos dan pengurangan
masa. Seterusnya, Algoritma Migrasi Data Perantaraan Dipercepat yang Berasaskan
Pengumpulan dan Pemisahan telah dibentangkan untuk mengurangkan trafik data
perantaraan dan masa pemindahan data dalam fasa rombakan dengan menggunakan
pengumpul dan pemisah tersuai. Selain itu, Skema Penjumlahan Masa Ramalan
MapReduce (MTETP) untuk pengiraan kerja MapReduce telah dihasilkan dengan
menggunakan teknik pembelajaran mesin (regresi linear) dengan menghadapi faktor-
faktor yang mempunyai kesan pada masa pengiraan kerja untuk memantau
pertelingkahan kerja dan meminimumkan kelewatan. Algoritma LLCC-TS
mempunyai kadar peningkatan prestasi 66.13%, 22.23%, 43.53% dan 44.74%
berbanding FIFO, penambahbaikan max-min, SJF dan Algoritma MOS yang
ditingkatkan masing-masing untuk jangka masa penjadualan tugasan saling-
bergantungan. Algoritma AP-AIDM mencatat peningkatan prestasi 66.62% dan
48.4% dalam mengurangkan masa pemindahan data berbanding algoritma
pengumpulan konvensional masing-masing. Selain itu, teknik MTETP menunjukkan
peningkatan prestasi dalam meramalkan jumlah masa pelaksanaan kerja dengan
ketepatan 20.42% daripada teknik HP yang ditambah baik. Oleh itu, kombinasi tiga
algoritma tersebut memberikan skema pengiraan data besar kurang tangguhan untuk
kelompok data besar berasaskan MapReduce.

Vll

TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOW LEDGEM ENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiv

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xviii

LIST OF SYMBOLS xx

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Background 3

1.2.1 MapReduce Workflow Scheduling Algorithms
for Data Computations 7

1.2.2 Data Traffic Overhead o f MapReduce
Intermediate Phase Handling Algorithms 10

1.2.3 MapReduce Job Straggling Handling
Techniques 13

1.3 Problem Statement 16

1.4 Research Questions 17

1.5 Research Aim 17

1.6 Research Objectives 18

1.7 Research Contribution 18

1.8 Research Scope 19

1.9 Significance o f the Study 19

1.10 Thesis Organization 20

Vlll

22

22

22

23

25

26

27

28

28

30

38

42

43

47

51

55

57

57

57

59

59

63

68

73

75

76

77

LITERATU RE REVIEW

Introduction

Overview of MapReduce Based Cluster

2.2.1 Fast Data Computation in MapReduce Based
Cluster

2.2.2 Hadoop

2.2.3 Hadoop MapReduce Architecture

2.2.4 Key Techniques for Data computations

2.2.5 Single Machine

2.2.5.1 Multiple Machine

Review o f Existing MapReduce Workflow
Scheduling Algorithms

Review o f Existing Intermediate Data Traffic
Migration Algorithms

2.4.1.1 Intra-Machine Data Aggregation

2.4.1.2 Inter-Machine Data Aggregation

Review o f Existing Straggling Handling Techniques

Findings o f the Literature Review

Summary

M ETHODOLOGY

Introduction

Operational Framework

Research Design and Procedure

3.3.1 Low Latency and Computational Cost based
Tasks Scheduling (LLCC-TS) Algorithm

3.3.2 Aggregation and Partition based Accelerated
Intermediate Data Migration (AP-AIDM)
Algorithm

3.3.3 MapReduce Total Execution Time Prediction
(MTETP) Technique

Tools for Analysis and Evaluation

Performance Evaluation

3.5.1 Evaluation metrics for LLCC-TS Algorithm

3.5.1.1 Make span for the Map phase

IX

77

77

78

78

78

79

79

79

79

81

81

83

84

84

84

86

88

89

92

95

95

98

101

101

105

3.5.1.2 Throughput

3.5.1.3 Resource Utilization

3.5.2 Evaluation metrics for AP-AIDM Algorithm

3.5.2.1 Aggregation Cost

3.5.2.2 Intermediate data migration time

3.5.2.3 Network traffic cost

3.5.3 Evaluation metrics for MTETP Technique

3.5.3.1 Total job completion time

3.5.3.2 Accuracy

3.5.4 Performance Improvement Rate (PIR %)
percentage

Attributes

Summary

LO W LATENCY AND COM PUTATIONAL
COST BASED TASKS SCHEDULING
ALGORITHM

Introduction

Motivation for LLCC-TS Algorithm

Design o f LLCC-TS Algorithm

4.3.1 Phase 1: Task Prioritization Phase

4.3.1.1 DAG Generation

4.3.1.2 Average Computational Cost
Calculation

4.3.1.3 Priority Assignment

4.3.2 Phase 2: Resource Allocation Phase

Performance Evaluation o f LLCC-TS Algorithm

4.4.1 Makespan for the Map Phase

4.4.1.1 Measured Makespan while
Considering Tasks Interdependency
in high Heterogeneity Environment

4.4.1.2 Measured Makespan while
considering tasks interdependency
in low heterogeneity environment

x

108

112

115

118

120

122

122

122

124

126

128

129

129

131

135

137

141

145

146

151

152

152

152

153

4.4.1.3 Makespan for the Independent
Tasks for High Heterogeneity Case

4.4.1.4 Makespan for the Independent tasks
for Low Heterogeneity case

4.4.2 Throughput

4.4.3 Cost based Resource Utilization

Summary

AGGREGATION AND PA RTITION BASED
ACCELERATED INTERM EDIATE DATA
M IG RA TIO N ALGORITHM

Introduction

Motivation for AP-AIDM Algorithm

Design o f AP-AIDM Algorithm

5.3.1 Phase 1: Virtual Blocks Creation

5.3.2 Phase 2: Intermediate Data Traffic Estimation
and Aggregation

5.3.2.1 Local Aggregation: Traffic from
Mapper to In-Node Combiner

5.3.2.2 Global Aggregation: Traffic from
In-Node Combiner to Aggregator

5.3.3 Phase 3: Data Traffic Migration from
Aggregators to Reducers with Custom
Partitioner

5.3.3.1 Migration Cost Calculation and
Data Forwarding to Final Phase

Performance Evaluation

5.4.1 Network Traffic Cost

5.4.2 Aggregation Cost

5.4.3 Data Migration Time

Summary

M APREDUCE TOTAL EXECUTION TIM E
PREDICTION TECHNIQUE

Introduction

Motivation for the MTETP Technique

Design o f the MTETP Technique

XI

156

157

158

158

161

163

163

164

164

165

166

169

170

172

174

176

177

177

178

178

180

180

180

181

182

6.3.1 Phase 1: Identification o f the Contributing
Factor (CF)

6.3.1.1 P-value Test

6.3.1.2 Linearity Test

6.3.2 Phase 2: Building Mathematical Expression

6.3.2.1 Predicting the Contribution of
Contributing Factor

6.3.2.2 Predicting the Map Phase Time to
Compute

6.3.2.3 Predicting the Shuffle Phase Time to
Compute

6.3.2.4 Predicting the Reduce Phase Time
to Compute

6.3.3 Phase 3: Cross Validation

6.3.3.1 Seventy to Thirty (70-30) Ratio
Split Validation

6.3.3.2 K-Folds Cross Validation

Performance Evaluation

6.4.1 Evaluating the Impact of Replication on Total
Job Execution time

6.4.2 Evaluation o f Line fit plots and Residuals

6.4.3 Job Execution Estimation

6.4.4 Accuracy

6.4.4.1 Root Mean Square Error (RMSE)

6.4.4.2 Mean Absolute Percentage Error
(MAPE)

6.4.4.3 R-squared (R2)

Summary

CONCLUSION

Overview

Research Achievements

7.2.1 Latency and Computational Cost based Tasks
Scheduling (LLCC-TS) Algorithm

7.2.2 Aggregation and Partition based Accelerated
Intermediate Data Migration Algorithm

Xll

7.2.3 MapReduce Total Execution Time Prediction
(MTETP) Technique 182

7.3 Limitations o f the study 183

7.4 Future Directions and Research Opportunities 184

REFERENCES 185

X lll

37

46

52

61

74

75

82

95

101

105

108

112

115

117

118

132

132

137

143

145

150

157

LIST OF TABLES

TITLE

Comparison of MapReduce scheduling algorithms

Comparison of intermediate data handling algorithms

Comparison of straggling handling techniques

Overall research plan

Physical host specification

Simulation parameters

Attributes with description

Priority assignment

Simulation parameters

PIR (%) on Makespan for interdependent tasks for High
Heterogeneity case

PIR (%) on Makespan for Interdependent tasks for Low
Heterogeneity case

PIR (%) on Makespan for Independent tasks for High
Heterogeneity case

PIR (%) on Makespan for Independent tasks for Low
Heterogeneity Case

PIR (%) on Throughput for High Heterogeneity case

PIR (%) on Throughput for Low Heterogeneity Case

Outcome of random partitioning

Outcome of range partitioning

Example measures

PIR for network traffic cost with aggregation

PIR for network traffic cost with partitions

PIR for intermediate data migration time

P-value for replication

xiv

LIST OF FIGURES

FIGU RE NO. TITLE PAGE

Figure 1.1 Data volume growth versus years 3

Figure 1.2 MapReduce workflow 5

Figure 1.3 Resource distribution for tasks 6

Figure 1.4 General view of the scenario o f task submission 8

Figure 1.5 MapReduce intermediate traffic problem insight 11

Figure 2.1 Structure of the literature review 23

Figure 2.2 Hadoop MapReduce architecture 27

Figure 2.3 Job computation in MapReduce 29

Figure 2.4 Intra-machine aggregation approach 43

Figure 2.5 Inter-machine aggregation approach 44

Figure 3.1 Operational framework 58

Figure 3.2 The research methodology flowchart 60

Figure 3.3 Architecture o f design, implementation and evaluation for
Low Latency and Computational Cost based Tasks
Scheduling (LLCC-TS) algorithm 64

