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ABSTRACT

Sentiment classification aims to determine whether an opinionated text 
expresses a positive, negative or neutral opinion. Most existing sentiment 
classification approaches have focused on supervised text classification techniques. 
One critical problem of sentiment classification is that a text collection may contain 
tens or hundreds of thousands of features, i.e. high dimensionality, which can be 
solved by dimension reduction approach. Nonetheless, although feature selection as a 
dimension reduction method can reduce feature space to provide a reduced feature 
subset, the size of the subset commonly requires further reduction. In this research, a 
novel dimension reduction approach called feature unionization is proposed to 
construct a more reduced feature subset. This approach works based on the 
combination of several features to create a more informative single feature. Another 
challenge of sentiment classification is the handling of concept drift problem in the 
learning step. Users’ opinions are changed due to evolution of target entities over 
time. However, the existing sentiment classification approaches do not consider the 
evolution of users’ opinions. They assume that instances are independent, identically 
distributed and generated from a stationary distribution, even though they are 
generated from a stream distribution. In this study, a stream sentiment classification 
method is proposed to deal with changing opinion and imbalanced data distribution 
using ensemble learning and instance selection methods. In relation to the concept 
drift problem, another important issue is the handling of feature drift in the sentiment 
classification. To handle feature drift, relevant features need to be detected to update 
classifiers. Since proposed feature unionization method is very effective to construct 
more relevant features, it is further used to handle feature drift. Thus, a method to 
deal with concept and feature drifts for stream sentiment classification was proposed. 
The effectiveness of the feature unionization method was compared with the feature 
selection method over fourteen publicly available datasets in sentiment classification 
domain using three typical classifiers. The experimental results showed the proposed 
approach is more effective than current feature selection approaches. In addition, the 
experimental results showed the effectiveness of the proposed stream sentiment 
classification method in comparison to static sentiment classification. The 
experiments conducted on four datasets, have successfully shown that the proposed 
algorithm achieved better results and proving the effectiveness of the proposed 
method.
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ABSTRAK

Klasifikasi sentiment bertujuan untuk menentukan apakah suatu teks 
mengungkapkan pendapat positif, negatif atau neutral. Kebanyakan pendekatan 
klasifikasi sentimen yang sedia ada memberi tumpuan kepada teknik pengelasan teks 
ter penyelia. Satu masalah yang kritikal berkaitan pengelasan sentimen ialah 
pengumpulan teks mungkin mengandungi puluhan atau ratusan ribu ciri, dengan 
dimensi tinggi, yang dapat diselesaikan oleh pendekatan pengurangan dimensi. 
Walaupun kaedah pengurangan dimensi dapat mengurangkan dimensi ciri untuk 
menghasilkan saiz subset ciri yang lebih kecil, saiz subset biasanya memerlukan 
pengurangan selanjutnya. Dalam kajian ini, pendekatan pengurangan dimensi yang 
dipanggil penyatuan ciri telah dicadangkan untuk membina subset ciri yang lebih 
kecil. Pendekatan ini menggabungkan beberapa ciri untuk mewujudkan ciri yang 
lebih bermaklumat. Satu lagi kesukaran untuk klasifikasi sentimen yang belum 
diatasi ialah pengendalian masalah konsep hanyut dalam proses pembelajaran. 
Pendapat pengguna boleh berubah kerana perubahan entiti sasaran dari masa ke 
masa. Walau bagaimanapun, pendekatan klasifikasi sentimen sedia ada tidak 
mengambil kira evolusi pendapat pengguna. Mereka menganggap tika adalah bebas, 
tersebar secara saksama dan dijana daripada taburan pegun, walaupun ianya 
dihasilkan dari taburan aliran. Dalam kajian ini, kaedah pengkelasan sentimen aliran 
dicadangkan untuk menangani perubahan pendapat dan pengagihan data yang tidak 
seimbang menggunakan kaedah pembelajaran ensembel dan kaedah pemilihan 
contoh. Sehubungan dengan masalah konsep hanyut, satu lagi isu penting yang 
belum ditangani secara mendalam ialah pengendalian ciri hanyut dalam klasifikasi 
sentimen. Untuk mengendalikan ciri hanyut, ciri yang berkaitan perlu dikesan untuk 
mengemas kini pengelas. Oleh kerana kaedah penyatuan ciri yang dicadangkan 
sangat berkesan untuk membina ciri-ciri yang lebih relevan, ia terus digunakan untuk 
menangani ciri hanyut. Oleh itu, kaedah untuk menangani konsep hanyut dan ciri 
hanyut untuk klasifikasi sentimen aliran telah dicadangkan. Keberkesanan kaedah 
penyatuan ciri telah dibandingkan dengan kaedah pemilihan ciri dengan lebih empat 
belas set data awam dalam domain klasifikasi sentimen menggunakan tiga pengelas 
biasa. Hasil kajian menunjukkan pendekatan yang dicadangkan lebih berkesan 
daripada pendekatan pemilihan ciri semasa. Di samping itu, keputusan kajian 
menunjukkan keberkesanan kaedah klasifikasi sentimen aliran yang dicadangkan 
berbanding dengan klasifikasi sentimen statik. Kajian yang dilakukan pada empat 
dataset telah berjaya menunjukkan algoritma yang dicadangkan mencapai hasil yang 
lebih baik dan membuktikan keberkesanan kaedah yang dicadangkan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, social media (e.g. social networks, discussion boards, blog 

