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ABSTRACT

Stochastic computing (SC) is an alternative computing paradigm that can
lead to designs that offer lower area and power consumption compared to that of
the conventional binary-encoded (BE) deterministic computing. In SC, numbers are
encoded as a bit-stream of ‘0’s and ‘1’s, where SC computation elements (or functions)
operate on one or more bit-streams. To obtain accurate results, some functions require
the bit-streams to be correlated, while others require uncorrelated bit-streams or a
combination of both. The relationship between SC function accuracy and correlation
is not well studied in previous works. Thus, managing the correlation across the SC
system is a key challenge in the effort to achieve optimum accuracy. In addition, to
perform SC computation, the input values are converted from BE domain to SC; then
on the completion of the computation, back to BE to obtain the results. The conversion
processes require circuitry that typically consume over 80% of the overall SC system
area, hence this is another key challenge of the problem. To address the abovementioned
challenges, this thesis proposes a framework of an end-to-end system design optimized
for accuracy and area. The framework provides guidelines to design an effective SC
function or system that exploit correlation. This framework is applied in designing
the SC functional units and the complete SC system for convolutional neural network
(CNN), which is the dominant approach in the implementation of recognition systems.
This thesis shows that although CNN is a compute-intensive and resource-demanding
algorithm, through the proposed SC design framework, it is possible to implement
CNN in an embedded system with limited area and power budget. Several novel SC-
based functions are proposed that outperform previous works and obtain significant
area savings and high accuracy to replace the BE equivalent functions. These functions
include inner product, max pooling, ReLU activation function, and average pooling.
Then, some training considerations are specified to enable achieving low error rates
for SC-based CNN. Experimental results show that the SC-based CNN attained no or
minor accuracy degradation compared to BE counterpart. SC-based CNN achieves
99.6% and 96.25% classification accuracy using MNIST digit classification and AT&T
face recognition datasets, respectively. Moreover, the SC-based CNN of ResNet-20
model achieves 86.5% classification accuracy using CIFAR-10 object dataset. To
rapidly map an SC system into FPGA, a generic design strategy for high-level synthesis
of SC computation engines is proposed. The SC-based CNN hardware on FPGA
obtains the lowest resource utilization compared to previous works on FPGA-based
CNN accelerators. In addition, the proposed hardware architecture achieves 277.46
GOP/s/W energy efficiency, which outperforms previous works.
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ABSTRAK

