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ABSTRACT

Microbeads are one of the causes of microplastic pollution that is currently 
polluting ocean environment. It enters food chain via ingestion of marine vertebrates 
and invertebrates. This study aims to elucidate the interactions between polyethylene 
microbeads and heavy metals as well as to determine the possibility of polyethylene 
microbeads as heavy metal vectors for juvenile seabass. Two parts of experiments 
performed in this study, i.e. adsorption and ingestion. For the adsorption study, 10 g 
of virgin polyethylene microbeads (300 ^m) were submerged into 0.2, 0.4, 0.6, and
1.0 p,g/mL solutions of cadmium and chromium, and 0.4, 0.8, 1.2, 1.6, and 2.0 ^g/mL 
concentrations of lead in a batch of sorption experiments for 96 hours. In the ingestion 
experiment, seabass was exposed in control, single, co-exposure, and preloaded 
experiments. All exposure conditions were similar to the adsorption experiment with 
10 g and 5 g of microbeads. Acid digestion and Atomic Absorption Spectroscopy were 
used to quantify the amount of heavy metal adsorbed on microbeads and accumulated 
in fish tissues. Maximum adsorption capacity of microbeads were 11 ^g/g for Cd, 1.7 
^g/g for Cr, and 9.0 ^g/g for Pb. The kinetic study concluded that the adsorption of 
polyethylene microbeads occurred at a pseudo-first-order reaction, which involves 
physical attraction. Adsorption isotherm fitted the Freundlich model signifying 
adsorption occurs rapidly and has the tendency to desorb due to weak binding. The 
rates of heavy metal adsorption onto microbeads were 11, 4.5, and 1.7 mL/g for Cd, 
Pb, and Cr, respectively, suggesting that Cd had a higher affinity towards microbeads 
polyethylene than Pb and Cr. In the ingestion study, most of the heavy metal were 
detected at the skin layer. Control experiment validated that, seabass uptake exposed 
microbeads via ingestion. The single experiment concluded that uptake of heavy 
metals in seabass tissues increased with concentration and time. The higher the amount 
of exposed microbeads, the higher the uptake of heavy metals in the gastrointestinal 
tract after 48 hours of co-exposure. This indicates that heavy metals were first adsorbed 
on the microbeads followed by their ingestion by the seabass. In the preloaded 
experiment, the concentration of heavy metal ions detected in the gastrointestinal tract 
was higher than the direct exposure in single and co-exposure. The uptake values in 
the preloaded experiment increased steadily with concentration, time, and quantity of 
microbeads. Preloaded exposure in this study verified that microbeads-loaded heavy 
metals were incidentally ingested by seabass during foraging. The incorporation of the 
three heavy metals in the ingestion study was performed using Minitab 16.0 multi 
analysis of variance (MANOVA). This study proved that polyethylene microbeads 
possess the potential to accumulate, transport, and transfer heavy metals from water to 
intestinal organ, thus increasing risk, threatening the marine food web, and possibly 
harming other consumers.
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ABSTRAK