and forums) are growing rapidly. Thus, people can easily express their opinions on 

several topics such as products or services of companies. Thus, a huge numbers of 

reviews have been increased on the Web. Since information plays an important role 

in influencing consumer decisions, these reviews containing opinions originated 

from the user’s experiences are useful and helpful for companies and individuals. 

When people want to buy a product or use a service, they would like to use people’s 

experiences. Furthermore, manufacturers and service providers want to be aware of 

the opinions of their customers about their products and services.

Awareness of people’s opinions and recommendations has always been 

important. In the past, individuals would ask friends or family, and organizations 

used surveys and consultants to find people’s opinions; while, nowadays, many e- 

commerce websites, such as Amazon.com, Yahoo's shopping, Epinions.com that 

made it possible to read many opinions and experiences are posed by users. 

However, reading and understanding the high amount of reviews is impossible. To 

address this problem, opinion mining or sentiment analysis approach has recently 

emerged. Generally, opinions can be expressed on any target entity (e.g., a service a 

product, an organization, an individual, etc.). For example:

“I  bought this camera a few  days ago. This camera is very easy to use, but it 

is very expensive. This camera has a great zoom and captures a nice crisp photo. The 

battery life is long about three hours o f  nonstop use.”

In this example, customer' opinion is positive about the battery life and 

negative about the price.
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Opinion mining is a sub-discipline of text mining that refers to application of 

natural language processing to extract, process of the opinions, attitudes, and 

emotions toward entities and their attributes and to present them friendly to users. 

Sentiment analysis attempts to detect subjectivity, sentiment, affect, and other 

emotional states in the opinionated text. In the area of opinion mining, according to 

respond to different user’s request, several fields such as subjectivity classification, 

sentiment classification and opinion summarization have emerged. The goal of 

subjectivity classification is determining whether a text (i.e., sentence, paragraph, or 

document) is objective or subjective. In fact, it distinguishes text containing opinions 

from text objectively present factual information (Liu, 2012). The goal of sentiment 

classification as the most active field of opinion mining is to classify the opinion 

documents into positive or negative class (Chen et al., 2019a). Opinion 

summarization aims to provide a digest summary of the high numbers of reviews in 

an easy manner to present users.

There are many applications for sentiment classification such as handling 

business intelligence tasks (Pang and Lee, 2008), predicting stock market behavior 

(Bollen et al., 2011), measuring public poll opinion of presidential elections 

(O'Connor et al., 2010). Sentiment classification can be applied at word-level, 

sentence-level, document-level and feature/aspect-level using different algorithms 

ranging from unsupervised to supervised approaches (Wang et al., 2018).

