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ABSTRACT

Sensory data in Wireless Sensor Network (WSN) is not always reliable because

of open environmental factors such as noise, weak received signal strength or intrusion

attacks. The process of detecting highly noisy data and noisy sensor node is called

outlier detection. Outlier detection is one of the fundamental tasks of time series

analysis that relates to predictive modeling, cluster analysis and association analysis.

It has been widely researched in various disciplines besides WSN. The challenge

of noise detection in WSN is when it has to be done inside a sensor with limited

computational and communication capabilities. Furthermore, there are only a few

outlier detection techniques in WSNs and there are no algorithms to detect outliers on

real data with high level of accuracy locally and select the most effective neighbors for

collaborative detection globally. Hence, this research designed a local and global time

series outlier detection in WSN. The Local Outlier Detection Algorithm (LODA) as

a decentralized noise detection algorithm runs on each sensor node by identifying

intrinsic features, determining the memory size of data histogram to accomplish

effective available memory, and making classification for predicting outlier data was

developed. Next, theGlobal Outlier DetectionAlgorithm (GODA)was developed using

adaptive Gray Coding and Entropy techniques for best neighbor selection for spatial

correlation amongst sensor nodes. Beside GODA also adopts Adaptive Random Forest

algorithm for best results. Finally, this research developed a Compromised Sensor Node

DetectionAlgorithm (CSDA) as a centralized algorithm processed at the base station for

detecting compromised sensor nodes regardless of specific cause of the anomalies. To

measure the effectiveness and accuracy of these algorithms, a comprehensive scenario

was simulated. Noisy data were injected into the data randomly and the sensor nodes.

The results showed that LODA achieved 89% accuracy in the prediction of the outliers,

GODA detected anomalies up to 99% accurately and CSDA identified accurately up

to 80% of the sensor nodes that have been compromised. In conclusion, the proposed

algorithms have proven the anomaly detection locally and globally, and compromised

sensor node detection in WSN.
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ABSTRAK

Data sensor dalam Rangkaian Sensor Wayarles (WSN) tidak selalunya boleh

dipercayai kerana faktor persekitaran terbuka seperti bunyi bising, penerimaan isyarat

yang lemah atau serangan pencerobohan boleh berlaku. Proses mengesan data dan

sensor yang sangat bising dipanggil pengesanan data pencilan. Pengesanan data pencilan

merupakan salah satu tugas asas analisis siri masa yang berkaitan dengan pemodelan

ramalan, analisis gugusan dan analisis sekutuan, dan banyak dikaji dalam pelbagai

bidang selain WSN. Cabaran pengesanan data pencilan pada WSN adalah apabila perlu

dilaksanakan dalam sensor yang mempunyai keupayaan komputeran dan komunikasi

yang terhad. Selain itu, hanya terdapat beberapa teknik pengesanan data pencilan

dalam WSN tiada algoritma untuk mengesan data pencilan pada data sebenar dengan

tahap ketepatan yang tinggi secara setempat dan juga pemilihan jiran berkesan untuk

pengesanan kolaborasi global. Dengan yang demikian, tujuan kajian ini adalah untuk

mereka bentuk teknik pengesanan data pencilan setempat dan global secara siri masa

untukWSN. Algoritma Pengesanan Data Pencilan Tempatan (LODA) yang dicadangkan

adalah algoritma pengesanan bunyi yang terdesentralisasi yang dijalankan pada setiap

nod sensor dengan mengenal pasti ciri dalaman, menentukan saiz memori histogram

data untuk menetapkan keperluan memori berkesan, dan membuat pengelasan untuk

meramal data pencilan. Seterusnya, Algoritma Pengesanan Data Pencilan Global

(GODA), dibangunkan menggunakan Teknik Penyesuaian Kelabu Adaptif dan Entropi

untuk pemilihan hubung kait ruangan di antara nod sensor. Di samping itu, GODA

juga mengguna pakai algoritma Hutan Rawak Adaptif untuk hasil terbaik. Akhir sekali,

kajian ini jugamencadangkanAlgoritma PengesananNodSensor Terkompromi (CSDA),

sebuah algoritma terpusat yang diproses di stesen pangkalan untuk mengesan nod

sensor terkompromi tanpa mengira penyebab anomali. Untuk mengukur keberkesanan

dan ketepatan algoritma, satu senario menyeluruh telah disimulasikan. Data bising

telah disuntik ke atas data dan nod sensor secara rawak. Hasil kajian menunjukkan