Figure 3.4 MapReduce phase with heavy traffic in shuffle phase 65

Figure 3.5 Conventional aggregation algorithm with cascaded
aggregators’ data transmission 66

Figure 3.6 The aggregation based partitioning algorithm (AP-AIDM)
data transmission 67

Figure 3.7 Architecture o f design, implementation and evaluation for
Aggregation and Partition Based Accelerated Intermediate
Data Migration (AP-AIDM) algorithm 69

Figure 3.8 General framework for MTETP technique 71

Figure 3.9 Architecture o f design, implementation and evaluation for
MapReduce Total Execution Time Prediction (MTETP)
technique 72

Figure 4.1 Flowchart for LLCC-TS algorithm 87

Figure 4.2 Directed Acyclic Graph (DAG) 91

Figure 4.3 Level wise task set creation 92

Figure 4.4 Resource allocation procedure 96

xv

Figure 4.5 Makespan vs. interdependent tasks (small workload) for
High Heterogeneity case 102

Figure 4.6 Makespan vs. interdependent tasks (medium workload) for
High Heterogeneity case 104

Figure 4.7 Makespan vs. interdependent tasks (large workload) for
High Heterogeneity case 104

Figure 4.8 Makespan vs interdependent tasks (small workload) for
Low Heterogeneity case 106

Figure 4.9 Makespan vs. interdependent tasks (medium workload) for
Low Heterogeneity case 107

Figure 4.10 Makespan vs. interdependent tasks (large workload) for
Low Heterogeneity case 108

Figure 4.11 Makespan vs. independent tasks (small workload) for
High Heterogeneity case 109

Figure 4.12 Makespan vs. independent tasks (medium workload) for
High Heterogeneity case 110

Figure 4.13 Makespan vs independent tasks (large workload) for High
Heterogeneity case 111

Figure 4.14 Makespan vs independent tasks (small workload) for Low
Heterogeneity case 113

Figure 4.15 Makespan vs independent tasks (medium workload) for
Low Heterogeneity case 114

Figure 4.16 Makespan vs. independent tasks (large workload) for Low
Heterogeneity case 114

Figure 4.17 Throughput vs Data size for High Heterogeneity case 116

Figure 4.18 Throughput vs Data size for Low Heterogeneity case 118

Figure 4.19 Cost for utilization o f resources for the interdependent
tasks 119

Figure 4.20 Cost for utilization of resources for the independent tasks 120

Figure 5.1 Flowchart for AP-AIDM algorithm 125

Figure 5.2 AP-AIDM architectural view 127

Figure 5.3 MapReduce network topology 136

Figure 5.4 Traffic cost vs. number of mappers 142

Figure 5.5 Network traffic vs number o f aggregators 143

Figure 5.6 Traffic cost vs. number of partitions 144

Figure 5.7 Aggregation cost vs number of mappers 146

Figure 5.8 Total job completion time vs input Data size 147

Figure 5.9 Intermediate data migration time vs number o f aggregators 148

XVI

149

150

155

159

162

165

167

170

171

172

173

173

174

175

176

Shuffle time vs number o f aggregators and different
partitions

Intermediate data migration time vs number o f partitions

Flowchart for the MTETP technique

Time’s difference among different categories

Total execution tim e’s components

Breakdown of Data sets

Cross-validation with 5-fold

Parameter preview

Input data with replication vs total job execution time

Different jobs successful completion along with all the
subtask

Line fit plot for predicted values among Input data

Line fit plot for predicted values among replication factor

Residual Plot for MTETP technique

Performance comparison for job total execution time for
WordCount application

Performance comparison for job total execution time for
sort application

XVll

LIST OF ABBREVIATIONS

A - Total number o f aggregators

ACC - Average Computational Cost

ACT - Actual Execution Time

AM - Application Manager

B - Blocks

CC - Computational Cost

CCM - Computation Cost Matrix

CF - Contributing Factor

CV - Cross Validation

DAG - Directed Acyclic Graph Google File system

ETC - Expected Time of Completion

FARMS - Failure-Aware, Retrospective and Multiplicative Speculation

FIFO - First In First Out

GFS - Google File System

HDFS - Hadoop distributed file system

HOD - Hadoop On Demand

LATE - Longest Approximate Time to End

LT - Link Traffic

M - Mappers set

MAPE - Mean Absolute Percentage Error

MB - Megabyte

MM - Match Making

MOS - Multi-Objective Scheduling

MR - MapReduce

MTE - Minimum Task Execution time

NN - NameNode

NT - Network Traffic

P - Total number o f partitions

PIR - Performance Improvement Rate (%)

R - Reducer Set

X V lll

RM - Resource Manager

RMSE - Root Mean Square Error

SJF - Shortest Job First

SAMR - Self-Adaptive MapReduce scheduling

SMAC - SMAC (Social, Mobile, Analytics, and Cloud)

SUT - Start-Up Time

SZ - Total data size

Th - Throughput

YARN - Yet Another Resource Negotiator

x i x

LIST OF SYMBOLS

ccm(i,k)

d(x, y)

e(i,j)
Idata

m

m q

mij

Ms

mtj
n

Nv

N,.
Nr
N,

N,

N,

slot

slot

w a v 1

w a v n

PPm

1ju

T A t

T A 1P 1

T A 1 1 /ip2

Tavailable

Tready

Tl

T M C t

TMij

TM,

TM r

B1

T R ju

Element o f Computation cost matrix

Distance between nodes x and y

Element o f ETC matrix

Input data size

Total number o f tasks

Binary variable for data transfer from mapper to in-node combiner

Binary variable for data transfer from in-node combiner to
aggregator

Machine Set

Variable indicating whether data is processed from mappers

Total number o f machines or processors

Number of map compute nodes

Number of map slots

Number of reduce compute nodes

Number of reduce slots

Number of reducers used in wave 1 execution

Number of reducers used in other waves execution

Processing Power of the machine

Binary variable for data transfer from aggregator to reducer

Aggregated traffic of block after aggregation

Partition one o f first aggregator

Partition two of first aggregator

Shortest possible time when Machine is available

Time when machine starts its functionality

Task length

Traffic from one mapper to in-node combiner

Traffic of one mapper (after in-node combiner) to aggregator

Traffic for one virtual block after in-node combiner to aggregator

Total network traffic from the Map Layer to Aggregation Layer
(sum up from all blocks)

Traffic for reducer u coming from all aggregators placed in a
virtual blocks

X X

TR - Total network traffic from the Aggregation Layer to reduce layer

T ^ tal - Map phase computation time

- Time contribution by the CF

T ^ 9 - Average map phase execution time

T ^ 9 - Average reduce phase execution time

T ^ 9 - Average shuffle phase execution time

^wavi - Total average time for first wave

Twav - Total average time for other waves

Ts - Task set

- Shuffle phase computation time

Trtotal - Reduce phase computation time

Vki - Total volume of the keys from mapper i

Y - Estimated dependent variable

fi0 - Y-intercept

Pi - Slope o f the regression line and co-efficient for X 1 independent
variable

P2 - Slope o f the regression line and co-efficient for X 2 independent
variable

xxi

CH APTER 1

INTRODUCTION

1.1 Overview

The present era has witnessed a dramatic advancement in scientific frontiers.

MapReduce based clusters is an emerging paradigm for big data analytics to scale up

and speed up the big data classification, investigation, and processing o f the huge

volumes, massive and complex data sets. A plethora o f developments have occurred

in digital technologies such as social media and networks, financial transactions,

sensor data, business and financial dealings, and person to person communications

through digital platforms. These developments resulted in the generation o f massive

amounts o f data and production of such data in several formats like text messages,

videos, sound, pictures, social content, XML, and so forth. Such data are growing

enormously, leading to difficulties in storing, processing, and analysing them by

using traditional databases and conventional tools and techniques. The pace of the

evolution o f currently integrated applications has posed a great challenge to the

researchers to think critically and provide efficient design methodologies to handle

such data. Big Data analytics is an emerging technology to extract useful information

from substantial volumes and a variety o f raw data (Thomas and Leiponen, 2016;

Fernandez et al., 2019). Fast data is the application o f big data analytics to smaller

data sets and it gathers and mine structured and unstructured data so that required

action can be taken to get the desired result (Miloslavskaya, 2016).