Most sentiment classification works have been applied on document level 

using supervised classification algorithms due to their predictive power. In the 

supervised machine learning approach, a classifier is trained to determine the 

sentiment of reviews using prior training data. The first work of sentiment 

classification at document-level is by Pang et al. (2002), who compared support 

vector machines (SVMs) , Maximum Entropy (ME) and Naive Bayes (NB) to 

classify movie reviews and reached the highest accuracy (82.9 %) using SVM. In 

recent years, there has been a growing interest in using feature selection and 

ensemble learning methods to enhance sentiment classification accuracy. The main 

goal of proposed methods is the improvement of sentiment classification in terms of 

efficiency and efficacy. Moreover, some researcher work to develop on data

2



preparation to prepare and preprocess the initially available data in learning process 

(Onan and Korukoglu, 2016b; Tubishat et al., 2019). Feature selection methods aim 

to remove irrelevant and redundant features to select an optimal feature subset for 

classification task (Abbasi et al., 2011; Wang et al., 2011a). The ensemble methods 

aim to combine the outputs of several base learners to obtain better sentiment 

classification performance (Wang et al., 2014; Xia et al., 2011; Zhang et al., 2019). 

An overview of steps and techniques for sentiment classification is shown in figure 

1.1.

Figure 1.1 The process of supervised sentiment classification at document level

1.2 Problem Background

As we know, text data is unstructured, thus Bag of Words (BOW) model (i.e. 

term-based Vector Space Model (VSM)) has been most popular for document- 

feature representation (Baeza-Yates and Ribeiro-Neto, 1999). In VSM model, a 

document is represented as a feature vector which consists of all words in the 

document. VSM has been widely applied to text classification due to its simplicity 

and good performance. However, the main drawback of VSM is that it does not 

consider the semantic relatedness between words that limits performance of 

classification task. For example, two words with similar meanings are treated as 

irrelevant features in VSM. Extracting semantic information by some dictionaries 

(e.g., WordNet) has a main drawback. Finding the appropriate related concepts for 

words using WordNet is very difficult. Another problem of VSM is that text 

collection would result in tens or hundreds of thousands of features. In theory, having 

more features, should improve the efficiency of classifier but, it is not always true 

practically. More features may confuse the learning algorithm because most of the 

features are irrelevant or redundant that may lead classifier to over-fitting. Moreover, 

a large number of features impose a high computational cost on the learning step.

3



Accordingly, feature selection (FS) is proposed to remove unnecessary features to 

improve classifier’s generalization ability and computational efficiency, but the 

number of features need to be more reduced considerably. Therefore developing an 

effective and efficient method to reduce more features is a vital issue for sentiment 

classification.

In general, people express their sentiments about a target entity (e.g. product or 

a service etc.) based on their characteristics which are changed over time. User 

opinions are changed due to evolution of target entities over time. For example, in 

the phone product, some features changed (add or remove) at the specific time and 

some terms (words) associated to the feature may be appeared or disappeared in the 

phone reviews after this time. The behavior of the customers in an online shop may 

change over time. One reason for changing opinion may be seasonality, which means 

that customers’ opinion about a product may change seasonally. However, the 

existing sentiment classification approaches not considered the changing of review 

document. They assume that instances are independent, identically distributed and 

generated from a stationary distribution. These techniques generally construct a static 

learning model from the training dataset and then this model is used to classify a new 

review. While, labeled reviews used as training set are posted over time and cannot 

be given to the learner in any order. In fact, each target function inferred at time t can 

only use the data given before t . The phenomenon of concept changing over time is 

termed as concept drift in machine learning. In sentiment classification, it can be 

considered as changing opinion. It is not questionable that the ability to automatically 

adaptive the classifier over time plays an important role in the real-world application 

of sentiment classification.