LODA mampu mencapai 89% ketepatan dalam meramal data pencilan, GODA mampu

mengesan data pencilan sehingga 99% ketepatan, dan CSDA mampu mengenal pasti

dengan tepat sehingga 80% nod sensor terkompromi. Sebagai kesimpulan, algoritma

yang dicadangkan telah membuktikan pengesanan anomali secara tempatan mahupun

global, dan pengesanan nod sensor dikompromi dalam WSN.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Wireless sensor networks are sensor network technologies which are widely

deployed on environmental monitoring, atmospheric monitoring, process monitoring,

material sensing, security applications, etc. These networks operate on collective

networking and computing of individual sensors based on their physical sensing

properties and processing capabilities. Sensors nodes, cooperatively communicate

and relay aggregated data to the main network control system for further processing

and acting (Kobo et al., 2017). In this regard, these sensors, must have an ability to

conform to the collective networking functionalities as governed by their respective

network policies. In WSNs, sensor nodes can be randomly deployed, in essence

allowing opportunities for applications even in inaccessible areas. This feature about

sensor networks, allows the possibility of deploying a large number of sensors over

intuited areas for as long as communications can be established and sustained among

these sensor nodes. A WSN consists of, but not limited to; a WSN server, routers,

switches, sensor nodes, etc. depending on the design setup as required for its purpose

(Mathews et al., 2018).

Basically, each sensor node comprises sensing, processing, transmission,

mobilizer, position finding system, and power units. Sensor nodes coordinate among

themselves to produce high-quality information about the physical environment. Sensor

field can be considered as the area in which the nodes are placed. Sensor nodes are the

heart of the network. They are in charge of collecting data and routing this information

back to a sink. A sink is a sensor node with the specific task of receiving, processing

and storing data from the other sensor nodes. Sinks are also known as data aggregation

points. A Task manager also known as base station is a centralized point of control

within the network, which extracts information from the network and disseminates
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control information back into the network. The base station is either a laptop, a

workstation or a server (Shaik and Shakeel Ahamad, 2018) .

Wireless sensor networks can be used in a wide range of applications, such

as structural and environmental monitoring, habitat monitoring, health monitoring,

military surveillance, weather detection and underwater acoustic. This wide range

of applications presents various design, operational and management challenges for

WSN (Mohamed et al., 2017). There are broad range of WSN applications, which

can be categorized according to their goal, interaction pattern, or reporting time. The

goal of the application can either be sense, or sense and react. When the goal of the

application is sense only, nodes collect sensed data, and send them to the sink node

sense and react applications; on the other hand, nodes interact with the environment,

and take action based on the sensed data, such as home automation applications. In

For both categories, the reliability and accuracy of the data are important to ensure

that the decision making based on the sensor data received from the environment is

accurate. Data collection techniques are applied for collecting the aggregated data from

the testbed and transmitting them to the sink station. If these data are lost or jumping

during transmission, it will inevitably lead to the unreliable or error results. Therefore,

the completeness and accuracy for scientific data are so important in decision- making.

Nevertheless, in actual data collection scenario, data loss is so common (Li et al., 2019).

Data measured and collected by WSNs is often unreliable. The quality of data

set may be affected by noise & error, missing values, duplicated data, or inconsistent

data. The low cost and low quality sensor nodes have stringent resource constraints

such as energy (battery power), memory, computational capacity, and communication

bandwidth. The limited resource and capabilitymake the data generated by sensor nodes

unreliable and inaccurate. Especially when battery power is exhausted, the probability

of generating erroneous data will grow rapidly. On the other hand, operations of

sensor nodes are frequently susceptible to environmental effects. The vision of large

scale and high density wireless sensor network is to randomly deploy a large number

of sensor nodes (up to hundreds or even thousands of nodes) in harsh and unattended

environments. It is inevitable that in such environments some sensor nodesmalfunction,

which may result in noisy, faulty, missing and redundant data. Furthermore, sensor
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nodes are vulnerable to malicious attacks such as denial of service attacks, black hole

attacks and eavesdropping, in which data generation and processingwill bemanipulated

by adversaries (Abukhalaf et al., 2016).

