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ABSTRACT 

The application of cold-formed steel (CFS) on roof structures has become 

popular in construction practices in Malaysia. Generally, CFS structure joints use 

self-drilling screws (SdS) for easy and fast installation purpose. However, a 

premature collapse of a CFS structure may occur due to connection failure. 

Therefore, in order to avoid and better prepare for such an eventuality, a study to 

overcome the failure of the connection on CFS structures is needed. Research 

suggests that a combined joint (connection) between SdS and adhesive (Hybrid 

connection) on CFS structures could prevent premature collapse. Informed by past 

and current research developments, this study therefore investigated the behaviour 

and failure modes of CFS connections with three different types of connection 

methods; adhesive, SdS and hybrid connection. Shear test was conducted to 

determine the ultimate failure load, where the connection failed as a result of direct 

shear acting on it. The effect of adhesive thickness, number of screws, bonded area, 

plate thickness and screw arrangement on connection strength was also studied and 

reviewed through experiment and statistical analyses using Pearson Correlation. The 

results demonstrated the existence of statistically significant correlation between the 

bonded area and bonding strength for C-section of CFS.   Specifically, an increase in 

the bonded area provides an increase in bonding strength. In this study it is also 

found that with an increase of screw quantities and plate thickness, the connection 

strength increased.  Comparisons on the connection strength between adhesive, SdS 

and hybrid connections was carried out and statistical analysis using ANOVA test 

prove that the strength of hybrid connections is statistically significantly higher 

compared to adhesive connection and SdS connection.  It was found that hybrid 

connection specimen utilising 0.5mm adhesive thickness, 4 screws connection, with 

a web depth of 100mm, plate thickness of 1.20mm and lapping length of 80mm, has 

the highest connection strength, specifically at 66% higher than adhesive connection, 

and 46% higher than SdS connection. Based on the regression analysis, this research 

proposed an empirical formula to calculate the hybrid connection strength. A 

comparison of hybrid connection strength between the experimental result and 

predicted connection strength (proposed empirical formula) was conducted and 

generally the predicted connection strength is in accordance with the experimental 

result. Therefore, the proposed empirical formula is considered ideal for calculating 

the connection strength of the hybrid connection limited to plate thickness range 

0.75mm – 1.20mm.  
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ABSTRAK 

Aplikasi keluli berbentuk sejuk (CFS) pada struktur bumbung telah menjadi 

popular dalam amalan pembinaan di Malaysia. Secara amnya, sambungan struktur 

CFS menggunakan skru self-drilling (SdS) untuk tujuan pemasangan yang mudah 

dan cepat. Walau bagaimanapun, keruntuhan struktur CFS pramatang mungkin 

berlaku kerana kegagalan sambungan. Oleh itu, untuk mengelakkan dan 

mempersiapkan diri dengan lebih baik untuk kemungkinan seperti itu, kajian 

diperlukan untuk mengatasi kegagalan sambungan pada struktur CFS. Penyelidikan 

menunjukkan bahawa gabungan SdS dan pelekat (sambungan hibrid) pada struktur 

CFS dapat mencegah keruntuhan pramatang. Oleh itu, berdasarkan perkembangan 

penyelidikan masa lalu dan semasa, kajian ini menyiasat tingkah laku dan mod 

kegagalan sambungan CFS dengan tiga jenis kaedah sambungan; sambungan 

pelekat, SdS dan hibrid. Ujian ricih dilakukan untuk menentukan beban kegagalan 

akhir, di mana sambungannya gagal akibat ricih langsung yang bertindak padanya. 

Pengaruh ketebalan pelekat, jumlah skru, luas ikatan, ketebalan plat dan susunan 

skru pada kekuatan sambungan juga dikaji melalui analisis eksperimen dan statistik 

menggunakan Korelasi Pearson. Hasilnya menunjukkan adanya hubungan yang 

signifikan secara statistik antara kawasan terikat dan kekuatan ikatan untuk bahagian 

C-seksyen dari CFS. Secara khusus, peningkatan di kawasan ikatan memberikan 

peningkatan kekuatan ikatan. Dalam kajian ini juga didapati bahawa dengan 

peningkatan kuantiti skru dan ketebalan plat, kekuatan sambungan bertambah. 

