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ABSTRACT 

Soil liquefaction is one of the catastrophic effects that result from earthquakes. 

It is a phenomenon that occurs when loose, saturated, cohesionless soil loses its 

strength and stiffness as a result of rapid loading. Several techniques have been 

employed to mitigate the effects of soil liquefaction. However, these techniques either 

require high energy for its execution, or the chemical admixtures used may have 

adverse effects on the environment. Consequently, biocementation via microbial 

induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation 

(EICP) was explored as a technique to mitigate soil liquefaction. The bacterial strain 

used in the MICP process was Bacillus megaterium. Meanwhile, a plant-derived 

urease enzyme was used in EICP. In this study, experimental based research was 

conducted to examine the feasibility of biocementation in the mitigation of 

liquefaction in sandy soil. The research is divided into three main phases. The first 

phase examines the effect of environmental factors (pH, temperature and salt content) 

on the growth of B. megaterium. Test tube tests were conducted to determine the 

amount of calcium carbonate (CaCO3) precipitates at different cementation reagent 

concentrations. Based on the test tube test’s results, the EICP method of treatment was 

adopted to continue with the second and third study phases, due to the amount of 

calcite produced in the process. The second phase evaluates the effectiveness of EICP 

treatment on sandy soil through a series of unconfined compressive strength (UCS) 

tests. The effects of factors, such as curing temperature (4, 10, 20, 30, 40 and 50ºC), 

the concentration of cementation reagent (0.25, 0.5, 0.75, 1.0 and 1.25 M), number of 

treatment cycles (1, 2 and 3 cycles) and relative density (loose, medium and dense), 

palm oil fuel ash (POFA) content were examined on the biocemented soil. The third 

phase evaluates the effect of biocementation on the cyclic resistance of sandy soil, in 

terms of confining pressure, Cyclic Stress Ratio (CSR) and relative density, through a 

series of cyclic triaxial tests. The liquefaction potential of treated soils was investigated 

with respect to the development of excess pore pressure. The optimum environmental 

growth conditions, in terms of pH, temperature and salt content, were pH 7, 30°C and 

1% (w/v) NaCl, respectively. Findings from the test tube tests showed the mass 

calcium carbonate precipitate increased when the concentration of cementation reagent 

(CCR) was increased from 0.5-1.0 M; irrespective of the curing period for both MICP 

and EICP. Findings from the UCS tests showed a linear relationship between UCS 

values at various cementation reagent concentrations and average calcium carbonate 

content. Furthermore, the strength of biocemented sandy soil was attributed to not only 

the calcite content formed within the soil but also the extent of soil density. The 

increase in cycles of treatment via surface percolation led to higher strength and 

CaCO3 content, irrespective of CCR. Image analysis, using Image J software, confirms 

the reduction in the area of pore spaces within the SEM images, with an increase in 

the number of cycles of treatment. The addition of POFA to the biocemented soil 

helped in reducing the ammonium content released. Results from the cyclic triaxial 

test showed that the EICP treatment improved the sand’s resistance against the 

generation of pore water pressure, as indicated by the greater number of cycles 

required to induce liquefaction. It can be concluded that biocementation via EICP can 

be an effective method of mitigating liquefaction in sandy soil. 
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ABSTRAK 