The International Data Corporation Gens and Predictions claimed that there

might be forty folds data growth from the year 2012 to 2020 and expected that it

would double for every two years interval as depicted in Figure 1.1 (Gens et al.,

2017). This challenge urged the need for processing, storing, and investigating the

1

large bulk o f data in almost all fields with the help o f smart and efficient platforms

and techniques. Furthermore, reducing time to analyze the growing amount o f data,

with less cost of the computational resources, is the biggest challenge faced by both

researchers and industrialists (Salih et al., 2019). The volume of data production is

tremendous, and a significant part o f the delivered data is not utilized because o f the

limited resources to store and process them. It is almost impossible to store all the

data created due to the high cost. The processing issue is beginning to see an

attainable horizon, yet at the same time has space to evolve. Thus the vital issue isn't

to store all of the data produced but to extract meaningful information and process

them efficiently with the given resources. The volume of data created is massive, and

considerable amounts o f the generated data have not been utilized due to the lack of

resources to store and process them (Ahmad et al., 2019). The need to store,

investigate, and process the complex and huge sets o f information-rich data is

common to all fields o f studies in the present age. For the huge amount o f data,

effective and efficient schemes and methodologies need to be developed to analyze

and extract valuable information hidden within the data.

Several frameworks have been proposed for processing huge volumes o f data.

Some of the widely used frameworks are MapReduce (Goudarzi, 2017), Dryad

(Microsoft, 2004; Isard et al., 2007), Spark (Karau and Warren, 2017; Garcia-Gil et

al., 2017), Dremel (Melnik et al., 2010) and Pregel (Agneeswaran, 2014; Zhao et al.,

2016; Whang, 2018). The most well-known framework is MapReduce. MapReduce

is emerging as an efficient big data processing platform (Kang et al., 2015; Hashem

et al., 2018a). It has initially introduced by Google and it was designed for

processing huge amounts o f data by exploiting the parallelism among a cluster of

machines. MapReduce provides an extendable and efficient data processing

technique that significantly improves the performance of the massive data-driven

applications (Koutroumpis et al., 2017).

2

Figure 1.1 Data volume growth versus years (Gens et al., 2017)

1.2 Problem Background

During the last few years, MapReduce has gained attention for data-intensive

applications in a variety of fields (Amirian et al., 2017; Espinosa et al., 2019).

Researchers from different fields utilized MapReduce to manage their large amounts

o f the data and their complexity (Hashem et al., 2016). The massive amounts o f data

stored in a distributed fashion require processing in parallel (Chen and Zhang, 2014),

such that new knowledge and innovation can be mined within an acceptable time

span. Extracting meaningful and valuable information from huge datasets is

important for providing attractive new services and improving the quality o f the

existing ones (Kambatla et al., 2014). Data processing has been successfully adopted

in a number o f applications (Kobusinska et al, 2018) such as data mining, data

analytics, scientific computation, and search engine. However, processing of massive

amounts o f data has been challenged by these applications because of the complexity

o f the data that should be processed and the scalability of the underlying algorithms

that support such processes (Talia et al., 2019). MapReduce is possibly the most

popular framework for processing the existing large-scale data primarily because of

3

its important features that include scalability, fault tolerance, parallel processing and

flexibility (Bonner et al., 2017). Nowadays, MapReduce is used for expressing

distributed computations on massive amounts of data. It is mainly based on the

parallel processing o f the computing infrastructure that exploits parallelism among

computing infrastructure to handle many major issues introduced by the increasing

use o f vast amounts of data (Alabdullah et al., 2018). The default implementation of

MapReduce is Hadoop (Apache, 2008a).

The overall process workflow o f the MapReduce is shown in Figure and

explained as follows:

i. Map Phase: It is the first phase o f the MapReduce, where the input data is

collected and divided into sub-tasks to process it in parallel. The scheduling

o f the tasks over the compute mapper units are performed in the Map phase.

ii. Shuffle Phase: It is the intermediate phase o f MapReduce. This phase

transfers the output data o f the mappers to the reduce units for its further

processing.

iii. Reduce Phase: In this phase of the MapReduce, all the intermediate data is

gathered and data reduction for the final outcome is performed, according to

the requirements o f the application or the program running over it. This phase

also extracts the desired results (Deshai et al., 2019).

For the past few years, big data corporations such as IBM, Google, Amazon,

and Microsoft have set foot in cloud computing, and have provided some data

processing solutions based on cloud computing services (IBM, 2018). MapReduce in

conjunction with cloud computing is emerging as a promising solution to process

large amounts of data sets (Geczy, 2014; Kobusinska et al., 2018). MapReduce

services in cloud, allows enterprises to process their data without dealing with the

complexity o f building and managing large installations o f MapReduce platforms.

Using virtual machines (VMs) and storage hosted in the cloud, enterprises can

simply create virtual MapReduce clusters to process their data. A general view of the

scenario, when different tasks have been submitted for execution on the given

resources is shown in Figure 1.2.

4

Figure 1.2 MapReduce workflow (Deshai et al., 2019)

The group o f machines having similarity for some specification constitutes a

cluster. It can be seen from Figure 1.3 that the resources could be homogeneous or

heterogeneous sets of machines. The submitted tasks for the execution could be

independent or inter-dependent in nature. When different tasks are submitted for

computation, then the next step is to assign these tasks to available resources for their

computation. It is challenging to proficiently allocate a variety o f assets to tasks of

diverse nature QoS assurance, minimal makespan and effective resource utilization.

Consideration and restriction o f input data copies transfer between different phases

o f the MapReduce are important in the MapReduce framework (Afrati et al., 2015)

and thus it can help optimize the communication cost between map and reduce

phases. There is a need to establish an efficient mapping scheme that can minimize

the communication cost without affecting the performance o f a specified task.

5

Figure 1.3 Resource distribution for tasks

In MapReduce, intensive disk input/output during the shuffling phase

increases the overall execution time, which in turn degrades the performance of

overall systems. Reducing the execution time has become challenging. Many

solutions have been proposed to address this problem, but no solution has solved this

problem completely in an efficient manner. Research in this area can increase the

performance of MapReduce by reducing the shuffle phase time. Moreover, in a

distributed framework the impact of a stragglers on the speed of a parallelized

processing can be quite significant. Specifically, it decreases resource utilization and

increases job completion time. While performing configuration, an inappropriate

approach can cause inefficient execution of jobs, which leads to performance

degradation (Shi et al., 2016). Creating such algorithms that receive input from the

user, understanding the characteristics of underlying hardware. The following

sections discussed the issues of fast data computations in MapReduce based clusters

in detail.

6

1.2.1 M apReduce W orkflow Scheduling Algorithms for D ata Com putations

MapReduce has been designed to accommodate large-scale data-intensive

workloads running on large single-site homogeneous nodes. For MapReduce, the

problem arises when computations have to be commenced across a different set of

resources (Pandey and Saini, 2018). Some of the researchers provided certain

solutions to extend the horizons of MapReduce for heterogeneous environments i.e.,

when there are different computing mappers used in terms of its capability to handle

the task, but their schemes provide large computational overheads and in-efficient

resource utilization. The main cause o f in-efficient resource utilization is that tasks

are allocated to the resources in a way that some resources (processing units) are

overloaded and some are under-utilized (Gaur et al., 2018). In addition to it, their

priority criteria worked well either for small jobs or for long types o f jobs. The vast

piles of data are a consequence of the data from diverse sources. Moreover, it is

imperative to proficiently compute diverse nature o f tasks for a variety of compute

nodes and to satisfy the customer’s requirements at an acceptable time and

computational cost without penalizing some resources with computational overheads.

Scheduling is one of the processing techniques which deals with the ordering

and assignment o f tasks to the available resources for execution. In the map phase,

the scheduling o f the tasks has been commenced. For instance, if some users submit

their tasks for processing to a cloud data centre, which has some resources to execute

the submitted tasks. A general view of the scenario would be like as shown in Figure

1.4. As can be seen from Figure 1.4, when different users submit their requests to a

data centre to accomplish a job. Each user request is considered to be a task in the

scenario and by the help o f scheduler, will be assigned to a resource (processing

machine) available in the data centre. If all tasks have been submitted at same time

for the processing to a single data centre. Then, there is a need for a suitable

scheduler to process all submitted requests in an appropriate manner with the

objective of providing the services in a minimum time period.

7

If the submitted tasks have some inter-dependency then it is needed to handle

these tasks in a proper way. Inappropriate handling of inter-dependent tasks during

scheduling will not yield significant results which will eventually lead to the overall

system’s poor utilization. There is a need of finding an optimal assignment of a

variety of tasks to the diverse set of resources (mappers) and it becomes more

challenging when there is some inter-dependency among the tasks.

Figure 1.4 General view of the scenario of task submission

Many researchers put forward different scheduling algorithms like first in

first out (FIFO). In this scheduler, all tasks are given to a solitary queue, and the task

from the head of the queue is scheduled to the first available resource. FIFO the

default scheduler of Hadoop MapReduce was having the similar bases of the First

Come First Serve (FCFS) scheduler. The upside of the FIFO scheduler is that the

algorithm is very simple and clear. However, it mostly brings starvation when the

shorter tasks come after the long jobs/task. Thus, a short task may need to wait for a

long time until the resource gets free. Another point is that some tasks give different

execution times on different resources thus the scheduling of the first task on a

second or other available machine may provide better results with minimum

8

makespan (Apache, 2008b). Many simulators like CloudSim (Calheiros et al., 2010),

Hadoop and iFogSim (Gupta et al., 2017) used it as a default scheduler.