Pengkomputeran stokastik (SC)merupakan sebuah paradigma pengkomputeran
alternatif yang dapat membawa kepada reka bentuk yang menawarkan penggunaan
ruang dan kuasa yang lebih rendah berbanding dengan pengkomputeran berketentuan
binari terkod (BE) konvensional. Dalam SC, nombor dikodkan sebagai strim-bit ‘0’
dan ‘1’, dengan elemen pengiraan (atau fungsi) beroperasi pada satu atau lebih strim-
bit. Untuk mendapatkan keputusan yang tepat, beberapa fungsi memerlukan strim-
bit yang berkorelasi, sementara yang lain memerlukan strim-bit tak berkorelasi atau
gabungan kedua-duanya. Hubungan antara ketepatan dan korelasi fungsi SC tidak
dikaji dengan baik dalam kajian terdahulu. Oleh itu, menguruskan korelasi seluruh
sistem SC merupakan cabaran utama untuk mencapai ketepatan optimum. Selain itu,
untuk melaksanakan pengiraan SC, nilai input ditukar daripada domain BE kepada SC;
setelah selesai pengiraan, kembali kepada BE untuk mendapatkan keputusan. Proses
penukaran ini memerlukan jalan kerja litar yang biasanya menggunakan lebih 80%
daripada keseluruhan kawasan sistem SC; oleh itu, ini adalah satu lagi cabaran utama
masalah ini. Bagi menangani cabaran yang dinyatakan di atas, tesis ini mencadangkan
satu rangka kerja reka bentuk sistem hujung-ke-hujung yang dioptimumkan untuk
ketepatan dan kawasan. Rangka kerja ini menyediakan garis panduan untuk mereka
bentuk fungsi SC atau sistem berkesan yang mengeksploitasi korelasi. Rangka
kerja ini digunakan dalam mereka bentuk unit berfungsi SC dan sistem SC yang
lengkap bagi rangkaian neural konvolusi (CNN) yang merupakan pendekatan dominan
dalam pelaksanaan sistem pengecaman. Kami menunjukkan bahawa walaupun CNN
merupakan pengiraan intensif dan algoritma menuntut sumber daya, menerusi rangka
kerja reka bentuk SC yang dicadangkan ini, CNN dapat dilaksanakan dalam satu
sistem terbenam dengan kawasan dan bajet kuasa yang terhad. Beberapa fungsi
berasaskan SC terbaharu dicadangkan yang mengatasi kajian terdahulu dan mencapai
penjimatan kawasan yang ketara dan ketepatan yang tinggi untuk menggantikan
BE yang setara. Fungsi ini termasuk produk dalaman, pengumpulan maksimum,
fungsi pengaktifan ReLU dan pengumpulan purata. Kemudian, kami menentukan
beberapa pertimbangan latihan supaya boleh mencapai kadar ralat rendah untuk CNN
berasaskan SC.Keputusan eksperimenmenunjukkan bahawaCNNberasaskan SC tidak
menunjukkan penurunan ketepatan atau penurunan ketepatan yang kecil berbanding
BE. CNN berasaskan SC masing-masing mencapai 99.6% dan 96.25% ketepatan
klasifikasi menggunakan klasifikasi digit MNIST dan set data pengecaman wajah
AT&T. Selain itu, CNN berasaskan SC bagi model ResNET-20 mencapai 86.5%
ketepatan klasifikasi menggunakan set data objek CIFAR-10. Untuk memetakan sistem
SC ke dalam FPGAdengan cepat, kamimencadangkan satu strategi reka bentuk generik
untuk sintesis peringkat tinggi enjin pengiraan SC. Perkakasan CNN berasaskan SC
pada FPGA memperoleh penggunaan sumber paling rendah berbanding dengan semua
kajian terdahulu berkenaan pemecut CNN berasaskan FPGA. Di samping itu, seni bina
perkakasan kami mencapai kecekapan tenaga 277.46 GOP/s/W yang mengatasi semua
kajian terdahulu.
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CHAPTER 1

INTRODUCTION

1.1 Background of research

Stochastic Computing (SC) is an alternative paradigm of computation that

considers data as probabilities. Low-area/power cost and error tolerance are some of

SC advantages. However, many challenges should be overcome before SC becomes

widespread [1]. In this thesis, many SC challenges have been addressed.

The case study used to show the applicability of SC paradigm is object

classification using convolutional neural network (CNN). CNN is the state-of-the-art

algorithm for object recognition applications. Designing an Field Programmable Gate

Array (FPGA) accelerator based on the conventional binary arithmetic calculations for

deep CNNs incurs high hardware cost and energy-efficiency achievable is low. Since

deep CNNs are both compute and memory intensive, it is impractical to use deep CNN

accelerators in embedded system platforms that typically has limited area and power

budget. Therefore, novel alternative computing paradigm such as SC is urgently needed

to overcome this hurdle. In this thesis, a low-area and energy-efficient CNN hardware

is designed using a High-Level Synthesis (HLS) tool targeting FPGA.

1.1.1 Stochastic computing

Stochastic computing is a computing paradigm, which was first introduced

by Gaines [2] in the 1960s, as an alternative to the conventional binary-encoded

deterministic computing technique. From hereon in this thesis, for convenience, the

abbreviation, BE, is used to refer to this conventional binary-encoded deterministic

computingmethod. In SC, data being processed are represented by bit-streams (referred
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to as stochastic numbers (SN)), and the value of the data is encoded as the probability

of 1s appearing in the bit-stream. For example, the data bit-stream X = 1001 encodes

the value of 0.5 since the probability of 1s appearing in X is 0.5 (=2/4); there are two

1s and the bit-stream is 4 bits long.