Manik mikro adalah salah satu sumber pencemaran mikroplastik, 
mencemarkan persekitaran lautan. Ia memasuki rantai makanan melalui pengambilan 
makanan vertebrata dan invertebrata. Kajian ini bertujuan untuk memperjelaskan 
interaksi antara manik mikro polietilena dan logam berat untuk menentukan 
kemungkinan manik mikro polietilena sebagai vektor logam berat kepada ikan siakap. 
Dua bahagian eksperimen dalam kajian ini, iaitu penjerapan dan pengambilan 
makanan. Untuk kajian penjerapan, 10 g manik mikro polietilena tulin (300 ^m) 
direndam dalam larutan 0.2, 0.4, 0.6 dan 1.0 pg/mL untuk kadmium dan kromium, 
manakala kepekatan plumbum adalah 0.4, 0.8, 1.2, 1.6 dan 2.0 pg/mL dalam kumpulan 
eksperimen jerapan selama 96 jam. Dalam eksperimen pengambilan makanan, ikan 
siakap didedahkan dalam eksperimen kawalan, tunggal, pendedahan bersama dan 
pramuat. Semua keadaan adalah sama dengan eksperimen penjerapan dengan jumlah 
manik mikro yang digunakan adalah 10 g dan 5 g. Pencernaan asid dan 
Spektrofotometer Serapan Atom digunakan untuk mengukur jumlah pengambilan 
logam berat dalam manik mikro dan lapisan tisu ikan. Kapasiti penjerapan maksimum 
manik mikro adalah 11 ^g/g untuk Cd, 1,7 ^g/g Cr dan 9,0 ^g/g Pb. Kajian kinetik 
menyimpulkan bahawa penjerapan manik mikro polietilena berlaku mengikut pseudo- 
tertib-pertama, yang melibatkan tarikan fizikal. Model isoterm Freundlich yang 
menunjukkan bahawa penjerapan berlaku dengan cepat serta mempunyai ikatan yang 
lemah. Kadar penjerapan logam berat pada manik mikro adalah 11, 4.5 dan 1.7 mL/g 
untuk Cd, Pb dan Cr, masing-masing menunjukkan bahawa Cd mempunyai tarikan 
yang lebih tinggi terhadap manik mikro polietilena berbanding Pb dan Cr. Dalam 
kajian pengambilan makanan, kebanyakan ion logam berat dikesan pada lapisan kulit 
ikan. Eksperimen kawalan menyimpulkan bahawa ikan siakap memakan manik mikro. 
Eksperimen tunggal menyimpulkan pengambilan logam berat dalam tisu ikan siakap 
meningkat dengan kepekatan dan masa. Semakin tinggi manik mikro yang terdedah, 
semakin tinggi pengambilan logam berat di saluran usus setelah 48 jam  dalam 
eksperimen pendedahan bersama logam berat dan manik mikro. Ini menunjukkan 
bahawa manik mikro menyerap logam berat dari persekitaran, kemudian dicerna oleh 
ikan siakap. Dalam eksperimen pramuat, kepekatan ion logam berat yang dikesan di 
saluran usus lebih tinggi daripada pendedahan langsung dalam kawalan dan 
pendedahan bersama. Nilai pengambilan dalam eksperimen pramuat meningkat 
dengan stabil dengan kepekatan, masa dan jumlah manik mikro dengan jelas. 
Pendedahan yang dimuatkan dalam kajian ini mengesahkan bahawa, logam berat yang 
diserap oleh manik mikro secara tidak sengaja ditelan oleh ikan siakap semasa mencari 
makanan. Ketiga-tiga logam berat dalam kajian penjerapan dan pengambilan makanan 
dilakukan menggunakan Minitab 16.0 dalam analisis pelbagai varians (MANOVA). 
Kajian ini telah membuktikan bahawa manik mikro polietilena berpotensi untuk 
mengumpulkan, mengangkut, menjadi vektor logam berat di persekitaran laut ke organ 
pengambilan makanan, sehingga meningkatkan risiko dan mengancam jaringan 
makanan laut, dan mungkin berbahaya bagi pengguna lain.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Plastics are one of the industrial products that are widely used and have 

successfully replaced several conventional materials such as glass, metal, and wood 

due to their cost of production, strong, durable, and lightweight characteristics, and 

easy to produce (DeArmitt, 2017; Thompson et al., 2009). Plastics are constructed 

through the linking of hydrocarbon monomers that created synthetic polymers. As 

shown in Figure 1.1, plastic production is growing steadily each year due to its demand 

and its production had been reported to be up to 348 million tonnes in 2017 (Plastics 

Europe, 2018), and estimated to climb up to around 33 billion tonnes by 2050 

(Rochman et al., 2013).

Figure 1.1 The increase in plastic production around the world from 1950-2017 
(Plastics Europe, 2018)
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The production of plastics grows rapidly each year due to industrial demands 

and their unique characteristics such as low cost, low density, and high durability in 

most industries, especially in the packaging industry. Being the most abundant and 

persistent debris found in marine (Cauwenberghe et al., 2015), plastics have a long 

lifespan and accumulate in the environment (Andrady, 2011; Cole et al., 2011; Galgani 

et al., 2013; Wright et al., 2013) despite the movement and campaign to reduce the use 

of plastics, which have been recognized as a threat to the marine ecosystems due to 

their abundance.