1.2 Problem Background

Outlier detection is the process of finding data objects whose behavior are highly

varying from expectation. It is considered to be one of the fundamental tasks of data

mining. In Wireless sensor networks, outliers can be defined as those measurements

that significantly deviate from the normal pattern of sensed data. Due to various

reasons that includes fault in sensors, communication error etc., wireless sensors

tend to generate outliers. The presence of outliers in a dataset leads to a biased

outcome and erroneous conclusions, when the data is further analyzed. Identifying

outliers before data analysis helps improvise the quality of data. Identifying outliers in

univariate data and multivariate data have to be dealt differently. Most of the outlier

detection techniques applied on univariate data rely on the assumption that there is an

underlying distribution of the data, which is assumed to be identically and independently

distributed. When dealingwithmultivariate data, identifying outliers becomes difficult,

when each variable is considered independently. Only when multivariate analysis is

performed and there is correlation between the considered considered variables, outlier

detection is possible (Mathematics, 2017).

When type of data is considered the outliers can be classified as local and global

outliers. Local outliers Taking the point that are recognized in wireless sensor network

at individual sensor nodes, techniques for reducing communication overhead and

maintaining scalability of network with proper determination of outliers is important.

Many event detection applications, for example, vehicle following, surveillance and

monitoring can be done using local outlier detection. Local outlier identification has

two variations in wireless sensor network. One variation is that historical values are

used for determining the wrong or faulty value in the given sensor network. Another

option is adding historical reading of their own; where the value of neighbor is taken

to determine the value is proper or not i.e. the anomaly is based on the feedback from
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the neighbor node. When compared with the second approach the first one lags as it

doesn’t provide that much accuracy and robustness in the detection of outliers. Global

outliers are popular as they have global perspective and also they draw more attention

as they focus on the complete characteristics of WSN instead of working locally like

local outlier. On basis of different network architecture, different type of identification

can be done on many nodes. All the data collected id transmitted to sink node in

the centralized architecture. It delay the response time very much and cause a lot of

communication overhead. Cluster head collect the data and identifies outlier in cluster

based approach. It has better response time and energy consumption as compared to

the former one (Goyal and Munjal, 2015).

Identifying what has caused the outlier in sensor data is an important task.

Potential sources of outliers in WSNs include noise & errors, actual events, and

malicious attacks(Sun et al., 2018). Distinguishing between sources of outliers is a vital

matter which in turn gives an insight on how to handle the detected outlier. Generally

speaking, if the detected outlier is an error or noisy data, it should be removed from the

sensed data to ensure high data quality and accuracy; and to save energy consumption

by eliminating communication load. Otherwise, if the outlier is caused by an event

(e.g. fire or chemical spills), eliminating the outlier will lead to loss of important

hidden information about events, which may have undesired penalty. However, many

researches tend to deal with outliers and events as similar conditions by treating events

as some sorts of outliers (i.e. events are one of the causes of outliers). Due to the

fact that there exists spatio-temporal correlation among neighboring node readings, this

observation enables us to distinguish between events and errors. This is based on the

fact that noisy measurements and sensor faults are likely to be stochastically unrelated,

while event measurements are likely to be spatially correlated(Fawzy et al., 2013a).

Outlier detection is an important aspect of datamining, where themain objective

is to identify anomalous or unusual data from a given dataset. Outlier detection is

interesting because it involves automatically discovering interesting and rare patterns

from datasets (Ahmed et al., 2014; Huang et al., 2017). Outlier detection has been

widely studied in statistics and machine learning, where it is also known as outlier

detection, deviation detection, novelty detection, and exception mining. Outliers are
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important because they indicate significant but rare events, and they can prompt critical

actions to be taken in a wide range of application domains. For example, an anomaly in

an MRI image may indicate the presence of a malignant tumour (Ahmed et al., 2016).