Perbandingan kekuatan sambungan antara sambungan pelekat, SdS dan hibrid 

dilakukan dan analisis statistik menggunakan ujian ANOVA membuktikan bahawa 

kekuatan sambungan hibrid secara statistik jauh lebih tinggi berbanding dengan 

sambungan pelekat dan sambungan SdS. Didapati bahawa spesimen sambungan 

hibrid yang menggunakan ketebalan pelekat 0.5mm, sambungan 4 skru, dengan 

kedalaman web 100mm, ketebalan plat 1.20mm dan panjang putaran 80mm, 

mempunyai kekuatan sambungan tertinggi, khususnya pada tahap 66% lebih tinggi 

daripada sambungan pelekat, dan 46% lebih tinggi daripada sambungan SdS. 

Berdasarkan analisis regresi, penyelidikan ini mencadangkan formula empirik untuk 

mengira kekuatan sambungan hibrid. Perbandingan kekuatan sambungan hibrid 

antara hasil eksperimen dan kekuatan sambungan yang diramalkan (formula empirik 

yang dicadangkan) telah dilakukan dan umumnya kekuatan sambungan yang 

diramalkan sesuai dengan hasil eksperimen. Oleh itu, formula empirik yang 

dicadangkan dianggap sesuai untuk mengira kekuatan sambungan sambungan hibrid 

yang terhad kepada julat ketebalan plat 0.75mm - 1.20mm.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The increase in recent research and the diversity of commercial applications 

dealing with the use of Cold-formed steel (CFS) structures in the construction 

industry was initiated at the end of the 1990s with the introduction of a roofing steel 

frame system for residential buildings. Nowadays, the channel (C) and zee (Z) 

section of (CFS) are commonly used for homes, roofing, wall frames, railings, 

purlins and cladding (see Figure 1.1). Some of the various needs could not be 

satisfied only by restructuring techniques using the current CFS, particularly in 

connection part. As the main connection for the CFS is screws and bolts, the study 

and development of the alternative connection of the CFS section must be carried 

out. 

 

Figure 1.1 Cold-formed steel sections used as column, rafters, and purlin (ECCS, 

1987) 
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The increasing application of CFS in the construction field is due to its 

advantageous characteristics. CFS is lightweight with high durability and high 

strength, and it is also made with solid material consistency, with corrosion-free 

properties (Probowo, 2012). Although CFS sections are increasingly being utilised, 

numerous concerns are associated with them, which include thin-walled sections and 

connection failure. For instance, thin-walled sections present a structural issue as 

they restrict the structural performance of CFS sections due to premature buckling 

and instability. Meanwhile, a connection failure takes place when the main support 

component that mechanically tightens the structural elements together are not 

properly secured.  

Common joining techniques for CFS connections such as welded, the 

mechanical fastener, and adhesive have been studied by researchers around the world 

(Billah et al., 2019; Saipee, 2013; Hongthong et al., 2019). To achieve maximum 

strength of the connection, builders such as contractor need to improvise on this 

joining technique. Nevertheless, research on joining technique for CFS connection 

using adhesive and screws has not been explored much. The behaviour and 

performance of such connections need to be further investigated in order to 

accurately determine the strength of the connection.   

1.2 Background of Study 

The housing construction industry has introduced the first truss system using 

wood for the roofing of terrace houses and shop houses. The use of wood to produce 

truss systems has had implications for the environment, such as greenhouse gas 

emissions, air and water pollution. Furthermore, it in recent years, it has become a 

challenge to procure good timber with the right maturity and treatment. Researchers, 

therefore, need to find an alternative to address the growing building materials 

shortage. The discovery of an alternative material comes at a critical time, as poor 

project management have caused an overzealous consumption of wood in the 

construction industry, which in turn have contributed to the pollution problem by 

creating waste.  
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As was iterated earlier, CFS is increasingly being used in construction due to 

its light weight, high durability, high strength, and material consistency. Therefore, 

the use of CFS is the best alternative construction material for residential and 

commercial buildings. Apart from the outlined advantages, the CFS truss system is 

also able to employ semi-skilled workers, as its installation work does not typically 

require high skills compared to the conventional wood-based truss system. 

Additionally, compared with the conventional steel truss system, the CFS truss 

system is more economical because the steel raw materials used are of different 

grades, weights, and sizes. 

Figure 1.2 shows the connection lapped joints which is an important 

structural element whose function is to transfer load from one member to another. In 

construction projects where CFS is used, fasteners such as bolts and nuts, screws, 

among other special devices like the adhesive bonding are commonly used (Daudet 

and Roger, 1996).   