In the concept drift learning, the target function changes over time and need to 

be adapted (Khamassi et al., 2018; Krempl et al., 2014; Roveri, 2019; Zliobaite et 

al., 2016). In stream data mining, For example, the sentiment of texts could change 

from time to time due to evolving continuously over time. Therefore, in contrast to 

static concept learning, ordering of the training data is important in concept drift 

learning. To handle the concept drifts, classifier is adapted to track the changing in 

data. Most existing concept drift learning algorithms, work based on learning from a

4



window of most recent examples to adapt to concept drift (Klinkenberg and 

Joachims, 2000; Mena-Torres and Aguilar-Ruiz, 2014). Figure 1.2 illustrates this 

approach that automatically eliminates older examples which are no longer relevant 

in learning. Determining the appropriate window size play an important role that is 

not easy to do. Some researcher developed an adaptive window adjustment heuristic 

has been to solve the problem that is effective in slow drift rate condition (Gama et 

al., 2014). Among these methods, the most popular evolving technique for handling 

concept drift is classifier ensemble (de Mello et al., 2019; Farid et al., 2013; Gomes 

et al., 2017; Khamassi et al., 2018, 2019; Mirza et al., 2015).

Figure 1.2 A typical approach to concept drifts learning

One important issue, not yet convincingly addressed, is the handling of concept 

drifts problem in the supervised sentiment classification at the document level. 

Besides the challenge to adapt learning model, imbalanced data is critical problem 

needed to be concerned. One of the major challenges in machine learning is that, 

distribution classes of dataset may be unequal that is called imbalanced data problem. 

In this situation, learning algorithms are biased towards the majority classes 

(FernaNdez et al., 2013; Gao et al., 2008; Li et al., 2018; Sun et al., 2017). Previous 

studies assume sentiment datasets are balanced, while in the real world they are 

imbalanced, especially when considering in stream learning form. Many approaches 

were proposed to address the imbalanced data problem both at the data and 

algorithmic levels. Most approaches for learning from such data are based on under­

sampling the majority class or over-sampling the minority class (Saez et al., 2016). 

The training dataset is balanced in oversampling by instance generation and in under­

sampling methods by instance selection.
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Despite of concept drift, another drift is changes in the relevance of features 

through time, a phenomenon called feature drift (Barddal et al., 2017). The following 

examples are provided to clarify the concept drift vs. feature drift. Consider the first 

version of a phone with a particular set of features. The phone producer investigated 

the customers’ feedback and they recognized that their customers prefer a phone with 

more lightweight and larger screen and higher picture resolution. Therefore, next 

version is produced. The features of these two different versions remained 

unmodified but their specifications have evolved (e.g. its weight changed from 250 

gr to 150 gr). This illustrates concept drift. However let us now consider that a newer 

version with a new feature (e.g. Wi-Fi technology). This is a good example of feature 

drift. Handling feature drift and concept drift simultaneously is very effective to 

further adapt classifier. Therefore, in this research feature drift is addressed to 

enhanced stream sentiment classification method.

1.3 Problem Statement

The first step of sentiment classification is data acquisition and data pre­

processing. The next step is data reduction that can be applied in two levels: row and 

column of data. Instance and feature selection can construct a more reduced and 

discriminative data subset. These steps can be considered as pre-processing before 

learning. The most important step is learning to train a classifier based on training 

dataset. In the final, the evaluation of classification process is presented. Dimension 

reduction and learning steps are two critical factors in supervised classification 

performance. An important problem of sentiment classification is high 

dimensionality that is considered in this study. Although feature selection methods 

can reduce the original feature set and select a reduced feature subset that have more 

discriminative power for learning task, the size of subset can be more reduced to 

construct a more compact and discriminative feature subset. Despite of removing all 

irrelevant and redundant features, there are some features that are correlated to each 

other implicitly. Similar features tend to occur in documents that are belonging to 

same class. These relations can be identified if they combined using union operator 

based on increasing the relevancy to target class. Thus, feature unionization is a new
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view to reduce feature dimension. This method constructs a more reduced and 

discriminative feature subset. Taking into account the synonym words that can be 

considered as a feature, the basic idea of the proposed approach was to reduce 

dimensionality based on finding and combining features that can construct a more 

informative single feature based on a feature relevancy criterion. There are implicit 

and explicit relations between occurring words (features) in the same class. For 

example, synonyms, or the words of the same group, may tend to occur in the same 

class. In sentiment classification domain, two words, for example, ‘good’ and ‘great’ 

usually indicate positive class that can be unionized to make an individual feature. 