A scheduling algorithm named as Chess was proposed by Zacheilas and

Kalogeraki (2016) which focuses more to increase the throughput by minimizing the

overall cost. Their algorithm worked well for up to the certain addition o f the jobs to

the pool. However, their algorithm does not appear to produce the same quality of

results among the high number o f jobs like with the rapid increase in the number of

jobs the search space o f Chess grows exponentially. Thus, the cluster leads to the

higher execution time. Further, Balagoni and Rao (2017) presented a multi-objective

scheduling algorithm for heterogeneous environments. Their schemes mainly

encountered the two factors i.e. load locality and fairness. Generally, to handle these

two factors at one time is a tangible task. Their mechanism distributes the tasks by

balancing the load ratio among the whole cloud environment. Unfortunately, their

algorithms also among all others ignores the inter-task dependency issue.

The dependency factor was addressed by Tan et al. (2014) and their solution

has provided an optimization scheme to handle the dependencies between map and

reduce tasks and introduced the MapReduce enabled workflow scheduler. Their

solution lacks effective resource utilization due to waiting for a long time for the

dependent (map) tasks completion time. In addition, this scheduling algorithm fails

to work if there is some inter-dependency among the input data side. A multi-target

scheduling scheme of MapReduce jobs (MOS) was presented by Hashem et al.

(2018b). Their scheduling algorithm focused more on the earliest finishing o f the

individual task and has not assigned priority to tasks. Thus, in this way, it results in

higher schedule length (makespan) for the execution o f all the map tasks. The

scheduling algorithm lacks in the effective utilization o f the heterogeneous resources

because o f ignorance o f balancing the whole workload dispersal among the

computing nodes.

In light of the aforementioned related works, it is revealed when map tasks

computations have to be commenced on a heterogeneous set of resources, the

9

computational overhead increases with higher value of makespan. As can be deduced

from the previously discussed related work, many o f the existing scheduling

algorithms which are designed for MapReduce sometimes result in in-efficient

resource utilization and incurring high makespan and computational cost. In

addition, the existing MapReduce scheduling algorithms have no consideration for

task interdependencies on the input side (Carrillo, 2017), though the big data tasks

are mostly diverse in nature and have dependencies among them. However, there are

some studies which have considered dependencies between Map and Reduce tasks

(Jlassi, 2015; Tan et al., 2014). Thus, there is a need to provide a solution for the

problem of the allocation o f the variety o f data centre assets to diverse nature o f tasks

proficiently with minimal makespan, computational cost and effective resource

utilization.

1.2.2 D ata Traffic O verhead of M apReduce Interm ediate Phase H andling

Algorithms

MapReduce as indicated by the name has two main phases that is. Map and

Reduce. However, between the map and reduce phase, there exists another

intermediate phase named as shuffle. In the shuffle phase, the output o f mappers is

migrated from the mappers to reducers. For the long type o f jobs i.e. having a very

large size o f data sets, the intermediate data traffic produced in the shuffle phase is

enormous as shown in Figure .

10

Figure 1.5 MapReduce intermediate traffic problem insight

Further, if all the intermediate data will be forwarded to the reducers directly,

there will be huge traffic congestion and it deteriorates the overall MapReduce

performance severely. Inappropriate migration scheme for large intermediate data

transfer, results in extra migration time. Though several attempts have been made by

researchers for the improvement o f MapReduce performance, much attention has not

been paid to the intermediate data traffic produced in the shuffle phase.

Conventionally, distribution o f metadata to the reducers was done by the hash

function which does not encounter the data size associated with keys and results in

high network traffic in the shuffle phase. Encountering and introducing the factors

which can improve the shuffle’s phase execution time is necessary.

11

To solve the traffic congestion issue, Ibrahim et al. (2010) have built up a

reasonableness mindful key segment approach that monitors the circulation o f the

middle o f the keys' frequencies. This algorithm has used a fairness-aware key

partition approach that keeps track of the distribution o f intermediate keys’

frequencies. Thus, it results in excessive burden o f key distribution records. Then,

some researchers put forward the solutions which used the aggregators for reducing

traffic. A specific kind of administration supplier that concentrates on the collection,

and redistribution o f data by reducing the similar entities are known as data

aggregators. Authors Costa et al. (2012) used aggregation for the reduction of

intermediate data but the scheme limits the use o f servers by putting the condition of

directly connected servers i.e. it was applicable to only those topologies in which

servers have direct linkage with the other servers.

Moreover, Yan et al. (2013) have presented a sketch oriented information

structure for catching MapReduce key size measurements and produced the groups

for the allotment to reduce tasks. The compelling burden adjusting way to deal with

information skew was put forward by Hsueh et al. (2014). But the both solution

proposals were limited to single map task, disregarding the information accumulation

openings from various mappers. A shuffle-aware scheduling algorithm has been

presented by Ahmad et al. (2014) that lessens the measure o f intermediate data to be

rearranged by some shapes and dimensions to converge to reduce assignments. His

work produces certain delays by elongating the traffic in different shapes for the

heavy loadedjobs.

To tackle this problem Ke et al. (2015) incurred an aggregator placement

scheme to reduce network traffic. This scheme has aggregated the mappers output by

placing an aggregator for each mapper. Though the approach gave the better results

for reducing the intermediate data traffic but at the cost o f placement of multiple

aggregators and therefore incurs high aggregation cost. In addition, it cascaded the

aggregators thus can incur failure o f one to many aggregator problem. Further,

Lavanya (2016) proposed a solution for reducing the data traffic at the latter part of

MapReduce with an Aggregator and Check function. However, the implementation

o f this scheme failed to work for complicated jobs with multiple requirements as it

12

needs the reducer’s work by means o f check function at the shuffle stage for its

working. Wu (2018) proposed an incremental data allocation approach to reduce

partition skew among reducers on MapReduce. This scheme worked for handling the

load balancing among mappers and then reducer but due to creation a large number

o f micro-partitioning in the mapping phase and then passing o f such splitted results

for further steps in multiple rounds it increases the latency o f job computations in

MapReduce.

Based on the previous discussion, it can be concluded that all types o f jobs

computations in MapReduce based computing clusters follow the workflow as

shown in Figure 1.2. In the Shuffle phase, when map phase output has to be

transferred to Reduce Phase, the intermediate data migration o f huge jobs, i.e. having

very large size o f data sets, generate high network overhead. Thus, the intermediate

data migration of large meta data in the intermediate phase of MapReduce by an

inappropriate migration algorithm results in extra migration time. Thus, for huge jobs

the intermediate data traffic produced is enormous and its migration becomes a major

bottleneck and decreases the performance o f big data computations in MapReduce

based computing clusters rigorously. However, to resolve this congestion and data

migration time issue some aggregation schemes were proposed by researchers but

their aggregation solutions produce high aggregation cost and lacked to balance

aggregated intermediate data load among reducers. Moreover, sending data over the

network without considering the contentious link results in high transmission cost.

Accordingly, to transfer the intermediate data load with consideration of aggregation

cost and contentious link, in a balanced way to reducers is necessary.

1.2.3 M apReduce Job Straggling H andling Techniques

Achievability o f the results at the required time is desirable and important as

well. It has been noticed that the performance o f a big data computing cluster in

terms of total job completion time often reduces by the delay in completion o f one or

a number of tasks. These tasks are called stragglers. There could be several reasons

13

for the tasks to be like a straggler. Firstly, the task could be allocated to an

inappropriate computational node or it may be the hardware failure on which the task

is running or it could be a factor which needs to be carefully tuned before the

execution begins.

Some researches put forward some cloning based speculation execution

solutions to handle the straggling problem by the detection o f slow running tasks.

Initially, Google MapReduce i.e. default implementation as Hadoop gave the

solution which deploys the duplicates o f the tasks near to the job completion

(Apache, 2008a). That was pretty simple and easiest to implement but having the

drawback that it produces un-required copies. Next, the Longest Approximate Time

to End (LATE) scheme was proposed by Zaharia et al. (2008) which measures the

progress rate for the tasks. It works on the idea of measuring the completion time of

the slowest task. Major flaw of this algorithm was that it worked for the slow tasks

and was unable to break the different phases o f MapReduce during its progression.

Another limitation of LATE was to impose restrictions on the backups.

Self-Adaptive scheduling scheme was proposed by Tang et al. (2015). It

distinguishes the slower and faster tasks merely and does not provide any effective

solution to handle the stragglers. Further, a Failure-Aware, Retrospective and

Multiplicative Speculation (FARMS) is proposed by Fu et al. (2017). FARMS

measure the responsiveness of each node. In case o f detection of the unresponsive

node, it copies the whole set of tasks running on that node to the other node. The

major defect of the FARMS is that it replicates the whole tasks while the cause o f the

un-responsiveness might be one or more tasks not the whole number of tasks running

on the given node. Thus, in this way it produces more replication overhead with the

wastage of resources. Recently, Xu and Lau (2017) presented an optimization for

speculative execution scheme to mitigate stragglers but their proposed scheme posed

a limit on the size o f the data and a ratio o f stragglers just cut down under the

threshold which may affect the system performance abnormally.

Herodotus proposed Starfish (Herodotou et al., 2011) which collects the past

executed jobs profile information at a fine granularity for job estimation and

14

automatic optimization. On the top o f the Starfish, Herodotou proposed Elasticiser

(Herodotou et al., 2011) which provides Hadoop cluster resources in terms o f VMs.