The main advantage of an SC element is its low hardware cost and posses a high

tolerance for soft errors. SC elements of multiplication, addition, and subtraction can

be performed using simple logic functions. For example, as shown in Figure 1.1, the

SC multiplier is an AND gate. Referring to Figure 1.1, the SNs X and Y are multiplied

to obtain the SN Z . X is 11010111, hence px =
6
8 . Y is 11001010, hence py = 4

8 .

Therefore, the output of the AND gate is Z = 11000010, which means pz = 3
8 . Now,

6
8 ×

4
8 =

3
8 ; therefore, this is a multiplication operation in SC domain.

Today there is renewed interest in SC for applications in mobile and embedded

devices that usually demand error-tolerant solutions with low area and low power.

Consequently, in recent years, there have been more active research conducted to adopt

SC in a wide range of embedded solutions for image processing [3], neural networks

[4], digital filters [5], and CNNs [6, 7].

X
Y Z

X=11010111

Y=11001010
Z=11000010

Figure 1.1: Using AND gate to perform SC multiplication

However, SC has significant drawbacks that have to be addressed before it can

be viable for application in designing complex practical circuits [1]. One fundamental

weakness is that an SC implementation can have a long latency arising from long

input bit-streams. Data precision depends on bit-stream length; hence, higher precision

requires a longer bit-stream. The crucial second drawback of SC is due to the fact that,

unlike BE computation, SC operations (which are based on random numbers) do not

necessarily yield consistent results, giving rise to the issue of accuracy. Moreover, the
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SC circuit might lose the low-area advantage when many stochastic number generators

(SNGs) are required to generate uncorrelated bit-streams. SNGs are complex circuits

and can account for as much as 80% of the total circuit cost [8].

Aside from quantization errors, the correlation between SNs is also a source of

inaccuracy in SC circuits. To operate correctly, some SC circuits require uncorrelated

data inputs; others require correlated inputs. Hence, the inaccuracies due to correlation

arise because of over-correlated operands in the former case, and in the latter case,

because of operands that are not sufficiently correlated. Research work in [9] has

shown that circuits that exploit correlation can result in improved accuracy in SC-based

designs. It also showed that, by exploiting correlation, further gains can be made in

area and delay reductions.

Previous works on utilizing correlation in SC designs were limited to the design

of basic circuits or functional units, such as an edge detection filter in [10]. Typically,

a large complex system, such as CNN, consists of massive amount of successive

computations. For example, CNNconsists of a series of layers that include convolutions,

activation functions, and pooling. Such a system could not be realized previously (by

exploiting correlation), because the SC-based functional units induces the correlation.

Consequently, the correlation between SNs after each computation is reduced or lost,

resulting in significant errors. To prevent these errors from occurring, the correlation

has to bemaintained end-to-end across the complete system. Onemay think that there is

an on-the-fly solution. The designer simply regenerates the SNs by inserting conversion

circuits whenever inputs have to be correlated to restore any lost correlation. However,

this solution is infeasible since it introduces long conversion latency and significantly

increases area cost.

1.1.2 Convolutional neural network

Deep learning has emerged as a new area of machine learning research, which

enables a system to automatically learn complex information and extract representations

at multiple levels of abstraction. CNN is recognized as one of the most promising types
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of artificial neural networks (ANNs) taking advantage of deep learning and has become

the dominant approach for almost all recognition and detection tasks [11]. Originally

inspired by biological processes, CNN is a special case of feed-forward ANN, which

requires minimal preprocessing, and combines the feature extraction and classification

tasks in one trainable block as shown in Figure 1.2. In CNN, the number of trainable

parameters (weights) are reduced significantly because the weights are shared by some

neurons. Recently, various CNNs have been used in image and video recognition

tasks and have been successfully applied to computer vision and machine learning

applications such as object recognition [12, 13], face recognition [14, 15], handwritten

character and digit recognition [16, 17].