 

Figure 1.2 A commonly used connection device used in the structural system  
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Other commonly utilised fasteners are self-drilling screws, which are used to 

make connections to metal cladding roofs, as well as specialty roofs such as framing 

members. According to Daudet and Roger (1996), the self-drilling screw is an 

externally threaded fastener, meaning that they can drill holes through and from their 

internal threads.  Therefore, in one simple operation, the self-drilling screw is 

effective in clamping two or more pieces of thin steel sheets, offering a more secure 

clamp and improved thread engagement. Moreover, the self-drilling screw can be 

used to determine correct hole sizes on a connection (Daudet and Roger, 1996). This 

significantly reduces the fabrication time taken to pre-drill holes during the 

installation stage.  The economical factor also makes the self-drilling screw a sound 

choice, especially for use in fastening processes that do not require power drills and 

drill bits, costly press tools, machine taps, and high maintenance. Daudet and Roger 

(1996), therefore conclude that for fastening thin-walled steel members, such as CFS 

structural members, self-drilling screws can provide the fastest, most efficient, and 

economical method.   

Naito et al. (2012) state that, adhesive joints are also used in various 

industries because of their advantages over mechanical fasteners such as riveting, 

welding, and bolting. In general, adhesive joints distribute stress uniformly; however, 

stress concentrations are at relatively lower levels than those of mechanical fasteners 

(Siti Nur Rahmah et al., 2015). According to Daudet ad Roger (1996), the process of 

fabrication of a connection is the most labour-intensive aspect. As such, a deep 

understanding of hybrid connection behaviour can contribute to the optimum 

connection design and potentially reduces the cost of fabrication. A hybrid 

connection refers to self-drilling screws that are combined with adhesives, and which 

provide links between structural elements through the use of screws. In hybrid 

connection, if the force direction on the connection is parallel to the screw axis then 

it is said to be loaded in tension. However, if the direction of the external load or 

force acting on the connection is parallel to the cross-sectional surface, the screw 

connection is said to be loaded in shear (see Figure 1.3).  
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Figure 1.3 Screw loaded in shear or tension (Serrette et al., 2009) 

Thin-walled constructions
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Figure 1.4 CFS Connections (Billah et al., 2019) 
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The application of hybrid connections is a growing area of interest among 

researchers. Nevertheless, limited studies have been conducted on utilising combined 

adhesives with self-drilling screws (hybrid), especially for CFS connections (see 

Figure 1.4). Therefore, this study aims to investigate the connectivity behaviour 

regarding CFS trusses by utilising combined adhesives with self-drilling screws, 

besides also to provide relevant design guidance for industry professionals. 

1.3 Problem Statement  

Despite its wide use, of the application of CFS sections as an alternative for 

building materials remains a secondary choice among professionals in the 

construction industry, as the use of traditional materials is still preferred. For 

example, the use of wood truss structure for the construction of terraced houses and 

shop houses. Wood potentially invites numerous problems in the roof system itself, 

as the wood that was installed during the construction process may be left by the 

contractor, without any shelter. Over time, the wood used to build the truss structure 

will decay due to environmental factors.  

To overcome this issue, the introduction of alternative materials such as CFS 

sections to replace wood for building truss structure, is therefore deemed necessary. 

In recent years, the housing industry in Peninsular Malaysia has been using CFS in 

its truss system, although CFS use has yet to achieve a nationwide reach. Truss 

system uses screw type connections for its fabrication process, which offers much 

better quality compared to the wood truss system. As was stated earlier, the 

lightweight, thin, and portable nature of CFS makes it‘s a practical choice for the 

construction sector yet, connection flaws in CFS structures could lead to weaknesses 

in the connection area, thus reducing the load-bearing capacity of the structure. The 

combined effect of element weakness and connection weakness on the CFS structure 

often leads to a premature collapse of the structure. To avoid such damaging 

outcomes, a better understanding of the behaviour of screw connections is thus 

critical, to help in optimal connection design.  
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As the connection behaviour in CFS truss structure is key to ensure the safety 

of the structure under loading conditions, it is therefore necessary to study the 

adhesive connections to improve the static strengths of CFS structures. Although the 

design standards, material properties, element strength, member design, mechanical 

connections, and structural assemblies of CFS are regulated by the American Iron 

and Steel Institute (AISI), under the code of Standard Practice for CFS structural 

framing, there is no standard as yet for adhesive joints. Thus, an improved 

understanding of the behaviour of adhesive connections that is compatible with CFS 

material could lead to effectiveness of connection design.   