However, collecting detailed job profile information with a large set o f metrics

generates an extra overhead, especially for CPU-intensive applications. As a result,

Starfish overestimated the execution time o f a Hadoop job.

Few researchers attempted to do predictive based speculation like Verma et

al. (2011) and Chen et al. (2014) both tried to model the Hadoop MapReduce

performance. The model name provided by Chen et al. (2014) was CRESP. Though,

their schemes are using too many assumptions and they ignore the impact o f the

many factors which were encountered by the later studies. The HP model is restricted

to a constant number of reduce tasks, whereas CRESP only considers the number of

reduce tasks to be equal to the number o f reduce slots. It is unrealistic to configure

the parametric value as constant always rather it varies depending on the type of

application (e.g. CPU intensive, or disk I/O intensive) and user requirements. The

improved HP model/scheme presented by Khan et al. (2016) appears to be with a

better prediction in contrast to others as it provided the modelling o f one o f crucial

factors i.e., the varied number o f reducers but it still ignores many factors which have

significant impact on job estimation time. IoTDeM, an IoT Big Data-oriented model

is proposed by Lu et al. (2018) for predicting MapReduce performances using

machine learning techniques and Ceph which is a unified distributed storage system.

The authors claimed by themselves in their paper that most o f the research was done

on HDFS (which is basically a core component o f Hadoop MapReduce), thus they

tried to model with different distributed storage system. The drawback of this

approach is that it lost the generality and tied itself to specific application and

architecture.

In the light o f the previous discussion, it has been observed that for large

scale data analysis as part o f their core services for tasks such as log analysis, feature

extraction or data filtering; Map-Reduce, through its Hadoop implementation, has

proven to be an efficient framework. One important challenge when performing such

analysis is to predict the performance o f individual jobs. In addition, the big data

computations faced latency issues and job completion got delayed due to straggling

15

factors. In order to deal with the stragglers, existing studies extensively use two types

o f speculative execution solutions for handling the stragglers, i.e., cloning based and

prediction based straggler handling techniques. For cloning one, Researchers have

proposed some strategies of backing up the slower tasks and speculating the

performance o f the individual computational nodes. On the other hand, some tried to

model the different phase’s times to monitor the tasks execution time through

prediction phenomenon for handling the stragglers in advance. To enhance the

performance of MapReduce, monitoring and handling the factors which could

produce straggling is necessary. Thus, accordingly a scheme is required which

tackles the contributing factors which could become the straggling cause, at the early

stage o f job computation.

1.3 Problem Statement

MapReduce based clusters is one o f the emerging paradigms which enables

the processing o f massive volumes of data in parallel with many low-end computing

nodes. This thesis addresses the neglected aspects o f MapReduce by the existing

studies which can significantly improve the data computations in MapReduce based

clusters. Many scheduling algorithms were proposed, to improve the performance of

big data computation in MapReduce based clusters but these algorithms resulted in

longer makespan (scheduling length) and high processing latency leading to

inefficient resource utilization and high computational and resource cost. Moreover,

these algorithms do not consider the interdependency o f tasks. In addition, some

researchers attempted to reduce the network overhead created in the middle phase of

MapReduce, nevertheless, their solutions generate high data migration time and very

high aggregation and transfer cost. Moreover, to reduce the unnecessary processing

delays in the MapReduce based clusters, the straggling issue was addressed by many

researchers but their schemes does not encounter the straggling created due to

inappropriate handling of some contributing factors which could become straggling

cause at later stage. Thus, this research addresses aforementioned issues and provides

a low latency fast data computation scheme which introduces a combination of

16

algorithms and technique, to handle inter-dependent task computation among

heterogeneous resources, reducing intermediate data traffic with its migration time

and monitoring and modelling job straggling factors.

1.4 Research Questions

Based on the discussion provided in Section 1.2. The research questions can

be formulated as follows:

i. How to schedule inter-dependent tasks to the diverse set o f resources with

reduced makespan?

a) How to handle the task inter-dependency while scheduling the jobs of

MapReduce in a heterogeneous resources environment?

b) How to minimize the latency issues for the task scheduling in map phase?

ii. How to reduce the data migration time and network overhead created for

migration o f large size intermediate data for the intermediate phase of

MapReduce?

iii. How to minimize the big data processing latency in MapReduce due to job

straggling?

1.5 Research Aim

This research aims at reducing the latency o f data computations in

MapReduce based clusters by providing the Low Latency Fast Data Computation

(LLFDC) scheme which comprises the scheduling o f the inter-dependent tasks in

resource heterogeneous environment, reducing the network traffic by shuffle phase

partitioning and predicting the completion time for MapReduce job computation to

reduce latency and monitor job straggling.

17

1.6 Research Objectives

The following research objectives have been achieved throughout this

research work:

i. To develop a workflow scheduling algorithm for inter-dependent MapReduce

tasks for the heterogeneous environment with reduced makespan for the map

phase and computational cost.

ii. To improve an intermediate data partitioning algorithm to reduce the data

traffic and data migration time in MapReduce intermediate phase.

iii. To improve a time prediction technique for MapReduce job computation to

monitor the job straggling and minimize the latency.

1.7 Research Contribution

The contributions o f this research are summarized as follow:

i. Low Latency and Computational Cost based Tasks Scheduling (LLCC-TS)

algorithm for the effective utilization of heterogeneous resources with

minimizing cost and makespan along with the handling o f the task

interdependencies and improving the processing workflow of MapReduce

based clusters.

ii. An Aggregation and Partition Based Accelerated Intermediate Data

Migration (AP-AIDM) algorithm for the reduction o f data traffic and data

migration time in the MapReduce intermediate phase.

iii. MapReduce Total Execution Time Prediction (MTETP) technique for

reducing the data processing latency in MapReduce due to job straggling

factors.

18

1.8 Research Scope

The scope o f the research covers the following.

i. The scheduling considered for the static set of data jobs with having the inter­

dependency among its sub-tasks.

ii. The analysis o f the interdependency is out o f the scope of this research. The

interdependent job cases put assumption on some sub-tasks that will must

come after certain tasks followed the base restrictions from the latest

literature for the dependent case o f jobs.

iii. The nodes failure-related issues for the straggling is out of the research scope.

1.9 Significance of the Study

This research provides the improved performance of data computations in

MapReduce based clusters and provision o f the distribution strategy for the resources

by developing the scheduling algorithms which encounters the interconnection of the

jobs and gives the solution for effective resource utilization. The proposed

algorithms can work well for both the homogeneous and heterogeneous environment.

Moreover, it provides a basis to handle larger types of data sets for certain digital

applications like Facebook and Tango. Furthermore, the partitioning scheme is

suitable for processing the different types o f jobs by reducing the extra overhead

caused during the migration o f the intermediate data. Thus, it would be beneficial for

many of the business cases by processing the data in a less time with less overhead in

order to respond the customers in an effective manner. In addition, the detection and

resolving the problems of slow processing tasks leads the bigger frameworks for

instance the power houses and grid stations to analyse their system’s abnormal

response in an optimistic way rather than shutting down the whole system.

19

1.10 Thesis Organization

The rest o f the thesis organization is as follows:

Chapter 2 presents an extensive literature review of the study domain namely

MapReduce based big data computing clusters. In addition, the most recent available

solutions and their limitations are thoroughly examined and presented.

Chapter 3 describes the research methodology adapted to achieve the

presented objectives. In addition, it provides an experimental environment used to

achieve and verify these research objectives.

Chapter 4 provides the design, implementation and evaluation details o f the

proposed algorithm i.e. Low Latency and Computational Cost based Tasks

Scheduling (LLCC-TS) algorithm for research objective number one. LLCC-TS

algorithm is developed to reduce makespan time for the Map phase and

computational cost.

Chapter 5 presents the design, implementation and evaluation details o f the

proposed algorithm i.e. Aggregation and Partition Based Accelerated Intermediate

Data Migration (AP-AIDM) algorithm for research objective number two. AP-AIDM

algorithm is developed to reduce data migration time and traffic overhead for shuffle

phase.

Chapter 6 provides the design, implementation and evaluation details o f the

proposed technique i.e. MapReduce Total Execution Time Prediction (MTETP)

technique for research objective number three. MTETP technique is designed to

reduce big data processing latency in MapReduce due to job straggling.

20

Chapter 7 is the conclusion chapter which comprises the research

achievements of this research work. In addition, it provides the limitations and future

research directions for this research work.

21

REFERENCES

Afrati, F., Dolev, S., Sharma, S. and Ullman, J.D. (2015). Meta-MapReduce: A

Technique for Reducing Communication in MapReduce Computations. arXiv

preprint arXiv:1508.01171 .

Ahmad, F., Chakradhar, S. T., Raghunathan, A., and Vijaykumar, T. N. (2014).

ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant MapReduce

Clusters. In Proceedings of the USENIX Annual Technical Conference 2014

(USENIX ATC 14), 1-13.

Ahmad, R., Ahmad, T., Pal, B. L., and Malviya, S. (2019). Approaches for Semantic

Relatedness Computation for Big Data. SSRN Electronic Journal, SSRN

3349564.