Practically, capturing these relations is not easy to do because most of them are 

latent. The proposed feature unionization approach can capture the relation of 

features according to their relevancy to the target class in a way to construct an 

informative feature. Since combination of features is carried out by union operator, 

the redundancy can also be removed due to inherent characteristic of unionization. In 

this research, supervised feature unionization is investigated that is suitable for 

binary datasets.

Supervised sentiment classification is aim to automatically classify an opinion 

text into the positive or negative class by employing some machine learning 

techniques (Wang et al., 2014). They usually employs a static supervised learning 

strategy, in which a classification model is first built using a training set to classify a 

testing set without considering the time that reviews are posted. However, time may 

be very useful as an important feature for classification task. In general, people 

express their opinions about a target entity (e.g. product or a service etc.) based on 

their characteristics which are changed over time. User‘s opinions are changed due to 

evolution of target entities over time. For example, in the phone product, some 

features changed (add or remove) at the specific time and some terms (words) 

associated to the features may be appeared or disappeared in the phone reviews. The 

phenomenon of concept changing over time is termed as opinion changing or 

concept drift in machine learning. However, the existing sentiment classification 

approaches incapable to track the changing because they commonly build a static 

learning model based on training dataset with ignoring time dependency of data. 

Therefore, there is need to design a sentiment learning model that works based on 

data continuously flow. The important issue in these models is changing opinion that
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causes it becomes obsolete and need to be updated (adapted) over time. This research 

gives a primary focus on sentiment classification model with concept drift. Among 

evolving different methods for handling concept drift, the most popular technique is 

ensemble classification that construct different classifiers with diverse windows form 

stream data. The data selected by a window are imbalanced specially when 

considering with concept drift. Therefore, imbalanced data distribution is another 

issue besides changing opinion handling problem that need to be addressed. Some 

researcher have used ensemble learning to deal with imbalanced data distribution. 

Therefore, ensemble learning is effective to deal with both imbalanced data 

distribution and concept drifts problem (Sun et al., 2017). Most approaches for 

learning from imbalanced data are based on under-sampling the majority class or 

over-sampling the minority class (Saez et al., 2016). The training dataset is balanced 

in Oversampling by instance generation and in under-sampling methods by instance 

selection. In fact, proposing a stream sentiment classification to deal with concept 

drift and imbalanced class distribution is an existing problem is addressed in this 

study.

Another difficulty to stream sentiment classification is feature drift that need to 

be concerned. To handle feature drift, relevant features need to be detected to adapt 

classifier. Thus, some work used dynamic feature selection method to address feature 

drift in stream classification. Since feature unionization method is very effective to 

construct more relevant features, it can be used to handle feature drift. Therefore a 

method for dealing with both concept and feature drifts with imbalanced data 

distribution using ensemble learning based on feature unionization and instant 

selection for sentiment classification is great demand that is proposed in this study.

1.4 Research Questions

The open issues described in the previous section lead to mentioning some 

research questions addressed in this research are follows:
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1- How to propose a feature unionization method to combine the features to 

construct a more compact and discriminative features subset?

2- How to propose a stream sentiment classification method to handle concept drift 

with imbalanced data?

3- How to propose an integrated sentiment classification method to deal with feature 

drift?

1.5 Research Objectives

Based on the above mentioned research questions the objectives of the 

research are:

1- To propose a feature unionization method to combine the features to 

construct a more compact and discriminative features subset.

2- To propose a stream sentiment classification method to handle concept 

drift with imbalanced data using ensemble learning and instance selection 

methods.

3- To propose an integrated sentiment classification method to deal with 

feature drift using feature unionization method.