Based on estimations, 1.15 to 2.41 million tonnes of plastics are released into 

the marine environment annually (Lebreton et al., 2017). Thus, the alarming number 

of plastics and their persistent characteristics has led to environmental concerns 

(Paterson, 2019). As mentioned by previous researchers, consumer packaging is made 

from one-third of plastic production with 10% of municipal waste (Andrady, 2011), 

which mostly ends up in landfills and remains there for a long time (Barnes et al., 

2009). Meanwhile, the remaining 90% are usually recycled or are not handled 

properly, which may end up in the environment via several routes. In general, plastics 

in all sizes, from meters to micrometers, are found in the environment (Barnes et al., 

2009).

Most plastic polymers found in the environment are polypropylene (PP), 

polyethylene (PE), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl 

chloride (PVC) (Andrady & Neal, 2009; Andrady, 2017) due to their various 

applications. They can also be found in different levels of the water column due to 

their density. Generally, polyethylene and polypropylene are buoyant and have high 

mobility due to water currents and wind; hence, most of them will be permanently 

trapped or stranded in a location that cannot further move them with physical processes 

such as tidal and biofouling that can cause an increase in the density. Besides, 

polyethylene and polypropylene debris are abundantly found in the marine 

environment (Xu et al., 2020) or remote areas (Wang et al., 2018; Lusher, 2015; 

Nakashima et al., 2012). The denser fragment of PVC and PET is also readily settling 

out of suspension in the marine environment. Nonetheless, due to persistency 

character, all plastics that end up in the marine environment from years ago, either
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transported, degraded, fragmented, fouled, or deposited, are presumed to exist until 

now (Thompson, 2015).

Plastics particles with a size less than 5 mm are classified as microplastics 

(Thompson, 2015; GESAMP, 2019), which have been considered as pollutants of high 

concern (Kogel et al., 2020; Kroon et al., 2020). Evidently, microplastics are widely 

found in marine sediments or water columns (Guo et al., 2020; Kik & Sici, 2020; Peng 

et al., 2020). In general, there are a few forms of microplastics detected in the 

environment such as fiber, pellets, beads, and fragments.

Primary microplastics are those introduced directly into the environment, 

mostly from proposed products, wastes from manufacturing processes, or derivatives 

from the erosion and tearing of large plastic products such as tires, wheels, and boards. 

On the other hand, plastic production uses powder or pellets as raw materials; 

therefore, these materials might accidentally end up in the environment during 

accidental release (Dris et al., 2016; Gasperi et al., 2019; Marnane et al., 2006; 

Vandermeersch et al., 2015), shipping, or cleaning machinery through shot blasting 

(Cole et al., 2011). These materials exist typically as resin pellets (Rocha-Santos & 

Duarte, 2015; Waller et al., 2017), microbeads (Yurtsever, 2019), microfiber (Mark 

Anthony Browne et al., 2011), and other forms.

The degradation of macro or mesoplastics in the environment under the 

physical, chemical, and biological forces with a size less than 5 mm is called secondary 

microplastics (Zhang et al., 2016; Thompson, 2015; Rocha-Santos & Duarte, 2015; 

Waller et al., 2017). These processes include heat, mechanical forces, ultraviolet (UV) 

light, oxidation, or biodegradation (Rillig et al., 2017). Macroplastics do not only 

impact the natural system but also the range of organisms in the environment through 

ingestions for large organisms and entanglement for smaller ones, especially birds and 

fish (Phuong et al., 2016; Compa et al., 2018; Provencher et al., 2018; Horn et al.,

2019).
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In addition, macroplastics potentially degrade and break down into smaller 

fragments based on their rate of degradation that is controlled by several environmental 

factors. As such, the carbon in the polymer can be transformed into carbon dioxide and 

incorporated into marine biomass, while complete mineralization is achieved when the 

polymer is transformed from the organic carbon (Andrady, 1994; Eubeler et al., 2009). 