Image Acquisition
Dimension 
reduction

Preprocessing ClassificationFeature extractionInput Sample Result

MLP

(a) Image recognition with ANN

Image Acquisition
Dimension reduction & 

Feature extraction
Preprocessing ClassificationInput Sample Result

CNN

(b) Image recognition with CNN combine dimension reduction, feature extraction, and classification processes

Figure 1.2: Processes covered by ANN and CNN in a recognition system

The typical CNN is composed of four types of processing layers: convolutional

layer, an activation layer, pooling layer, and a fully-connected layer as in ANNs.

Each of these layers transforms a volume of feature maps to another. To achieve

acceptable classification accuracy, CNN performs millions of convolutions and

sub-sampling operations with significant amount of intermediate data, where the

convolution operations consume more than 90% of the computing effort in the CNN

[18]. Despite its high classification accuracy, a deep CNN is highly-demanding of

resources, computation effort, and energy consumption. Therefore, the implementation

of CNN has become complex and challenging due to its large requirements of

computation resources, which limits its applicability, especially in any resource-

constrained applications.
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Industrial and academic demands lead to larger depth and width of CNNs for

a better quality of results and recognizing bigger datasets, resulting in complicated

topologies and increased computation resources required for implementation. For

example, to improve the accuracy performance for image recognition using ImageNet

dataset [19], the depth of CNNs grow from 8 layers in AlexNet model [12] at 2012 to

152 layers in ResNet-152 model [13] at 2016. Therefore, a practical implementation

of large-scale CNNs require high-performance server clusters with accelerators such

as GPUs and FPGAs. However, there is a trend to rapidly adopt machine learning

algorithms in the mobile and embedded systems. In order to deploy CNNs in these

resource-constrained systems, designers must conquer the challenges of implementing

resource-hungry CNNs in embedded systems with limited area and power budget. To

overcome the limitation of low-power and low-hardware footprint CNN developers take

advantage of highly-parallel or dedicated hardware such as General-Purpose Graphics

ProcessingUnit (GPGPU) [12], FPGA [20], andApplication-Specific IntegratedCircuit

(ASIC) [21] to implement CNNs.

Neural networks have very high computational complexity and high error-

tolerance at the algorithmic level, which allows using SC for CNN implementation

[22]. Our study is not the first work using SC to solve the resource-hungry problem of

CNN. Previous works [23, 24, 25, 26, 22, 7, 27, 28, 6, 29] have implemented CNN basic

functions in SC. Despite many strengths in the previous works for basic functions, there

are still many gaps in findingmore efficient SC circuits for the CNN basic functions with

high accuracy, smaller area, cheaper conversion circuits, and lower latency. Besides,

there are some limitations in the previous works regarding the applicability in the multi-

stage designs since intermediate regeneration or decorrelation or special circuitry are

requiredwhich introduce severe latency increase or area cost. Furthermore, someworks

(such as [6]) cannot be generalized to any CNN architecture or require re-arrangement

of the CNN layers. The effective stochastic computing convolutional neural network

(SC CNN) is an open field of research and has many problems to be addressed.
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1.1.3 FPGA design using HLS tools

System-on-Chip (SoC) size is rapidly increasing; hence, the design productivity

problem is becoming more and more serious. In the mid-1980s, the gate-level design

shifted up to register transfer level (RTL) design when the number of gates exceeded

100K.Ahundred thousand gates is assumed to be themaximum limit to design in several

months with appropriate human resources. Nowadays, a system design commonly

exceeds one million gates that requires several hundreds of thousand lines of RTL

description. Consequently, it is time to shift up to a higher level of abstraction, that

enables designers to have less number of descriptions and higher reusability. This

is the same situation as what happened in software programming. Previously, the

assembly language had to be shifted up to a higher level language like the C language

to increase the scalability, and an object-oriented language such as the C++ language to

increase reusability. A higher level C description involves fewer codes and accelerates

simulation. These two facts are the main effects of higher-level shifting to HLS [30].