Alabdullah, B., Beloff, N.and White, M. (2018). Rise of Big Data-Issues and

Challenges. In proceedings of the 21st Saudi Computer Society National

Computer Conference (NCC), IEEE, 1-6.

Althebyan, Q., Jararweh, Y., Yaseen, Q., Alqudah, O., and Al-Ayyoub, M. (2015).

Evaluating Map Reduce Tasks Scheduling Algorithms Over Cloud

Computing Infrastructure. Concurrency and Computation: Practice and

Experience , 27(18), 5686-5699.

Amirian, P., van Loggerenberg, F., and Lang, T. (2017). Big Data and Big Data

Technologies. In Proceedings of the Big Data in Healthcare , Springer, Cham,

39-58.

Ananthanarayanan, G., Ghodsi, A., Shenker, S., and Stoica, I. (2014). Effective

Straggler Mitigation: Attack of the Clones. In Proceedings o f the 10th

{USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 13, 185-198.

Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha, B., and

Harris, E. (2010). Reining in the Outliers in Map-Reduce Clusters using

Mantri. Time , 265-278.

Apache (2008a) Apache Hadoop, Avaialable Online : htto://hadoop .apache. org/

185

Apache. (2008b). FIFO, Available Online: https://de veloper.ibm.com/articles/os-

hadoop-scheduling/

Apache. (2008c). Fair Scheduler, Available Online:

https://hadoop.apache.org/docs/r1.2.1/fair scheduler.html

Apache. (2009). Capicity Scheduler, Available Online:

https: //hadoop. apache. org/docs/current/hadoop-varn/hadoop-varn-

site/CapacitvScheduler.html

Arabnejad, V., & Bubendorfer, K. (2015). Cost Effective and Deadline Constrained

Scientific Workflow Scheduling for Commercial Clouds. In Proceedings of

the 14th International Symposium on Network Computing and Applications,

IEEE, 106-113..

Balagoni, Y., and Rajeswara Rao, R. (2017). Locality-Load-Prediction Aware Multi­

Objective Task Scheduling in the Heterogeneous Cloud Environment. Indian

Journal o f Science and Technology , 10(9), 1-9.

Bechini, A., Marcelloni, F., and Segatori, A. (2016). A MapReduce Solution for

Associative Classification of Big Data. Information Sciences , 332(C), 33-55.

Bellare, M., Goldreich, O. and Goldwasser, S. (1994). Incremental Cryptography:

The Case o f Hashing and Signing. In Proceedings of the Annual International

Cryptology Conference , Springer, Berlin, 216-233.

Benjelloun, F. Z., and Lahcen, A. A. (2015). Big Data Security: Challenges,

Recommendations and Solutions. Web Services: Concepts, Methodologies,

Tools, and Applications, IGI Global, 25-38.

Bonner, S., Kureshi, I., Brennan, J. and Theodoropoulos, G. (2017). Exploring the

Evolution o f Big Data Technologies. Software Architecture fo r Big Data and

the Cloud , Morgan Kaufmann,253-283.

Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther, A. I.,

Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D. and Freund, R. F. (2001).

A Comparison of Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed Computing Systems.

Journal o f Parallel and Distributed Computing , 61(6), 810-837.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R.

(2010). CloudSim: A Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation o f Resource Provisioning

Algorithms. Software: Practice and experience , 41(1), 23-50.

186

https://de
https://hadoop.apache.org/docs/r1.2.1/fair

Carrillo, G.E. and Abad, C.L. (2017). Inferring Workflows with Job Dependencies

from Distributed Processing Systems Logs. In Proceedings o f the 15th Intl

C onf on Dependable, Autonomic and Secure Computing, 15th Intl C onf on

Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence

and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech), IEEE, 1025-1030.

Chen, J., Wang, D., and Zhao, W. (2013a). A Task Scheduling Algorithm for

Hadoop Platform. Journal o f Computers , 8(4), .929-936.

Chen, K., Powers, J., Guo, S., and Tian, F. (2014). CRESP: Towards Optimal

Resource Provisioning for Mapreduce Computing in Public Clouds. IEEE

Transactions on Parallel and Distributed Systems , 25(6), 1403-1412.

Chen, Q., Liu, C. and Xiao, Z. (2013b). Improving MapReduce Performance Using

Smart Speculative Execution Strategy. IEEE Transactions on Computers ,

63(4), 954-967.

Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Gerth, J., Talbot, J.,

Elmeleegy, K. and Sears, R. (2010). Online Aggregation and Continuous

Query Support in Mapreduce. In Proceedings o f the SIGMOD International

Conference on Management o f Data , ACM, 1115-1118.

Costa, P., Donnelly, A., Rowstron, A., and O’Shea, G. (2012). Camdoop: Exploiting

in-Network Aggregation for Big Data Applications. In Proceedings o f the 9th

USENIX Conference on Networked Systems Design and Implementation ,

USENIX Association, 1-3.

Cox, D. R., Kartsonaki, C., and Keogh, R. H. (2018). Big data: Some Statistical

Issues. Statistics and Probability Letters , 136, 111-115.

Dahiphale, D., Karve, R., Vasilakos, A. V., Liu, H., Yu, Z., Chhajer, A., Wang, J.

and Wang, C. (2014). An Advanced MapReduce: Cloud MapReduce,

Enhancements and Applications. IEEE Transactions on Network and Service

Management , 11(1), 101-115.

Deshai, N., Sekhar, B.V.D.S., Venkataramana, S., Srinivas, K. and Varma, G.P.S.

(2019). Big Data Hadoop MapReduce Job Scheduling: A Short Survey.

Information Systems Design and Intelligent Applications , Springer, 349-365.

DeZyre. (2015). Hadoop Ecosystem Components and Its Architecture. Available

Online : https://www.dezvre.com/article/hadoop-ecosvstem-components-and-

its-architecture/114

187

https://www.dezvre.com/article/hadoop-ecosvstem-components-and-

Drakos, G. (2018). How to Select the Right Evaluation Metric for Machine Learning

Models: Part 1 Regression Metric. Towards Data Science, 1-9.

Ekanayake, J., Gunarathne, T., and Qiu, J. (2011). Cloud Technologies for

Bioinformatics Applications. IEEE Transactions on Parallel and Distributed

Systems, 22(6), 998-1011.

Espinosa, J. A., Kaisler, S., Armour, F., and Money, W. (2019). Big Data Redux:

New Issues and Challenges Moving Forward. In Proceedings o f the 52nd

Hawaii International Conference on System Sciences, 1065-1074.

Feng, D. G., Zhang, M., & Li, H. (2014). Big Data Security and Privacy Protection.

Jisuanji Xuebao/Chinese Journal o f Computers, 37(1), 246-258.

Fernandez, A., Triguero, I., Galar, M., and Herrera, F. (2019). Guest Editorial:

Computational Intelligence for Big Data Analytics. Cognitive Computation,

11, 329-330.

Foundation, T. A. S. (2008). MapReduce Tutorial. Available Online:

https://had00p.apache.0rg/d0cs/r1 .2 .1 /mapred tutorial.pdf, 1-43.

Frost, J. (2013). Regression Analysis: How Do I Interpret R-squared and Assess the

Goodness-of-Fit? The Mintab Blog, 30.

Frost, J. (2016). How to Compare Regression Slopes. The Minitab Blog. Available

Online : https://blog.minitab.com/blog/adventures-in-statistics-2/how-to-

compare-regression-lines-between-different-models

Fu, H., Chen, H., Zhu, Y., and Yu, W. (2017). FARMS: Efficient Mapreduce

Speculation for Failure Recovery in Short Jobs. Parallel Computing, 61, 68­

82.

Garcia-Gil, D., Ramirez-Gallego, S., Garcia, S., and Herrera, F. (2017). A

Comparison on Scalability for Batch Big Data Processing on Apache Spark

and Apache Flink. Big Data Analytics, 2(1), 1.

Gartner (2013). Gartner. Available Online:

https://searchbusinessanalvtics.techtarget.com/news/2240162412/New-

Gartner-report-dissects-the-hvpe-around-big-data-technologies

Gaur, M., Minocha, B., and Muttoo, S. K. (2018). A Study o f Factors Affecting

Mapreduce Scheduling. Advances in Intelligent Systems and Computing,

Springer Verlag, 654, 275-281.

Geczy, P. (2014). Big Data Characteristics. The Macrotheme Review, 3(6), 94-104.

188

https://had00p.apache.0rg/d0cs/r1.2.1/mapred
https://blog.minitab.com/blog/adventures-in-statistics-2/how-to-
https://searchbusinessanalvtics.techtarget.com/news/2240162412/New-

Gemayel, N. (2016). Analyzing Google File System and Hadoop Distributed File

System. Research Journal o f Information Technology , 8(3), 66-74.

Gens, F., Philip, C., and Bill, F. (2017). IDC FutureScape: Worldwide IT Industry

2018 Predictions, Printerfriendly- US41883016.

Goudarzi, M. (2017). Heterogeneous Architectures for Big Data Batch Processing in

MapReduce Paradigm. IEEE Transactions on Big Data , 5(1), 18-33.

Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., and Buyya, R. (2017). iFogSim: A

Toolkit for Modeling and Simulation o f Resource Management Techniques in

the Internet o f Things, Edge and Fog Computing Environments. Software:

Practice and Experience , 47(9), 1275-1296.