Compared to microplastics, the chemical and physical effects of macroplastic debris 

are well-known globally. Previously, researchers have only focused on the 

contaminants released from plastics but not the ability of the plastics to absorb harmful 

contaminants from the environment.

Microplastics have been found in different water sources such as wastewater 

treatment plants, freshwater, and marine (Rezania et al., 2018). Previous studies have 

successfully identified that microplastic debris may exceed 100,000 items/m2 in water 

surface and 100,000 pellets/m in beach sediment (Eerkes-Medrano, Thompson, & 

Aldridge, 2015; Cauwenberghe et al., 2015). According to previous researchers, 

microplastics are also suggested as a long-term sink in sediments (Cozar et al., 2014; 

Imhof et al., 2017; Coppock et al., 2017). The density of seawater is around 1.020 to 

1.029 gcm-3; hence, plastics with a density higher than seawater will sink and 

potentially accumulate in the sediment. However, if  the plastics’ density is lower than 

the seawater density, they tend to float in the water or the surface column 

(Cauwenberghe et al., 2015).

1.2 Research Background

Since the 1970s, plastics have been incidentally ingested by organisms such as 

fish (Wieczorek et al., 2018; Lv et al., 2019), invertebrates (Windsor et al., 2019; Horn 

et al., 2019), turtles (Nicolau et al., 2016), and seabirds (Basto et al., 2019). Thus, 

plastic ingestion may affect organisms physically or chemically (Mattsson et al., 2018; 

Mattsson et al., 2017). In terms of physical impact, organisms such as seabird will 

experience suppressed feeding activity when the plastic pellets in the gizzard indicate 

no fresh food is reaching the proventriculus; thus, this blocks the movement of food 

through the digestive tract and might reduce its appetite or change its food hunting
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behaviour (Rochman et al., 2014; Law, 2017), thereby causing histopathological 

alterations in intestines, changes in behaviour and lipid metabolism, and potentially 

translocation to the liver (Jovanovic, 2017).

In the case of microplastics, a study has found that seabass larvae ingest 

polyethylene microbeads that went through the digestive tract during fish fed diet 

despite its high egestion behavior (Mazurais et al., 2015). Meanwhile, in a highly 

contaminated area, microplastics with co-contaminants might be ingested by 

zooplankton and then fish larvae (Mazurais et al., 2015; Moira et al., 2015; Khan et 

al., 2017). Thus, large predators with complex digestive tracts such as crustaceans, 

ctenophores, and medusae, or vertebrates such as fishes might also ingest the fish 

larvae even before the egestion process (Cole et al., 2013; Carlos et al., 2018). 

Consequently, the bioaccumulation process could harm organisms, especially the top 

predators because the microplastic co-contaminants have a potential for 

biomagnification (Teuten et al., 2009). Figure 1.2 shows potential pathway for the 

transport of microplastics & their biological interactions in environment.

Figure 1.2 Potential pathway for the transport of microplastics & their biological 
interactions (adapted from Wright et al., 2013)
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Research has been paying attention to investigating the impacts of toxic 

chemicals, especially on the relationship involving microplastic debris. Microplastics 

might act as a source or sink of toxic chemicals (Cole et al., 2011) since they have the 

ability to adsorb persistent, bioaccumulative, and toxic substances (PBTs) such as 

heavy metals, polychlorinated biphenyls (PCBs), and dioxins from water or sediment. 

These PBTs may then be released when the microplastics are ingested by aquatic life 

(Rochman et al., 2014; Karami et al., 2017), and the accumulation of microplastics is 

likely ingested by a wider range of organisms, thus raising concern in the marine 

ecosystem.