The combination of reconfigurable hardware architectures, such as FPGAs and

HLS tools allow designers to achieve a specialized hardware design, and at the same

time, address the time-to-market problem. FPGAs are reconfigurable integrated circuits

that can be configured by the end-user to implement digital circuits. Also, since FPGAs

are reconfigurable, they allow quick refinement and optimization of a hardware design

compared to ASICs with no additional manufacturing costs. The designer writes or

modifies the Hardware Description Language (HDL) for a component and then use an

FPGA vendor tool-chain for the synthesis of the bitstream to configure the FPGA. HLS

tools start from a software programmable high-level language (HLL) (e.g., C, C++,

and SystemC) to automatically produce a circuit specification in HDL that performs

the same function as specified in the HLL. HLS is an interesting tool for both software

and hardware engineers. HLS enables software engineers to gain speed and energy

efficiency of hardware, without requiring deep hardware expertise. On the other hand,

for hardware engineers, HLS accelerates the design of the system at a high-level of

abstraction and speed up the design space exploration. This is important in the design

of complex systems such asCNNs, and suitable for FPGAdesignwheremany alternative

implementations can be easily generated, deployed onto the target device, and compared

[31].
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Starting from early 2000, many FPGA-based accelerators have been proposed

for CNN computing because general-purpose processors cannot implement CNN

efficiently. Most of the early works focused on either improving the performance

of computing engine or the off-chip memory communication issue. Recent works

tried to improve both (performance of compuation engine and utilization of memory

bandwidth), like works in [20, 32, 33, 34, 35, 36] where some have used HLS such as

[20, 33]. Until now, almost all existing CNN implementations are based on BE which

uses the conventional binary arithmetic, which requires huge hardware; therefore, their

performance is severely limited by hardware budget and memory bandwidth of existing

FPGA platforms. Nevertheless, more efficient design is required to overcome the

challenge of mapping CNNs to resource-constrained environments.

1.2 Problem Statements

This thesis tackles many issues that can be categorized into (a) problems in

existing SC CNNs, (b) limitations in SC system design, and (c) low energy-efficiency

in CNN accelerators.

1.2.1 Summary of problems in existing CNN based on stochastic computing

There have been several attempts to design efficient SC circuits for CNNs.

However, most of the previous works on CNN based on stochastic computing (SC

CNN for short) [23, 27, 25, 28, 24, 37, 22, 29, 38] have two main problems. First,

they do not scale to harder recognition problem. They had acceptable accuracy for

simple digit classification problem using MNIST dataset, but they cannot perform well

in more complex recognition problem such as object recognition. Second, they incur

large overhead due to the conversion of fixed-point data and weights into stochastic

bit-streams, which significantly reduces energy and area efficiency of SC CNNs.
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In SC CNN, the key functions are the activation function, pooling, and the

inner product. The inner product is applied in convolution. In most previous works

[27, 25, 28, 24, 7, 29, 38, 6], the SC inner product function is based on the accumulative

parallel counter (APC). This APC-based inner product is correlation-sensitive, so many

RNGs are required to generate uncorrelated SNs to ensure accurate computations, which

severely affect the circuit area cost. Furthermore, the output of an APC-based inner

product is in binary format; hence, for this output to be used as an input for another SC

functional unit, a regeneration circuit (or a specially designed intermediate circuitry) is

required. In addition, APC-based inner product has a relatively high area compared to

traditional SC inner product circuits.

The SC CNN max pooling or ReLU in previous works has a higher area than

the BE implementation, or the area is not specified. Yu et al. [7] proposed accurate

SC-based ReLU and max functions. However, the area cost in these functions is larger

than the BE counterpart. Yu et al. in [7] proposed an RNG sharing scheme to reduce

the conversion circuit area, but their inner product function (APC-based) requires

uncorrelated SNs, which limited the amount reduction of area cost in the conversion

circuits area.

Li et al. [6] proposed a Highly Efficient stochastic computing-based Inference

Framework (HEIF) for deep neural networks. The HEIF framework introduces a new

SC-based ReLU, and the authors performed a holistic and module-level optimization.

However, this work has limitation in the stack order of the layers and cannot be

generalized easily to other CNN models such as ResNet. In addition, this work did

not discuss the conversion circuit area cost, especially that their convolution operation

requires uncorrelated SNs. In addition, their SC-based ReLU has 10× higher area cost

than the BE counterpart. A common limitation in all previous works on SCCNN is they

did not use RNG sharing scheme, and many did not consider the conversion circuits in

their area cost evaluation.