Similarly, abnormal behaviour in a credit card transaction could indicate fraudulent

activities, an unusual traffic pattern in a network could mean that a computer is hacked

or under attack, e.g., using worms and Denial of Service (DoS) attacks (Marchette,

2001).

1.3 Problem Statement

The quality of data collected by sensor nodes is affected by anomalies that

occur due to various reasons, such as node failures, reading errors, unusual events,

and malicious attacks. Therefore, anomaly detection is a necessary process to ensure

the quality of sensor data before it is utilized for making decisions. Thus, an outlier

detection algorithm is required to determine inconsistencies and possibly to filter them

to enhance the quality of the sensor reading data (Zhu and Hua, 2015). As far as the

technique categories, statistical techniques, datamining, and computational intelligence

are employed most widely.

De Paola et al. (2015) presented an Adoptive Distributed Outlier Detection

(ADOD) algorithm to identify, in a WSN, the faults in the data. As per the needs of the

application, the effective classification, efficiency and communication can be improved

in ADOD. The better collaboration of the nodes, which can occur through effective

classification, results in outlier identification. If this collaboration is low, efficiency and

communication get affected. This algorithm, utilizing constrained Pareto optimization,

resolves the problem of contradictory objectives of improving classification, efficiency

and communication at the same time. A set of Bayesian Networks (BNs) distributed

over the WSN undertakes the task of outlier identification. A spread of the structure of

all the BNs over a set of collaborating sensor nodes is present. The technique presented

by us is new due to the dynamic creation of the collaborating set in the presence of

limitations and variations in the observed physical phenomenon. Despite their many
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advantages, such as flexibility, one of the main drawbacks of this technique is the it

can, however, deal with continuous variables in only a limited manner.

A new pattern-based anomaly classifier was proposed (Araya et al., 2017).

The Collective Contextual Anomaly Detection using Sliding Window (CCAD-SW)

architecture distinguishes abnormal energy consumption patterns by overlapping SWs

of smart buildings. To improve the potential of CCAD-SW, another framework was

proposed called Ensemble Anomaly Detection (EAD). It elects classifiers on the basis

of majority voting, and it is deployed by combining pattern-based and prediction-based

anomaly classifiers to incorporate diversity among classifiers. This existing method

is useful in many applications but they still cannot identify certain types of anomalies

(Jiang et al., 2014).

Zhang et al. (2015), presented an acceleration technique for object detection

using CNN for very deep networks. The authors highlighted the importance of machine

learning in WSN applications. WSNs are prone to faults and failures because of the

multiple reasons discussed above. Authors in Miao et al. (2018), an online distributed

method was proposed to handle the streaming data in WSNs. The approach was based

on One-Class Support Vector Machine (OCSVM) to detect anomalies over networks

and to get a decentralized cost function. Instead of kernel functions, they used a random

approximate function. For approximate dimensions, a sparse constraint is also added in

the decentralized cost function. After that, SGD is used to minimize the cost functions

and derive two distributed sets of rules. This algorithm contributed to achieving high

true positive and low misdetection rates.

In general, these researchers present anomaly detection methods in WSNs,

which mainly consider detection accuracy and communication complexity of the

algorithm. However, the computational complexity of the algorithm is less taken

into account. In this study, a new method of anomaly detection is proposed in

view of the computational complexity and can achieve comparable accuracy and less

communication cost.

6



Limitations of existing OD models.

Wireless Sensor Networks

What is the solution?

Challenges of OD in WSN

• Resource limitations, high communication 
cost, distributed streaming data, ...

The requirement solution should
• Guarantee high effectiveness: in real datasets and local detection.
• Be efficient in terms of resource usage: low memory usage and low data dimension.
• Result in light global communication traffic: small number of between-neighbor 

communications

• Widely deployed and used in many unattended and harsh environments. 
•  Noisy environment,  energy depletion, hardware problems, etc. 
• affect data collection. Limited resources.  