Recent studies have found that microplastics might be mobilized from 

digestive organ to other internal systems and trophic transferred from prey to predator 

(Dawson et al., 2018), and it has also been proven that toxic pollutants such as 

polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), 

polycyclic aromatic hydrocarbons (PAHs), dioxin, and heavy metals tend to adsorb 

onto microbeads and yield higher concentration compared to water and sediments 

(Brennecke, Duarte, Paiva, Cagador, & Canning-Clode, 2016). Therefore, the presence 

of microbeads in the marine ecosystem poses a threat to food safety. Current research 

suggests that, despite the significant uncertainty and complexity in the kinetics and 

thermodynamics of the interaction, plastic debris also appears to act as a vehicle, 

transferring PBTs from the water to the food web, thus snowballing risk to the entire 

marine food web including humans. Due to the extremely long lifetime of plastics and 

PBTs in the ocean, prevention strategies are, therefore, crucial to minimize these risks 

(Engler, 2012; Turner, 2016).

Microbeads are classified as a primary source for microplastic pollution since 

the size of microbeads is in the range of microplastics (Thompson, 2004). Microbeads 

are manufactured and designed as demanded such as facial cleansers (Fendall & 

Sewell, 2009; Brennecke et al., 2016; Boucher et al., 2016). These materials are also 

widely used in cleaning products, printer toner, and abrasive media for plastic blasting, 

textile printing, and automotive molding (Pettipas et al., 2016). Subsequently, after 

treated and discharged, microbeads tend to accumulate, persist, and potentially act as
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vectors for contaminants in the environment (Imhof et al., 2016; Brennecke et al., 

2016; Smith, 2018) and poses a threat to food safety.

The main concern is that, when organisms ingest plastic-co-contaminants, the 

bound contaminants will likely be released due to chemical or physical conditions in 

the avian gizzard or the digestive tract of the organisms. To date, research on the 

ingestion effect of adsorbed heavy metals on microplastics in the marine organism is 

still lacking. The adsorption of metals to microplastics raises the potential for chemical 

transfer to marine animals that falsely ingests microplastics, which is identified as a 

“vector effect” (Syberg et al., 2015; Ory et al., 2018).

As plastics become vectors due to their ability to deploy and concentrate 

contaminants through ingestion to organisms (Khan et al., 2015), other than 

bioaccumulation, the contaminants also allow for biomagnification within the 

environment system, which starts from the low trophic predators until the top predators 

(Graham & Thompson, 2009). As such, various trophic level organisms that ingest 

microplastics might affect the vast ecosystem through the biomagnification of 

microplastic co-contaminants or microplastics alone. While the focus is directed 

towards the persistent organic pollutants (POPs) possibility concerning microplastics 

that carry heavy metals and ingested by the organism; therefore, it is important to 

investigate some organisms that appear to not only be unintentionally ingesting but 

also selectively consuming the floating microplastics (Ory et al., 2018; Hall et al.,

2015).

The term “heavy metals” could be explained as the elements with high density 

and toxic to the environments even at low concentrations (Carolin et al., 2017). Heavy 

metals have been a major threat to the environment due to their flexibility, 

accumulation, endurance, and non-biodegradable characteristics (Raval et al., 2016). 

Usually, heavy metal pollution is caused by discharging untreated wastewater from 

industries such as pesticides, tanneries, metal plating industries, or mining operations.
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Some heavy metals have become the main concern in the existing environment 

such as cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, 

and zinc (Bhattacharyya & Gupta, 2008; Turner & Millward, 2002). The 

concentrations of heavy metal ions in plastic particles are significantly higher than in 

the water column, which makes them likely to become toxic. As stated by Holmes 

(2013), heavy metals adsorbed to plastic pellets are highly bioavailable; therefore, 

toxic elements are expected to be extracted by the acidic digestive tract environment 

(Holmes & Thompson, 2014). As such, the ability of heavy metals to release back to 

the marine environment is more readily in a soluble form (Holmes et al., 2012).

Recognizing that there are species-specific, pollutant and polymer specific, as 

well as experimental differences between the studies, varied results demonstrated that 

the impact of microplastics on the uptake and accumulation of pollutants is far from 

consistent. One of the key determinants may be whether pollutants and microplastics 

encounter each other before organism exposure or whether or not they are introduced 

as a co-exposure.