Pencairan tanah adalah salah satu kesan bencana yang disebabkan oleh gempa 
bumi. Ia merupakan fenomena yang berlaku apabila tanah yang longgar, tepu, dan 
tiada jeleket kehilangan kekuatan dan kekakuannya akibat pembebanan yang pantas. 
Beberapa teknik telah digunakan untuk mengurangkan kesan pencairan tanah. Walau 
bagaimanapun, teknik-teknik ini sama ada memerlukan tenaga yang tinggi untuk 
pelaksanaannya, atau campuran kimia yang digunakan mungkin memberi kesan yang 
buruk terhadap alam sekitar. Oleh yang demikian, biosementasi melalui pemendakan 
karbonat yang disebabkan oleh mikrob (MICP) dan pemendakan karbonat yang 
disebabkan oleh enzim (EICP) boleh digunakan sebagai pendekatan yang mesra alam 
untuk mengurangkan pencairan tanah. Jenis bakteria yang digunakan dalam proses 
MICP ialah Bacillus megaterium, sementara enzim urease yang berasal dari tumbuhan 
digunakan dalam proses EICP. Dalam kajian ini, penyelidikan berdasarkan 
eksperimen telah dijalankan untuk memeriksa ke boleh laksaaan menggunakan 
biosementasi untuk mengurangkan pencairan di tanah berpasir. Penyelidikan ini 
terbahagi kepada tiga fasa utama. Fasa pertama mengkaji kesan faktor persekitaran 
(pH, suhu dan kandungan garam) terhadap pertumbuhan B. megaterium. Ujian tabung 
uji dijalankan untuk menentukan jumlah mendakan kalsium karbonat (CaCO3) pada 
kepekatan reagen sementasi yang berbeza. Berdasarkan keputusan ujian tabung uji, 
kaedah rawatan EICP digunakan seterusnya dalam fasa kajian kedua dan ketiga 
berdasarkan jumlah kalsit yang dihasilkan melalui proses tersebut. Fasa kedua menilai 
keberkesanan rawatan EICP terhadap tanah berpasir melalui satu siri ujian kekuatan 
mampatan tidak terkurung (UCS). Kesan faktor-faktor seperti suhu pengawetan (4, 10, 
20, 30, 40 dan 50ºC), kepekatan reagen (0.25, 0.5, 0.75, 1.0 dan 1.25 M), bilangan 
kitaran rawatan (1, 2 dan 3 kitaran) dan ketumpatan relatif (longgar, sederhana dan 
padat), dan kondungan Abu kelapa sawit (POFA) diperiksa pada tanah yang telah 
melalui biosementasi. Fasa ketiga menilai kesan biosementasi terhadap ketahanan 
berkitaran tanah berpasir dari segi tekanan terkurung, Nisbah Tekanan Berkitaran 
(CSR) dan kepadatan relatif, melalui satu siri ujian paksi tiga berkitaran. Potensi 
pencairan berlaku pada tanah yang dirawat telah disiasat berkaitan dengan peningkatan 
tekanan liang yang berlebihan. Keadaan pertumbuhan persekitaran yang optimum dari 
segi pH, suhu dan kandungan garam, masing-masing adalah pH 7, 30°C dan 1% (w/v) 
NaCl. Hasil kajian ujian tabung uji menunjukkan jisim mendakan kalsium karbonat 
meningkat apabila kepekatan reagen sementasi (CCR) dipertingkatkan dari 0.5-1.0 M; 
tanpa mengira tempoh pengawetan untuk kedua-dua MICP dan EICP. Penemuan dari 
ujian UCS menunjukkan hubungan linear wujud antara nilai-nilai UCS pada pelbagai 
kepekatan reagen sementasi dan kandungan purata kalsium karbonat. Tambahan pula, 
kekuatan tanah berpasir yang melalui biosementasi bukan hanya disebabkan oleh 
kandungan kalsit yang terbentuk dalam tanah tetapi juga ketumpatan tanah tersebut. 
Peningkatan kitaran rawatan melalui percolasi permukaan membawa kepada kekuatan 
dan kandungan CaCO3 yang lebih tinggi, tanpa mengira CCR. Analisis imej, 
menggunakan perisian Image J, mengesahkan pengurangan luas ruang liang dalam 
imej SEM, dengan peningkatan bilangan kitaran rawatan. Pengan penambahan POFA 
terhadap tanah yang melalui biosementasi membantu mengurangkan kandungan 
ammonium yang dilepaskan. Hasil ujian paksi tiga berkitaran menunjukkan bahawa 
rawatan EICP meningkatkan daya tahan pasir terhadap penjanaan tekanan air liang, 
seperti yang ditunjukkan oleh peningkatan jumlah kitaran yang diperlukan untuk 
mendorong pencairan. Dapat disimpulkan bahawa biosementasi melalui EICP boleh 
menjadi kaedah yang berkesan untuk mengurangkan pencairan di tanah berpasir. 
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INTRODUCTION 

 Background of the Study 

The continuous growth in the human population, urbanisation and industrial 

development in recent decades has contributed to increased demand for more social 

amenities. Hence, some of these amenities are being constructed on scarce lands such 

as low land areas, reclaimed lands and along seas. Such land reclamations are mostly 

carried out using loose river sand which tends to undergo liquefaction when subjected 

to significant ground movement (Jia, 2018). Liquefaction is described as a 

phenomenon that occurs mostly during earthquakes. When the ground is made up of 

loosely packed sandy soil and is saturated with groundwater, the soil tends to deform 

under transient, monotonic or repetitive loading in an undrained state. Such 

movements lead to a sudden reduction in shear strength and stiffness due to an abrupt 

increase in pore water pressure to a point where the effective stress reaches zero 

(Kramer, 1996; Kumari and Xiang, 2017). Hence, infrastructures constructed on 

liquefiable soils are prone to damage during earthquakes (Aygün et al., 2010; Montoya 

et al., 2013). The effects of earthquake-induced liquefaction on existing structures 

were introduced to geotechnical engineers following two main earthquakes in the year 