Hashem, I. A. T., Anuar, N. B., Marjani, M., Ahmed, E., Chiroma, H., Firdaus, A.,

Abdullah, M.T., Alotaibi, F., Ali, W.K.M., Yaqoob, I. and Gani, A. (2018a).

MapReduce Scheduling Algorithms: A Review. Journal o f Supercomputing ,

1-31.

Hashem, I. A. T., Anuar, N. B., Marjani, M., Gani, A., Sangaiah, A. K., and

Sakariyah, A. K. (2018b). Multi-objective Scheduling (MOS) o f MapReduce

Jobs in Big Data Processing. Multimedia Tools and Applications , 77(8),

9979-9994.

Hashem, I. A. T., Anuar, N.B., Gani, A., Yaqoob, I., Xia, F. and Khan, S.U. (2016).

MapReduce: Review and open challenges. Scientometrics , 109(1), 389-422.

Herodotou, H., Dong, F., and Babu, S. (2011). No One (Cluster) Size Fits All. In

Proceedings o f the 2nd AC M Symposium on Cloud Computing - SOCC ’11 ,

ACM, New York, 1-14.

Herodotou, H., Lim, H., Luo, G., Borisov, N., and Dong, L. (2011). Starfish : A Self­

tuning System for Big Data Analytics. Cidr , 11, 261-272.

Hsueh, S. C., Lin, M. Y., and Chiu, Y. C. (2014). A Load-Balanced Mapreduce

Algorithm for Blocking-Based Entity-Resolution with Multiple Keys. In

Proceedings o f the Research and Practice in Information Technology Series ,

Australian Computer Society, 152, 3-9.

Hu, Y., Luo, C., Tang, T., Lou, J., Cai, H., and Li, J. (2010). Peer-to-Peer Aided Live

Video Sharing System, United States Patent, US 7,733,808 B2.

Hyndman, R. J., and Koehler, A. B. (2006). Another Look at measures o f Forecast

Accuracy. International Journal o f Forecasting , 22(4), 679-688.

189

Ibarra, O. H.,and Kim, C. E. (1977). Heuristic Algorithms for Scheduling

Independent Tasks on Nonidentical Processors. Journal o f the ACM , 24(2),

280-289.

IBM. (2018). Rides the Clouds. Available Online:

https://www.thestreet.com/markets/ibm-claws-ahead-in-the-cloud-14656264

Ibrahim, S., Jin, H., Lu, L., Wu, S., He, B., and Qi, L. (2010). LEEN:

Locality/Faimess-Aware Key Partitioning for MapReduce in the Cloud. In

Proceedings of the Second International Conference on Cloud Computing

Technology and Science, IEEE,17-24.

Ijaz, S., and Munir, E. U. (2018). MOPT: List-Based Heuristic for Scheduling

Workflows in Cloud Environment. The Journal o f Supercomputing , 75(7),

3740-3768.

Investopedia. (2019). R-Squared Definition. Available Online :

https://www.invest0pedia.c0m/terms/r/r-sauared.asp

Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. (2007). Dryad: Distributed

Data-Parallel Programs from Sequential Building Blocks. Operating Systems

Review (ACM), 59-72.

Jeffrey, D., and Sanjay, G. (2008). MapReduce: Simplified Data Processing on Large

Clusters. Communications o f the ACM , 51(1), 107-113.

Jin, H., Yang, X., Sun, X. H., and Raicu, I. (2012). ADAPT: Availability-Aware

Mapreduce Data Placement for Non-Dedicated Distributed Computing. In

Proceedings o f the International Conference on Distributed Computing

Systems , 516-525.

JJ. (2016). MAE and RMSE — Which Metric is Better? - Human in a Machine

World - Medium. Available Online : https://medium.com/human-in-a-

machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde 13d

Jlassi, A., Martineau, P. and Tkindt, V. (2015). Offline Scheduling o f Map and

Reduce Tasks on Hadoop Systems. Available Online : https://hal.archives-

ouvertes.fr/hal-01324994

Kalavri, V., Brundza, V. and Vlassov, V.(2013). Block Sampling: Efficient Accurate

Online Aggregation in Mapreduce. In Proceedings o f the 5th International

Conference on Cloud Computing Technology and Science , IEEE, 250-257.

190

https://www.thestreet.com/markets/ibm-claws-ahead-in-the-cloud-14656264
https://www.invest0pedia.c0m/terms/r/r-sauared.asp
https://medium.com/human-in-a-
https://hal.archives-

Kang, S. J., Lee, S. Y., and Lee, K. M. (2015). Performance Comparison of

OpenMP, MPI, and MapReduce in Practical Problems. Advances in

Multimedia , 1-10.

Karau, H., and Warren, R. (2017). High Performance Spark. Best Practices fo r

Scaling and Optimizing, Apache Spark , 1-198.

Karagoz, E. (2014). Incremental Hash Functions (Doctoral Dissertation, Bilkent

University).

Ke, H., Li, P., Guo, S., and Stojmenovic, I. (2015). Aggregation on the Fly:

Reducing Traffic for Big Data in the Cloud. IEEE Network , 29(5), 17-23.

Khan, M., Jin, Y., Li, M., Xiang, Y., and Jiang, C. (2016). Hadoop Performance

Modeling for Job Estimation and Resource Provisioning. IEEE Transactions

on Parallel and Distributed Systems , 27(2), 441-454.

Kobusinska, A., Leung, C., Hsu, C. H., Raghavendra, S., and Chang, V. (2018).

Emerging Trends, Issues and Challenges in Internet o f Things, Big Data and

Cloud Computing. Future Generation Computer Systems , 87, 416-419.

Kokilavani, T., and Amalarethinam, D. I. G. (2011). Load Balanced Min-Min

Algorithm for Static Meta-Task Scheduling in Grid Computing. International

Journal o f Computer Applications , 20(2), 43-49.

Konjaang, J. K., Maipan-uku, J. Y., and Kubuga, K. K. (2016). An Efficient Max-

Min Resource Allocator and Task Scheduling Algorithm in Cloud Computing

Environment, arXiv preprint arXiv:1611.08864 .

Koutroumpis, P., Leiponen, A., and Thomas, L. (2017). The (Unfulfilled) Potential

o f Data Marketplaces. ETLA Working Papers 2420.

Lavanya, S .R., and Sharma, A. (2016). Traffic Analysis in MapReduce,

International Journal o f Computer Science and Mobile Computing, 5(5), 765­

770.

Lee, H., Kim, Y.W. and Kim, K.Y. (2018). Implement of MapReduce-based Big

Data Processing Scheme for Reducing Big Data Processing Delay Time and

Store Data. Journal o f the Korea Convergence Society , 9(10), 13-19.

Lin, J., and Dyer, C. (2010). Data-Intensive Text Processing with MapReduce.

Synthesis Lectures on Human Language Technologies , 3(1), 1-177.

Liroz-gistau, M., Pacitti, E., and Valduriez, P. (2013). M R-Part: Minimizing Data

Transfers Between Mappers and Reducers in MapReduce. Bases de Donnees

Avancees . (Bda), 1-16.

191

Lomotey, R. K., and Deters, R. (2014). Towards Knowledge Discovery in Big Data.

In Proceedings o f the 8th International Symposium on Service Oriented

System Engineering, SOSE 2014 , IEEE, 181-191.

Lu, Z., Wang, N., Wu, J., and Qiu, M. (2018). IoTDeM: An IoT Big Data-oriented

MapReduce Performance Prediction Extended Model in Multiple Edge

Clouds. Journal o f Parallel and Distributed Computing , 118, 316-327.

Luo, T., Zhu, Y., Wu, W., Xu, Y., and Du, D. Z. (2017). Online Makespan

Minimization in MapReduce-like Systems with Complex Reduce Tasks.

Optimization Letters , 11(2), 271-277.

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., and

Vassilakis, T. (2010). Dremel: Interactive Analysis o f Web-Scale Datasets. In

Proceedings o f the 36th International Conference on Very Large Data Bases ,

330-339.

Microsoft. (2004). Dryad - Microsoft Research. Available Online :

http://research.microsoft.com/en-us/proiects/drvad/

Miloslavskaya, N. and Tolstoy, A. (2016). Application of Big Data, Fast Data, and

Data Lake Concepts to Information Security Issues. In Proceedings o f the 4th

International Conference on Future Internet o f Things and Cloud Workshops

(FiCloudW), IEEE,148-153.

Narayanapppa, M. T., Channabasamma, A., and Hegadi, R. S. (2018). Need of

Hadoop and Map Reduce for Processing and Managing Big Data. Web

Services: Concepts, Methodologies, Tools, and Applications , IGI Global

1588-1600.

Neelakandan, S., Divyabharathi, S., Rahini, S., and Vijayalakshmi, G. (2016). Large

Scale Optimization to Minimize Network Traffic Using Mapreduce in Big

Data Applications. In Proceedings o f the 2016 International Conference on

Computation o f Power, Energy Information and Commuincation (ICCPEIC) ,

IEEE, 193-199.

Nita, M.-C., Pop, F., Voicu, C., Dobre, C., and Xhafa, F. (2015). MOMTH: Multi­

Objective Scheduling Algorithm O f Many Tasks in Hadoop. Cluster

Computing , 18(3), 1011-1024.

Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., and Belfkih, S. (2018). Big Data

Technologies: A Survey. Journal o f King Saud University - Computer and

Information Sciences , 30, 431-448.

192

http://research.microsoft.com/en-us/proiects/drvad/

Pandey, V., and Saini, P. (2018). How Heterogeneity Affects the Design o f Hadoop

MapReduce Schedulers: A State-of-the-Art Survey and Challenges. Big Data ,

6, 72-95.

Patel, G., Mehta, R., and Bhoi, U. (2015). Enhanced Load Balanced Min-min

Algorithm for Static Meta Task Scheduling in Cloud Computing. Procedia

Computer Science , 57, 545-553.

Phinney, M., Lander, S., Spencer, M., & Shyu, C.-R. (2016). Cartesian Operations on

Distributed Datasets Using Virtual Partitioning. In Proceedings o f the Second

International Conference on Big Data Computing Service and Applications

(BigDataService), IEEE, 1-9.

Prajapati, V. (2013). Big Data analytics with R and H adoop: set up an integrated

infrastructure of R and Hadoop to turn your data analytics into Big Data

analytics. Packt Publishing. Available Online :

https://dl.acm.org/doi/book/10.5555/2578622

Rashmi, S., and Basu, A. (2016). Deadline constrained Cost Effective Workflow

Scheduler for Hadoop clusters in Cloud Datacenter. In Proceedings o f the

International Conference on Computation System and Information

Technology fo r Sustainable Solutions (CSITSS) , IEEE, 409-415).

Rasooli, A., and Down, D. G. (2014). COSHH: A Classification and Optimization

based Scheduler for Heterogeneous Hadoop Systems. Future Generation

Computer Systems , 36(36), 1-15.

Ren, X., Ananthanarayanan, G., Wierman, A., and Yu, M. (2015). Hopper:

Decentralized Speculation-Aware Cluster Scheduling at Scale. In

Proceedings o f the Special Interest Group on Data Communication -

SIGCOMM ’15 , ACM, New York, 45(4), 379-392.

Salih, F. I., Ismail, S. A., Hamed, M. M., Mohd Yusop, O., Azmi, A., and Mohd

Azmi, N. F. (2019). Data Quality Issues in Big Data: A Review. Advances in

Intelligent Systems and Computing , 843, 105-116.

Saraladevi, B., Pazhaniraja, N., Paul, P. V., Basha, M. S. S., and Dhavachelvan, P.

(2015). Big Data and Hadoop-A Study in Security Perspective. Procedia

Computer Science, 50, .596-601.

Shekhar, S., & Xiong, H. (2008). RMS Error. In Encyclopedia o f GIS , 967-967.

Available Online :

http://statweb.stanford.edu/~susan/courses/s60/split/node60.html

193

https://dl.acm.org/doi/book/10.5555/2578622
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html

Shi, L., Wang, Z., Yu, W. and Meng, X. (2017). A Case Study o f Tuning

MapReduce for Efficient Bioinformatics in the Cloud. Parallel Computing ,

61, .83-95.

Sindhu, S., and Mukherjee, S. (2011). Efficient Task Scheduling Algorithms for

Cloud Computing Environment. In Proceedings of the International

Conference on High Performance Architecture and Grid Computing ,

Springer, Berlin, 79-83.

Singh, A. K., Shafique, M., Kumar, A., and Henkel, J. (2013). Mapping on

Multi/Many-Core Systems. In Proceedings o f the 50th ACM/EDAC/IEEE

Design Automation Conference (DAC), IEEE, 1-10.

Srinivas Agneeswaran, V. (2014). Big Data Analytics Beyond Hadoop: Real-Time

Applications with Storm, Spark. Available Online :

https://www.semanticscholar.org/paper/Big-Data-Analvtics-Bevond-

Hadoop%3A-Real-Time-with-

Agneeswaran/c2ffbcd8c26f49670afde6b4b080c097d37f1c43

Stewllwagen, E. (2019). Welcome to Forecast Pro - Software for sales forecasting,

inventory planning, demand planning, S&OP and collaborative

planning. Available Online :

http://www .forecastpro. com/T rends/forecasting 101August2011. html

Taillard, J., Philip, P., and Bioulac, B. (1999). Momingness/Eveningness and the

Need for Sleep. Journal o f Sleep Research , 8(4), 291-295.

Talia, D. (2019). A View of Programming Scalable Data Analysis: from Clouds to

Exascale. Journal o f Cloud Computing: Advances, Systems and Applications ,

8(4), 1-16.

Tan, J., Wang, Y., Yu, W. and Zhang, L. (2014). Non-work-Conserving Effects in

MapReduce: Diffusion Limit and Criticality. A C M SIGMETRICS

Performance Evaluation Review , 42(1), 181-192.

Tang, Z., Jiang, L., Zhou, J., Li, K., and Li, K. (2015). A Self-Adaptive Scheduling

Algorithm for Reduce Start Time. Future Generation Computer Systems ,

43(44), 51-60.

Tang, Z., Liu, M., Ammar, A., Li, K., and Li, K. (2016). An Optimized Mapreduce

Workflow Scheduling Algorithm for Heterogeneous Computing. The Journal

o f Supercomputing , 72(6), 2059-2079.

194

https://www.semanticscholar.org/paper/Big-Data-Analvtics-Bevond-
http://www

Theme, H. (2019). RMSE: Root Mean Square Error - Statistics How To. Available

Online :

https://www.forecastpro.com/Trends/forecasting 101August2011.html

Thomas, A., Krishnalal, G. and Raj, V.J. (2015). Credit Based Scheduling Algorithm

in Cloud Computing Environment. Procedia Computer Science , 46, 913-920.

Thomas, L. D. W., and Leiponen, A. (2016). Big Data Commercialization. IEEE

Engineering Management Review , 44(2), 74-90.

Tiwari, N., Sarkar, S., Bellur, U., and Indrawan, M. (2015). Classification

Framework o f MapReduce Scheduling Algorithms. AC M Computing Surveys ,

47(3), 1-38.

Tsai, M.-Y., Chiang, P.-F., Chang, Y.-J., and Wang, W.-J. (2011). Heuristic

Scheduling Strategies for Linear-Dependent and Independent Jobs on

Heterogeneous Grids. In Proceedings of the International Conference on

Grid and Distributed Computing, Springer, Berlin, 496-505.

Varoquaux, G. (2018). Cross-Validation Failure: Small Sample Sizes Leadto Large

Error Bars. Neuroimage , 180, 68-77.

Verma, A., Cherkasova, L., and Campbell, R. H. (2011). Resource Provisioning

Framework for MapReduce Jobs with Performance Goals. In Proceedings of

the International Conference on Distributed Systems Platforms and Open

Distributed Processing , Springer, Berlin, 165-186.

Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., and Raicu, I. (2014). Optimizing

Load Balancing and Data-Locality with Data-Aware Scheduling. In

Proceedings o f the International Conference on Big Data (Big Data) , IEEE,

119-128.

Whang, K. Y. (2018). Recent Trends o f Big Data Platforms and Applications.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 11157 LNCS,

10-11.

Wu, D., Dai, Q., Liu, J., Li, B. and Wang, W. (2019). Deep Incremental Hashing

Network for Efficient Image Retrieval. In Proceedings o f the Computer

Vision and Pattern Recognition Conference on , IEEE, 9069-9077.

Xu, H., and Lau, W. C. (2017). Optimization for Speculative Execution in Big Data

Processing Clusters. IEEE Transactions on Parallel and Distributed Systems ,

28(2), 530-545.

195

https://www.forecastpro.com/Trends/forecasting

Yadwadkar, N.J., Hariharan, B., Gonzalez, J.E. and Katz, R. (2016). Multi-task

Learning For Straggler Avoiding Predictive Job Scheduling. The Journal o f

Machine Learning Research , 17(1), 3692-3728.

Yan, W., Xue, Y., and Malin, B. (2013). Scalable and Robust Key Group Size

Estimation for Reducer Load Balancing in MapReduce. In Proceedings o f the

International Conference on Big Data , IEEE, 156-162.

Yu, J. H., and Zhou, Z. M. (2019). Components and Development in Big Data

system: A Survey. Journal o f Electronic Science and Technology , 17(1), 51­

72.

Zacheilas, N., & Kalogeraki, V. (2016). ChEsS: Cost-Effective Scheduling Across

Multiple Heterogeneous Mapreduce Clusters. In Proceedings o f the

International Conference on Autonomic Computing (ICAC) , IEEE, 65-74.

Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H. and Stoica, I. (2008).

Improving MapReduce Performance In Heterogeneous Environments. Osdi,

Static.Usenix.Org, 8(4), 1-7.

Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S. and Stoica, I.

(2010). Delay Scheduling: A Simple Technique for Achieving Locality and

Fairness in Cluster Scheduling. In Proceedings o f the 5th European

conference on Computer systems , 265-278.

Zhao, J., Tao, J.,and Streit, A. (2016). Enabling Collaborative MapReduce on the

Cloud with a Single-Sign-on Mechanism. Computing , 98(1-2), 55-72.

Zhao, X., Chen, Y., Xiao, C., Ishikawa, Y., and Tang, J. (2016). Frequent Subgraph

Mining Based on Pregel. Computer Journal , 59(8), 1113-1128.

196