To date, scientists have discovered a new pathway for heavy metal pollution 

by a carrier vector effect with microplastics as the vector (Kalakova et al., 2017; 

Bradney et al., 2019; Hodson et al., 2017). For example, Vedolin et al. (2018) 

demonstrated the ability of microplastics to adsorb heavy metals as the concentration 

of the adsorbed heavy metals in the collected pellets were higher than the original 

particles. Following the ban by the US, UK, Canada, and other countries, it is crucial 

to investigate the ability of pristine polyethylene microbeads to adsorb heavy metals 

such as cadmium, chromium, and lead. Thus, this study focuses on the adsorption of 

heavy metals to the microbeads to prove the vector effect of heavy metals on the 

marine vertebrates.
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1.3 Problem Statement

There have been fewer studies about ingestions of microbeads from cosmetic 

usage regardless of their occurrences in wastewater treatment plants (Rezania et al., 

2018). In Malaysia, the only study of microbeads occurrence was conducted by 

Praveena et al. (2018). It is estimated that about 0.199 trillion microbeads particles 

from facial and personal care products were reported to enter the wastewater treatment 

plants (WWTPs) in Malaysia per day; hence, this problem is at an alarming point and 

needs sustainable solutions (Praveena et al., 2018). However, the data on possibility 

ingestion effect on microbeads to organism in Malaysia was still scarce.

Studies have mostly proven the ability of a general type of microplastics to 

adsorb heavy metals from the aqueous environment (Tchounwou et al., 2014; Boucher 

et al., 2016; Alomar et al., 2017; Peng et al., 2018; Munier & Bendell, 2018; Prunier 

et al., 2019). Specifically, studies on microbeads in the cosmetic industry and their 

ability to sorb contaminants are scarce.

Based on the literature review, microbeads have the potential to be a vector 

for heavy metals in the marine environment (Bayo et al., 2017; Zon et al., 2018). As 

the microbeads have the ability to carry hazardous ions from the domestic wastewater 

system into the marine environment, this increases the potential of heavy metal ions to 

pollute the water system and interact with marine animals. These phenomena increase 

the mobility of heavy metals into the water system. As the mobility of the heavy metals 

increases, the marine animals are highly likely to consume the heavy metal ions, thus 

transferring the pollution into the food web up to the final consumers, which are the 

humans. Therefore, this study will focus on the adsorption and desorption abilities of 

microbeads onto heavy metal ions.

This study was focused on juvenile seabass. To date, there is no study 

preformed in evaluating heavy metals with microbeads effects on the uptake of 

juvenile seabass species specifically Lates calcarifer. Juvenile fish is predominantly 

exposed to pollutions in the environment, especially heavy metal ions (Moran et al., 

2018). Therefore, any changes in this stage will positively affect the growth of the fish.
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On the other hand, the bio-accumulation of heavy metal ions would cause a significant 

effect on the tissue growth for some period; thus, the polluted organs may affect the 

consumers. The early monitoring of the pollution is vital, especially in the juvenile 

animal class so the initial prevention acts can be planned and executed to save the 

environment. Therefore, further investigation was carried out for the effect of adsorbed 

microbeads with heavy metals into juvenile seabass as a marine organism model in 

different exposure condition. This experiment is crucial to prove the vector effect of 

microbeads and identify the pollution level in the vital organs of juvenile seabass.

1.4 Objectives

This study aims to clarify the interactions between polyethylene microbeads 

and heavy metals in the environment and to determine the possibility of polyethylene 

microbeads to become heavy metal vectors for juvenile seabass, also known as 

seabass. As such, the following objectives are addressed in this study:

1. To determine the adsorption ability of polyethylene microbeads in 

cadmium, chromium, and lead using a batch approach.

2. To determine the kinetic and isotherm characteristics for the adsorption of 

cadmium, chromium, and lead onto polyethylene microbeads.

3. To quantify the uptake of cadmium, chromium, and lead within 

gastrointestinal tracts, gills, and skin of juvenile seabass.