1964 in Niigata (Japan) and Alaska (the USA). After which, extensive research has 

been conducted on the liquefaction mechanism, potential evaluation mechanism, 

mitigation methods, predication etc. Figure 1.1 illustrates the possible damages caused 

by soil liquefaction.  
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(a)  

 

 
(b)  

Figure 1.1 Digital images showing damages caused by soil liquefaction (a) Failure 

of apartment buildings by tilting in Niigata due to liquefaction (b) Failure of roads 

leading to a Government Hill elementary school in Alaska due to liquefaction (Source: 

National Geophysical Data centre cited by Agaiby and Ahmed (2016)) 

On the other hand, the conventional soil improvement techniques to reduce the 

effects of soil liquefaction include preloading to achieve consolidation, soil 

densification using mechanical energy, incorporation of chemical admixtures and 

grouting using synthetic materials like epoxy, sodium silicate and cement (Ferdous et 

al., 2020; Karol, 2003; Zullo et al., 2020). However, many of these artificial grouts 

and chemicals invariably affect the environment, hence, should be used with caution 

(Gomez et al., 2016; Gowthaman et al., 2019b; Jayanthi and Singh, 2016).For 

instance, cement production alone is estimated to contribute between 5% to 7% of the 

global emissions of carbon dioxide (Benhelal et al., 2013; Jos and Maenhout, 2016). 

Consequently, many countries are aiming to reduce their carbon emissions including 

the UK which targets to reduce its carbon emissions up to 80% (against the 1990 

baselines) by the year 2050. Such goals pose significant 

challenges and opportunities to sectors involved in the transition towards lower 

consuming economies as the use of cementitious materials is widespread in 

conventional methods for ground improvement. Hence, advancements in ground 

technology are needed to ensure lower carbon usage, less energy demand, in addition 

to eco-friendly practices. A possible way of achieving an environmentally friendly soil 

improvement technique is to consider the roles of microbial processes in rocks and 

soils. 
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Thus far, the biological-based method is a promising and eco-friendly 

technique used to enhance the geomechanical characteristics of soils either through 

microbially induced calcite precipitation (MICP) and enzyme induced calcite 

precipitation (EICP). Both methods are the most extensively-researched areas in the 

field of geotechnical engineering in the last decade (Bhutange and Latkar, 2020; 

Kahani et al., 2020; Kong et al., 2019; Sun et al., 2020; Thomas O’Donnell and 

Kavazanjian, 2015). Both the MICP and EICP processes produce a bio-cemented soil 

matrix through a series of biogeochemical reactions. The reactions include urea 

hydrolysis, sulfate reduction and denitrification (Wang et al., 2017; Zhu and Dittrich, 

2016).  EICP and MICP can be distinguished based on their source of urease which 

catalyses the hydrolysis reaction. EICP utilises plant-derived urease enzyme mostly 

extracted from jack bean (Canavalia ensiformis) (Krajewska, 2018). While MICP uses 

urease enzyme secreted from ureolytic microorganisms. The most common bacterial 

species used in MICP include Sporosarcina pasteurii and Bacillus megaterium  

(Castro-Alonso et al., 2019;  Zhu and Dittrich, 2016). However, both methods produce 

calcium carbonate (CaCO3) which is responsible for cementing soil particles together, 

to improve strength, stiffness and to reduce the permeability of the soil (Dovom et al., 

2020; Ghosh et al., 2019; Peng and Liu, 2019). Having said that, the potential 

applications of biomediated soil improvement include dust control, liquefaction 

reduction, erosion control and crack repair, increase slope stability and general 

strength improvement of various soils  (Ghasemi et al., 2019; Liu, Wang, et al., 2020; 

Salifu et al., 2016; Simatupang and Okamura, 2017).  

Apart from the aforementioned methods, interest in soil improvement via 

calcite precipitation was triggered when Kucharski et al. (1996) evaluated the effects 

of calcite in-situ precipitation system on the mechanical properties of calcareous and 

silica sand. The first publication in geotechnical engineering explaining the concept of 

biocementation was by Mitchell and Santamarina (2005), where the authors identified 

and demonstrated its potential role in soils and rocks, stimulating interest in this aspect 

of multidisciplinary research. However, the importance of this research area was put 

back in limelight in the 21st century by the US National Research Council (NRC, 

2006). Since then, biological-based systems for soil improvement have been widely 

researched in geotechnical engineering. The relevance of the research area can be 

ascertained based on the number of publications by year when the ‘microbial induced 
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carbonate precipitation’ and “enzyme induced carbonate precipitation” keywords were 

searched in the web of science database. Figure 1.2 represents the trend of publications, 

in which the increasing interests of researchers to explore alternative methods to the 

conventional techniques in improving the properties of various soils is revealed. It 

shows MICP is more researched than EICP based on the number of publications by 

year. 