Finally, the previous works on SC average pooling used the conventional SC

scaled addition, which is highly inaccurate. Moreover, if the CNN functions are

changed, consequently the derivatives of the SC functions should be obtained. If SC

CNN is trained with the default backward functions, the accuracy will be very low.
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Sim and Lee [26] proposed a new SC multiply-accumulate (MAC module) unit

with higher accuracy and lower latency than conventional SC counterparts, but this

method is limited to what is called binary interfaced SC (or hybrid SC CNN). This

method cannot be used in pure SC system. Any hybrid BE-SC system (including hybrid

SC CNNs) have the problem of multiple BE-SC domain conversions. Consequently,

SC dataflow will be destroyed resulting much higher latencies, where latency increase

will be exponential with the number of operations. In addition, hybrid approaches

introduce large hardware overhead due to conversion.

Precision in conventional BE is the number of bits used to represent a number

while in SC the precision is the length of the SN. The previous [23, 27, 25, 28, 24, 37,

22, 7, 29, 38, 6, 39] SC CNN implementation required precision for SN of L=64 up

to 8192 bits. Long SNs increase the number of clock cycles required to perform any

operation. Increased latency will affect not only the operation speed but also energy

consumption as energy = power × time.

To evaluate the application level accuracy, previous works did not use the state-

of-the-art CNN models, such as ResNet. Although AlexNet [12] deep CNN is used in

[6], the AlexNet error rate on ImageNet is 36.7%. This error rate is high compared to

other models such as ResNet [13]. ResNet-18 and ResNet-152 achieved error rates of

27.88% and 21.43% respectively.

1.2.2 Limitations of existing techniques of SC system design that exploit
correlation

It is usual to assume that the accuracy in an SC system is dependent on the

interacting SNs being highly independent or uncorrelated (in a loosely specified way).

However, Alaghi and Hayes [9] has shown that, contrary to intuition, correlation can

be exploited in an SC design. The circuits that exploit correlation are generally smaller

and more accurate than those with uncorrelated inputs. In addition, the circuits with

correlated inputs can provide a cheap implementation for a complex operation, such as

the max operation, that is very hard to realize in traditional uncorrelated SC circuits.
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If an SC system is to be designed using the SC circuits with correlated inputs, the

correlation between SNs should be managed throughout the system; otherwise, the

accuracy will be severely degraded.

Alaghi and Hayes [9] proposed a general framework for analyzing and

designing combinational circuits with correlated inputs. Although such circuits can

be significantly more efficient and more accurate than traditional SC circuits, the

framework is limited to design of SC-based combinational circuits and cannot be used

to design a complete SC system with correlated SNs. Hence, we have this idea to

extend their design framework in finding a way to maintain the correlation throughout

the SC system, towards realizing an SC system design with correlation that works.

Maintaining the desired level of correlation between SNs is difficult [1]. Consider

the problem of decorrelation, i.e., systematic elimination of undesired correlation, the

counterpart problem in traditional SC. Ting and Hayes [40] have developed a theory

for placing isolation-based decorrelators and have obtained conditions for a placement

to be valid.

On the other hand, for SC circuits with correlated inputs, Lee et al. [41] have

designed a synchronizer (also referred as a correlator) that increases the correlation

between two SNs. Although not adequate by itself, this correlator is a good candidate

to be considered in the proposed extended framework. Other correlation manipulation

circuits would be also needed, such as a correlated SN generator that generates an SN

correlated to a intermediate SN. Any SC system, although it is designed to exploit

correlation, still requires uncorrelated SNs. A previous study showed that random

number generators (RNGs) could take up to 80% of the SC circuit area [42]. This high

area cost due to the RNGs is a serious problem that to be addressed. To solve this issue,

RNG sharing schemes were proposed in [5, 43], where one RNG was used for multiple

SNGs.