To improve the performance of CFS structures, innovations in connection 

design are needed. A new connection method on CFS that combines self-drilling 

screws and adhesives for CFS connections or hybrid connection potentially offers an 

increase in connection strength. Thus, development and design analysis of the CFS 

hybrid connection and its stability are the focus of this study. 

1.4 Research objectives 

The objective of the research was to study the behaviour of hybrid connection 

of CFS utilising adhesive and self-drilling screws. To address the problem statements 

discussed previously, the following research objectives were outlined:  

i. To experimentally assess the performance of adhesives that is compatible 

with CFS material and mode of failure.  

ii. To experimentally assess the behaviour and strength of self-drilling screws 

connection and mode of failure.  

iii. To experimentally assess the behaviour and strength of hybrid connection and 

mode of failure.  

iv. To compare experimental results between adhesive, self-drilling screws, and 

hybrid connection. 
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v. To conduct an analytical study and propose an empirical formula for the 

strength of hybrid connection, and to compare experimental and calculated 

data from empirical formula.   

1.5 Research scope and limitations 

This study covered the performance and behaviour of CFS connections with 

three types of connection methods – the adhesive connection, self-drilling screws 

connection, and hybrid connection. The following lists the scope of the study; 

i. A total of 90 adhesive connection specimens were tested in the laboratory 

subject to thickness of plate range from 0.75mm – 1.20mm for C-section and 

Flat-plate. Then, difference on adhesive thickness between 0.5mm - 0.7mm 

for Flat-plate connection also studied.   

ii. A total of 108 self-drilling screws connection specimens comprising of 

different numbers of screws (2, 3, 4 screws) and different screw arrangement 

(parallel and perpendicular) were tested in the laboratory.  

iii. A total of 36 hybrid connection specimens were tested in the laboratory. and 

connection strength.  

iv. The connection strength between adhesive connection, self-drilling screw 

connection, and a hybrid connection was compared in this study through 

experimental results and statistical analysis results using ANOVA.  

v. An analytical study and regression test was conducted. An empirical formula 

was proposed for hybrid connection strength subject to thickness of plate 

range from 0.75mm – 1.20mm for C-section and Flat-plate. 

In this study, only Pioneer All-purpose epoxy was used as adhesive in this 

study, with one self-drilling screw type measuring one diameter. The design capacity 

of each section or the resistance capacities of each joint were calculated according to 

EN1993-1-3: Cold-formed thin gauge members and sheeting. 
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1.6 Significance of the study 

This research is a significant endeavour in the improvement of CFS 

connection by combining adhesive and self-drilling screws. The empirical equation 

proposed for the strength of hybrid connection in this study is a helpful guide to 

develop CFS truss structures utilising hybrid connection, besides providing 

information on reducing fabrication costs.   

1.7 Thesis Outline  

This thesis is structured in seven chapters: 

Chapter 1 introduces the overview of the research background, problem 

statement, objective, scope, research methodology, and significance of the study.  

Chapter 2 reviews literature encompassing basic theories on CFS materials, 

CFS connection on self-drilling screws, adhesive, and hybrid.   

Chapter 3 describes the experimental study on CFS adhesive connection 

performance. The first experiment was conducted on S-CFS: C-section and G-CFS: 

C-section specimen, which was then followed by CFS: Flat-section. Adhesives of 

differing thickness were focused on in this chapter. Besides, statistical analysis was 

also conducted.  

Chapter 4 then discusses the performance of self-drilling screws in CFS 

connection. The first experiment on CFS: C-section specimen was conducted, which 

was then followed by CFS: Flat-section specimen. Varied numbers of self-drilling 

screws and arrangements were highlighted in this chapter. Besides, statistical 

analysis was also conducted.  
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Chapter 5 discusses the performance of hybrid CFS connection, outlined in 

the experimental study of hybrid connections, using the shear test method to collect 

data on the bearing capacity. CFS: Flat-section was used for the experiment. Besides, 

statistical analysis was also conducted.  

Chapter 6 examines the analytical study and theory of structural mechanics 

involved in the calculation of CFS connection.  

Chapter 7 concludes the thesis by providing a summary of research, 

conclusion, and recommendations for further studies.  
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