 

Figure 1.2 Increasing trend of the number of publications on MICP and EICP 

(2010 - February 2021) 

 Problem Statement 

Earthquake-induced soil liquefaction is one of the most catastrophic 

geohazards and is a major source of concern as it threatens trillions of dollars’ worth 

of infrastructure worldwide that is built on and in liquefiable soil deposits. Soil 

liquefaction can lead to massive soil displacement, settlement and the eventual 

collapse of infrastructures (Kramer, 1996). An example of the effects of soil 

liquefaction is the mass destruction of about 15,000 single-family houses when a 

moderate (magnitude 6.3) earthquake shook Christchurch, New Zealand (Rogers et 
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al., 2015). Although the conventional techniques such as preloading (to achieve rapid 

consolidation densification through compaction) and chemical grouting are usually 

employed to mitigate the effects of soil liquefaction, these techniques require high 

energy for execution and the used chemical admixtures may adversely affect the 

environment. Meanwhile, the production of additives such as cement and lime can lead 

to a high carbon footprint in the environment, where injecting these additives may 

contaminate the nearby soil and groundwater body (DeJong et al. 2010; Dejong et al., 

2006) 

In the last decade, many studies have been conducted to assess the application 

of biocementation methods namely MICP and EICP to improve the strength and 

resistance to liquefaction of soils (Simatupang and Okamura, 2017; Xiao et al., 2018). 

Meanwhile, the performance of biocementation depends on factors such as the pH, 

concentration of bacteria/urease, temperature and concentration of cementation 

reagent (CCR). However, the bone of contention still lies with the CCR; some studies 

have obtained the optimum performance of biocementation to occurs at higher CCR 

(≥1M) (Almajed, et al., 2018; Carmona and Oliveira, 2017), while others reported 

otherwise (Okwadha and Li, 2010s; Soon et al., 2013). Therefore, more studies need 

to be conducted on the effect of CCR on the precipitation of calcium carbonate prior 

to its application in soil improvement. Furthermore, despite the recent advances made 

in biocementation of soil, there are still environmental concerns regarding the fate of 

ammonium by-products produced. Methods to manage and reduce ammonium 

following biocementation will likely be needed as the technology transitions toward 

industrial field-scale application.  Hence, this study explores the use of palm oil fuel 

ash (POFA) incorporated into the sand mixture to serve as ammonium absorbent. 

Another setback of biocementation is the non-uniform formation of calcium carbonate 

within the soil column, which is likely to affect the strength of the biocemented soil. 

Based on the studies conducted so far, the comparison between MICP and EICP has 

not been exhaustively carried out in terms of the amount and precipitation ratio of 

calcium carbonate formed. Therefore, it is important to adopt a treatment method that 

is likely to produce biocemented sample with uniform distribution of calcium 

carbonate. Likewise, the comparative performance of MICP and EICP be carried out 

to adopt the most efficient method for the soil treatment.  
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Malaysia is one of the highest producers of palm oil in the world, and this has 

led to the production of the high amount of palm oil fuel ash (POFA) as one of the by-

products from the palm oil industries (Adebayo et al., 2021; Mahmoud et al., 2021). 

One way to minimize the exploitation of natural materials is to utilize the appropriate 

materials from the industry as by-products or waste materials. Such material is the 

palm oil fuel ash (POFA) which is usually dumped into an open field of a palm oil 

industry, causing environmental and health hazards. However, problems can be 

reduced by incorporating POFA into the soil system to increase strength and absorb 

the ammonium by-product produced from biocementation process.    

 Research Objectives 

This study aims to evaluate the suitability of using bio-mediated soil 

improvement in the mitigating liquefiable sandy soil.  