• Normal solutions for detecting fraudulent data cannot be adopted

Adequate solutions that guarantee sensor data from testbed or deployed environment are usable 

for making correct decision. Methods are called outlier detection/anomaly detection (OD/AD)

• Low effectiveness.
•   Inefficient resource consumption. 

•  Heavy global correlation

Noise and Anomaly Detection in Wireless Sensor Network Locally and Globally

Figure 1.1: Scenario leading to the research problem.

Therefore, based on the above explanation there is a lack of an algorithm with

time series consideration for detecting outlier in sensory data locally. Moreover, there

are several studies for outlier detection globally but not considering to the time series

concept and selecting the weighted neighbor as collaborative sensor node.

Figure 1.1 shows an overview of this study and the factors that lead to the

problem of outlier detection in WSNs. Furthermore, Chapter 2 explains the details of

WSNs and outlier detection challenges.

The combination of time series and WSN has attracted much attention.

Numerous methods have been proposed to monitor numerical streams, including time-

series indexing and sequence-pattern discovery. However, as stated in some research,

these methods are not suitable for real-time monitoring streams and introduce an

overhead in terms of resource consumption and computation. Therefore, the authors

propose a method to monitor numerical streams and determine the lag correlation
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between them. This method can manage reasonably sized data streams incrementally,

quickly, and with small resource consumption (Berjab et al., 2018).

Use of formal time series analysis in sensor networks has been reported by

several researchers. Using time-series modelling to decide the confidence levels for

future samples, and skip the future readings if the values are likely to be accurate

enough. However, this requires substantial processing (adjusting time series models

continuously for each new sample), and it requires full rate sampling for some time

after skipping samples. At best, it reduces the number of required samples by less than

50%. Some researches have used ARIMA modelling for the smoothing of noisy data

and for interpolating missing data samples in a series, but again has not analysed the

best sample rate to provide accurate data interpolation (Bhandari et al., 2017).

1.4 Research Questions

As mentioned outlier detection plays a very important role in determining

correct and reliable data in WSNs. Therefore, many algorithms are exist for resolving

the outlier detection problem in WSNs. Some algorithms can detect outliers very

accurate. However, they are consider the Multi-level approach of outlier detections.

Which means detection outlier on sensor node locally and also use neighbors to

identifying outlier globally based on time series approach as well as identifying

compromised sensor node. Thus, the specific research questions of this study are

as follows.

(i) How can noise be observed bottom-most level, at the sensor node itself, that

termed as local detection using efficient features and the smallest possible

memory size?

a) Which smart features are effective for detecting noisy data at each local

sensor?

b) How can the window size for local noise detection that uses an

appropriate memory size be determined?

8



c) How can noisy data be predicted at each sensor node?

(ii) How can noise be collaborative detected amongst sensor nodes, or intermediate

level, that termed as global detection using best neighbor selection and effective

features?

a) How can the best number of neighbors for collaboration be selected?

b) How can the best neighbor for spatial correlation be selected?

c) Which smart features are effective for collaboration with the selected

best neighbors?

d) How can the noisy data in sensor readings be detected globally based

on the extracted features ?

(iii) How can identify compromised sensor nodes centrally at the Base Station?

a) How can the features that can be used for detecting anomalous sensor

nodes be determined?

b) How can the best combination of features for detecting sensor nodes

having anomalous sensor data be determined?

c) How can compromised sensor nodes be detected in an entire network

and marked as faulty sensor nodes ?

1.5 Research Aim

The aim of this research is to design and develop an outlier detection technique

for WSNs that can detect noisy and outlier’s data locally on sensor nodes while

maintaining minimal amount of memory. It is further enhanced with time series

analysis in smart selection amongst the neighborhood sensors for collaborative global

detection environment. Ultimately, compromised sensor nodes are detected centrally

at the Base Station for high accuracy solution.
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1.6 Research Objectives

Based on the research questions, the research objectives of this study were as

follows.

(i) To design and develop an independent outlier detection algorithm that runs

on each local sensor node of a WSN with consideration of the nodes intrinsic

features.