The above discussion suggests that the solution to the problem of designing

an SC system with correlation would entail extending the framework proposed in [9]

to include providing design guidelines for managing the correlation through a SC

system and how to build an optimal SC system with exploiting correlation. Managing

the correlation depends on two conditions, namely the correlation-sensitivity of the
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SC functions at its inputs and the correlation induced at its outputs. The effect of

correlation between input SNs on the behavior of the different SC operations has been

studied before, where the correlation sensitivity term was introduced. However, how

much different SC operations change the level of correlation at the output SNs should

also be investigated, and this has not been done before. Finally, the design framework

for building an SC system with correlation should have the target objective of reducing

the area cost of conversion circuits.

1.2.3 The issue of energy efficiency achievable in conventionalCNNaccelerators

CNN is the dominant approach for recognition applications, but it is highly

compute-intensive. In the feed-forward computation of CNN, a previous study [18]

reported that convolution operations would occupy over 90% of the computation time.

Optimal FPGA accelerators had been proposed for CNN [20, 32, 33, 34, 35, 36]

using many hardware optimization techniques. However, the CNN implementation

consumes high resource utilization and obtain a low energy efficiency smaller than

25GOPS/W. Although there are two FPGA implementation works that obtained high

energy efficiency using binarized CNN [44] and FFT/Winograd CNN [45], using SC

might produce greater energy efficiency. It should be noted that SC can be used in

conjunction with any of the previous solutions.

HLS accelerates system design at a high-level of abstraction and speeds up the

design space exploration. Typically, the SC systems are designed at the gate/RTL level,

which reduces design productivity. To our knowledge, there are no previous work on

design of SC modules and systems that employ designing at the C-based high-level of

abstraction to facilitate the exploration of the design space.
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1.3 Objectives

The goal of this work is to propose an accurate, low-area, and energy-efficient

SC system hardware for CNN. In this thesis, this CNN is designed for recognition

applications, and targeted for implementation in embedded FPGA devices. To achieve

this goal, the following are the main objectives of this work:

1. To propose a framework for the design of an effective end-to-end SC system

hardware composed of a series of SC processing units that exploit correlation.

The proposed SC system is targeted for deployment as a hardware computation

engine in applications of image processing and convolutional neural networks.

2. To develop a CNN based on the proposed stochastic computing design

framework that achieves high classification accuracy in recognition applications.

The associated sub-objectives are:

i. To propose SC functions for CNN functional units that include the

convolution, activation function, and pooling, which are optimized for

accuracy and resource utilization.

ii. To modify SC CNN training to achieve high classification accuracy.

This includes the derivation of the backward functions for the proposed

SC CNN functions.

3. To develop an SC CNN computation engine on FPGA platform using the HLS

design method. This SC system hardware is used to demonstrate how the SC

design led to the optimization in resource utilization and energy efficiency. The

objective also involves the proposing of a novel strategy/ methodology for the

design of a generic SC functional unit or system at a high-level of abstraction.
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1.4 Scope of work

In this thesis, we utilize a combination of tools to support modeling, design, and

implementation of the proposed algorithms and hardware. The approaches, software

tools, performance measures, and case studies are summarized as follows:

• The entire work targets the embedded applications that have meager resources

and require very low power consumption such as mobile, IoT, and wearable

devices.

• The proposed SC algorithms are developed using MATLAB tool. Mean

absolute error is computed to quantify errors for the SC functions.

• The CNN basic functions in this work are the inner product for the convolutional

layer, average and max for pooling layer, and max for ReLU activation function

layer.

• The used CNN models are modified LeNet-5 [16] and ResNet-20 [13]. The

supervised training mode is used. The computation of the error gradients is

based on the backpropagation algorithm.

• The effectiveness of the resulting SCCNN is demonstrated, in terms of accuracy,

with different datasets that represent complex and real-world problems. The

datasets used to verify and analyze the performance of the proposed SCCNNare

limited to the following: (a) handwritten digit classification using the MNIST

database, (b) face recognition using AT&T database, and (c) object recognition

using CIFAR-10 dataset.

• The development and training of different SC CNN models are performed

using deep learning toolbox in MATLAB. The MATLAB is also used any

preprocessing of the datasets such as normalization and resizing.