The following objectives were considered for the study.  

i. To validate the bacteria strain through genomic identification and determine 

the effects of temperature, pH and salt on the growth profile.    

ii. To determine the effect of the varying concentration of cementation reagent on 

the amount and efficiency of carbonate precipitation in MICP and EICP 

processes. 

iii. To determine the effect of palm oil fuel ash (POFA) on the strength and 

ammonium reduction of EICP treated soil. 

iv. To assess the effects of EICP treatment on the unconfined compressive strength 

liquefaction resistance of sandy soil. 
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 Scope of the Study 

Bio-mediated soil improvement research is an emerging field which utilises the 

knowledge of microbiological, geochemical and geotechnical engineering to improve 

the properties of various soils. This study focuses on the suitability of using 

biomediated soil improvement techniques to mitigate liquefaction in sandy soil. This 

laboratory-based research used the MICP and EICP techniques to achieve 

biocementation. The bacterial strain used in MICP was B. megaterium. Meanwhile, a 

plant-derived urease enzyme was used in EICP. The variables considered in this study 

include the concentrations of cementation reagent, curing temperature and period, 

number of the treatment cycle, percentages of POFA content, relative density, cyclic 

stress ratio (CSR) and confining pressure. The effectiveness of the treatment process 

was evaluated using UCS, cyclic resistance and formation of CaCO3 within the soil 

matrix. Therefore, the experimental work in this study comprises of three main phases.  

The first phase involves the culturing of bacteria, determining the effects of 

environmental factors (pH, temperature and salt content) on the growth of B. 

megaterium and test tube tests to determine the amount of CaCO3. In the second phase, 

the effectiveness of EICP treatment on sandy soil was assessed through a series of 

UCS tests. While the third phase evaluates the effects of biocementation on the cyclic 

resistance of sandy soil through a series of cyclic triaxial tests. In this study, the 

evaluation of the soil's dynamic properties was carried out using the cyclic triaxial 

machine by subjecting it to a frequency of 1Hz to stimulate earthquake loading. This 

is because the biocementation technique for soil treatment is still in its infancy state. 

Therefore, it will require proper evaluation on small-scale samples before upscaling to 

larger samples. Furthermore, the mineralogical and microstructural analyses cut across 

all phases which include X-ray diffraction analysis (XRD), x-ray fluorescence (XRF), 

Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS). 
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 Significance of the Study  

More civil infrastructures are being erected to meet the overgrowing societal 

needs due to rapid population growth. However, a limitation for the construction of 

these infrastructures is the limited availability of good soil. For instance, in Malaysia, 

some developmental projects are constructed along shorelines or on reclaimed land in 

which the soil may liquefy upon significant movement (Hashim et al., 2017; Marto et 

al., 2014). Although Peninsular Malaysia is geographically free from seismic waves, 

recently it experienced low seismicity from a Sumatra active fault which is 350 km 

away (Marto et al., 2013). Therefore, it is important to consider liquefaction mitigation 

related research in Peninsular Malaysia. This study will contribute in providing an 

environmentally friendly technique to mitigate the effects of liquefaction in sandy soil. 

Moreover, this study compares the performance of B. megaterium and plant-derived 

urease in CaCO3 precipitation and biocementation of sandy soil. It also investigates 

the microstructural properties of biocemented soil towards its performance by 

analysing the pore spaces within the treated soil matrix. Furthermore, this study is 

expected to add to the existing literature on bio-mediated soil improvement and 

provide a baseline for the field application of the new technology.   

 Thesis Structure 

This thesis is organised into seven chapters. Chapter one provides the 

background of the study, followed by the problem statement, the aims and objectives, 

scope and significance of the study and ends with the structure of the thesis.  

Chapter two presents a review of relevant literature on the use of 

biocementation (MICP and EICP) in soil improvement and mitigation of liquefaction 

in soils. It also discusses the factors that affect the formation of CaCO3 and strategies 

of soil treatment using MICP and EICP. The mechanism of soil liquefaction, factors 

that affect liquefaction and the conventional method to mitigate liquefaction in soil 

along with their drawbacks are also described in this chapter. 
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Chapter three presents in detail the materials and methods used in the study 

which includes a concise procedure to conducting the physical, geotechnical, 

chemical, mineralogical and microstructural tests on the soil. Chapter four discusses 

the results of the genomic identification of the bacteria and the effects of 

environmental factors on bacterial growth. The chapter also presents the optimisation 

and mineralogical confirmation of CaCO3 precipitates through test-tube tests of both 

MICP and EICP.  

Chapter five describes the physical properties and strength of biocemented 

sandy soil via EICP. The effects of the number of treatment cycles, curing temperature, 

relative density and concentrations of cementation reagent on biocemented soil were 

also presented in this chapter. Furthermore, the relationship between UCS and CaCO3 

content and microstructural analysis. Chapter six presents the findings on liquefaction 

resistance of biocemented soil. The effects of the CSR, relative density and confining 

pressure pore water pressure build-up is presented. Finally, Chapter seven summarises 

the findings, concludes the research and provides recommendations for future studies. 
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