(ii) To design and develop a collaborative time series based global outlier detection

algorithm to be applied amongst sensor nodes in a WSN.

(iii) To design and develop a centralized time series based outlier detection algorithm

on base station of a WSN for detecting compromised sensor nodes regardless

of specific cause of the anomalies.

1.7 Research Scope

The assumptions and limitations of this research study are as follows.

(i) The dataset used in this research was provided by the Intel Berkeley Research

Laboratory (IBRL, 2004). It is a benchmark real dataset that has been used

widely in many outlier detection studies.

(ii) Sensors were assumed to have sufficient energy and storage to perform the

simulation.

(iii) The network structure was assumed to be static and the sensors to be

homogeneous and time synchronized, as are those used in previous studies.

(iv) This study does not include response actions when outliers and anomalous

sensor nodes have been detected.
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1.8 Significance of This Study

This study is significant for the following reasons.

(i) The quality of data collected by WSN applications is very important for

subsequent analysis and decision-making procedures. Therefore, anomalous

measurements must be detected to support correct decision making.

(ii) Security concerns related to WSNs motivated this research study, because the

number and types of attacks are increasing. Given that attacks are considered

a source of outliers and anomalies, the detection of these types of outliers and

anomalies helps the network survive and operate as expected.

(iii) The WSN lifetime is also affected by the design of efficient outlier detection

methods, which was one of the sub-considerations of this research.

The findings of this research are expected to lead to the development of the

proposed outlier detection model in different fields for various applications, such as

the monitoring of abnormal phenomena in agriculture and health care, environmental

monitoring, and many more. Figure 1.2 demonstrate development phases of proposed

model.

1.9 Summary of Research Contribution

The main contribution of this study is locally and globally detecting outliers, as

well as anomalous sensor nodes, in WSNs, that efficiently utilizes the limited resources

of WSNs. The main contributions are provided by the design and development of the

following components, as shown in Figure 1.3.

(i) An efficient local outlier detection algorithm that provides accurate predictions

and utilizes small amounts of resources.

(ii) An algorithm that uses spatial correlation with neighbors to detect outliers

globally and selects the best neighbors.
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The Proposed Outlier Detection Locally and Globally

Phase I

Design and analysis leading to method for detecting outliers at each sensor 

node locally that has less complexity and uses less memory.

Phase II

Design of method for detecting outliers globally using spatial correlation and best 
neighbor selection.

Phase III

Design of method for defining compromised sensor nodes using anomaly data.

Figure 1.2: Phases of development of proposed model and algorithm

 

Locally and globally 
outlier detection 

with high accuracy

Anomaly Sensor 
node detection

Low overhead and 
best neighbor 

selection

An efficient 
resource utilization 

local outlier 
detection 

Figure 1.3: Hierarchical diagram for implementing the proposed algorithm

12



Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3

Research Methodology

Chapter 4
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Chapter 5
Global Noise 

Detection 

Chapter 6
Anomaly Sensor 
Node Detection

Chapter 7

Conclusions

Figure 1.4: Thesis organization

(iii) An outlier detection algorithm that can report compromised sensor nodes.

1.10 Thesis Outline

This thesis consists of seven chapters, organized as shown in Figure 1.4. In

Chapter one, the research study is introduced and an overview of the thesis is presented.

In Chapter 2, work related to this research study is reviewed and existing techniques are

explained and compared. In Chapter 3, the methodology used to achieve the main goal,

which is noise detection in time series in sensor data of WSNs locally and globally, is

described. Chapter 4 discusses data cleansing and important features for detecting noise

locally while considering the necessity of low memory usage. In Chapter 5, a method

for distributed noise detection that uses a novel neighbor selection algorithm to increase

the detection accuracy globally is described. In Chapter 6, a method is proposed for

anomalous sensor node detection at the base station to detect compromised sensor

nodes and thus allow reliable decision making at the sink. Chapter 7 summarizes the
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study and concludes this thesis. It also includes suggestions for possible future studies

on the detection of outliers in WSNs.
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