• The performance of a CNN model using particular dataset is evaluated based

on its classification accuracy and misclassification error rate.

• For the hardware implementation, only CNN inference is considered, and

training remains on the software since in embedded devices training is done

off-line.
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• The test platform is FPGA-SoC ZYNQ Z706 development board. In this work,

performance is measured by Giga Operations per Second (GOP/s), latency is

measured in the number of clock cycles, energy-efficiency is measured by Giga

Operations per Second per Watt GOP/s/W, and resource utilization is measured

using the number of utilized BRAMs, DSPs, FFs, and LUTs in the FPGA chip.

• The SC CNN hadware is designed at the high-level of abstraction using Vivado

HLS 2018.3 tool. The used description is written in C++. The functionality is

validated via Vivado HLS simulation and co-simulation using a C++ testbench.

The latency of the accelerator is obtained from the Vivado HLS co-simulation

results. The resource utilization and power consumption are collected from the

implementation report of Vivado HLx 2018.3 design suite. The Vivado power

analysis tool is used to analyze the power consumption of the SC hardware.

1.5 Research contributions and achievements

1. A design framework for an efficient design of an effective SC system hardware

that exploits correlation. The corresponding research outputs are:

i. Characterization of correlation in SC elements and functions that

include correlation-sensitivity and correlation-induction. In addition,

quantifying correlation in RNG generated sequences.

ii. Novel algorithms and designs for correlation manipulation circuitry that

includes a correlator, a correlated stochastic number generator, and a

RNG sharing scheme.

iii. Design guidelines for the efficient design of an end-to-end SC system

hardware optimized for accuracy, area, and energy-efficiency.

2. An accurate and low-area SC-based CNN based on novel SC functional units.

The following details out this contribution:

i. A novel SC functions that outperform all previous work [6, 7, 5] in low-

area cost. In addition, those SC functions achieve higher or comparable

accuracy compared to previous works. These SC functions are inner
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product, SC ReLU, and maximum functions that create the convolution,

activation, and max-pooling layers of a SC CNN, respectively . In

addition, a new SC average pooling layer is developed based on the

adder in [46].

ii. Considerations to achieve high classification accuracy after training

process. These include the input normalization and the derived

backward functions.

3. An efficient SC CNN convolution computation engine developed using high-

level synthesis for FPGA implementation. This engine outperforms previous

work [20, 47, 32, 34, 44, 35, 33, 36, 45] in terms of low resource utilization and

high energy efficiency.

1.6 Thesis organization

This thesis is organized into 7 chapters. Chapter 2 describes the background

theory of SC and CNN. It also covers the literature review of the previous related works.

Chapter 3 presents the methodology for the research work performed in this

thesis. This includes the approach taken to conduct the research, the tools and platform

used, and the high-level synthesis design flow for mapping algorithms towards FPGA-

based accelerators.

Chapter 4 describes the proposed design framework of effective SC system

hardware that exploits correlation. This chapter includes a comprehensive study of the

impact of correlation on successive SC computation through the system. Based on this

study, the correlation in SC functions is characterized, and correlation manipulation

circuits are discussed. Guidelines are recommended to design an SC functional unit or

system efficiently.

Chapter 5 presents the SC-based CNN development, where the proposed novel

SC functions are discussed. Then, SC CNN training considerations to achieve high
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classification accuracy are described. This chapter presents a MATLAB simulation

model for SC CNN that enable creating, testing, and training different CNN models

in SC domain. Finally, the proposed high-level design strategy to create a generic SC

system hardware and high-level synthesis of the SC CNN hardware are presented.

Chapter 6 presents the experimental results and the analysis of SC CNN and

its functions. First, the SC functions are examined. Then, the SC CNN accuracy is

evaluated using different models and datasets and benchmarked with previous work.

The low resource utilization and high energy-efficiency of SCCNNhardware are proved

in this chapter after extensive comparisons with previous works on FPGA-based CNN

accelerators. Discussions and justifications for accuracy, low-area cost, and energy

efficiency are included in this chapter.

Chapter 7 summarizes the thesis, re-stating the contributions based on the

results, and suggests directions for future research works.
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