1.6 Research Scope

Subsequent to the goal and objectives of this study is the research scope. In 

view of the fact that there is a number of diversity in machine learning to solve such 

problems, this study is scoped as follows:

1- This study considers supervised sentiment classification at document 

level and does not include other opinion mining fields.
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2- Among different representation data techniques the bag of word 

(unigrams) technique is used to transfer sentiment review datasets in this 

study.

3- Three different classification methods (SVM, Naive Bayes and KNN) are 

applied as base learners for sentiment classification.

4- Three popular feature relevancy measures (Information gain, Chi square 

and Trigonometric Comparison Measure) are used to evaluate the 

relevancy of features in proposed dimension reduction method.

5- Fourteen sentiment classification datasets as widely used by other 

researchers are investigated in this research. The movie review (MR) 

crawled from the IMDB movie archive (Pang and Lee, 2004). The multi­

domain sentiment (MDS) used by Blitzer et al. (2007) crawled 

fromAmazon.com (Book, DVD, Electronics, and Kitchen). The other nine 

datasets (Camera, Camp, Doctor, Drug, Laptop, Lawyer, Music, Radio, 

and TV) were provided by Whitehead and Yaeger (2009).

1.7 Significance of the Research

This research is important and significant from theoretical and practical 

perspectives for developing sentiment classification. The rationale and motivation for 

this research are as follow:

1) Reduction of feature dimensionality is very important for classification task to 

reduce the computational complexity and avoid over-fitting problem, which 

improves the generalization ability of classifier. For having better generalization 

performance of the classification, the number of features should be reduced as 

much as it is required for the number of training samples. These reasons are 

motivations to propose an effective approach to construct a more compact and 

discriminative feature subset by features combination idea.
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2) The development of stream sentiment classification is important to address the 

concept drift that is a significant factor to improve the classification performance.

3) Imbalanced data handling which is commonly found in sentiment classification 

domain especially when considering concept drift. It may decrease the 

performance of machine learning techniques. Thus it needs to be addressed 

efficiently.

4) Feature drift handling is an important key to adapt the classifier in stream 

sentiment classification. Concept and feature drifts with imbalanced data 

handling may construct a more adaptive classifier in stream sentiment 

classification.

1.8 Research Contributions

The main contributions of this research from theoretical and practical 

perspectives are summarized as follow:

1- A new theoretical approach for dimension reduction is proposed which 

causes feature dimension space is significantly reduced because several 

features are unionized into a single feature, consequently; the 

performance of classification is increased due to transformation of feature 

space to a more discriminative subset. Additionally to sentiment 

classification, the proposed feature unionization approach can be effective 

on different machine learning fields.

2- A new theoretical approach is proposed to develop of an adaptive 

sentiment model that is capable to deal with changing opinion and 

concept drift to adapt the classifiers for improving the classification 

accuracy on sentiment datasets. Other supportive contributions lie in 

handling imbalanced data which is commonly found in stream sentiment 

classification domain.
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3- A method of stream sentiment classification is proposed to handle 

concept and feature drifts simultaneously using proposed feature 

unionization method.

1.9 Organization of thesis

The organization of the thesis is as follow:

• Chapter 1: It provides the introduction to the study domain, mainly sentiment 

classification and machine learning approaches. Then it discussed problem 

background, problem statement, research objective, scope and contribution.

• Chapter 2: It provides the intensive literature review of the study area, 

fundamental concepts of relative to this study and background, problems and 

potential solutions.

• Chapter 3: It provides research methodology used in this research. It 

discusses problem formulation of sentiment classification based on the 

literature review.

• Chapter 4: It introduces a novel proposed dimension reduction method based 

on feature unionization approach and discusses the experimental results.

• Chapter 5: It proposes the adaptive sentiment classification model to deal 

with concept drift and imbalanced data problem using ensemble learning 

method.

• Chapter 6: It continues with the improvement on the proposed adaptive 

sentiment classification model to handle feature drift using proposed feature 

unionization method.
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• Chapter 7: It concludes the thesis with lists of contributions and recommends 

issues for future studies.
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