4. To determine the effect of polyethylene microbeads on seabass via direct 

and preloaded exposure with cadmium, chromium, and lead.

1.5 Scopes

The following research scopes have been summarized to accomplish the 

research aims. The scopes are listed as follows:
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a) Microbeads were used as a model of microplastics in this study. Primarily, it is 

the second-most obviously ingested type of microplastics and evidently found 

within every species of marine animals. Moreover, polyethylene microbeads 

have also been found in scrubs/peelings, shower/bath products, facial cleaners, 

toothpaste, bubble bath, lotions, and sunscreens. Besides, other types of 

polymer and wastewater discharge might be the ultimate ways to enter the 

aquatic ecosystem. The source of microbeads was obtained from a local private 

company that produces microbeads for cosmetic usage, purposely with a 

diameter of ~300 um.

b) Cadmium (Cd), chromium (Cr), and lead (Pb) were selected because they are 

common contaminants to the marine ecosystems (Yunus, 2020). In addition, 

these heavy metals are known in industrial, domestic, agricultural, medical, and 

technological applications and are widely distributed in the environment; 

hence, this has raised concerns over their toxicology to human health and the 

environment.

c) Juvenile seabass was collected from the Aquaculture Fisheries Research 

Institute, Johor Bahru with a size of 6-7 cm in length. While they are highly 

demanded food with a high market value in the aquaculture industry, they are 

also important for commercial purposes and game fish. Briefly, they are 

valuable both as recreational and commercial fish with a high, fairly stable 

price. Thus, juvenile seabass was chosen because it potentially ingests 

microplastics in the environment, mistaking the microplastics as prey or unable 

to distinguish between prey and food. Another vital factor for the selection of 

the juvenile class is its feeding behaviour. Even though recent studies have 

focused on the adult class, the bioaccumulation and distribution of heavy 

metals in the adult’s organs and tissues are questionable since the adult diets 

are more selective, involving a wide range of animals. Therefore, the various 

sources or vectors of pollutants may be consumed by the adults. As a 

comparison, juveniles only have a plankto-phytophage diet, which only 

consumes diatoms, zooplankton, or green algae (Markovic, 2007). Since the 

size of microbeads is similar to plankton, the chance is higher for this proposed 

vector to be consumed by the test subjects.
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1.6 Significance of the Study

Environmental and health consequences are the main concern of this study 

since there is a high potential for microbeads and heavy metals to bio-accumulate in 

organisms, thus climbing up to the top predator through the food chain. As such, the 

ability of microbeads to accumulate heavy metals higher than seawater has been 

proven in previous studies (Khan et al., 2015; Brennecke et al., 2016). In general, 

heavy metals adsorbed onto microbeads are highly available in the environment. 

Microbeads with heavy metals tend to be desorbed in organisms via acidic conditions 

in their digestive tracts after ingestion (Holmes & Thompson, 2014; Khan et al., 2017). 

Consequently, microbeads have become a crucial concern since they appear in small 

sizes and can easily be ingested by a broader range of marine organisms. Besides, the 

bioavailability of vector-heavy metal microbeads increases the possibility to transfer 

harmful chemicals to the food chain.

While varied research results have demonstrated microplastics and 

contaminants adsorption due to the ‘specific polymer adsorbed specific pollutant’ 

characteristic, the same situation has been predicted for different organisms for 

different microplastic-heavy metals intake. Thus, the issue should begin with finding 

the relation involving the presence of microbeads in heavy metal exposure, including 

the exposure condition that favours the vector effect of microbeads carrying heavy 

metals into juvenile seabass via ingestion. In Malaysia, a website called 

cleanmalaysia.com was established to create the awareness of microbeads pollutant as 

an effort to bring the light of environmental danger since 2016. As the occurrence of 

microbeads in the marine ecosystem poses a threat to food safety and results in the 

banning of microbeads by the US, UK, and Canada, it is essential to study the sorption 

of heavy metal pollutants on microbeads and their ingestion effects on marine 

organisms. Thus, raising the awareness of microbeads usage in cosmetic products and 

followed the banned action in the same way as other countries.
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