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ABSTRACT 

Handwritten Character Recognition (HCR) is a process of converting 

handwritten text into machine readable form and it comprises three stages; pre-

processing, feature extraction and classification. This study acknowledged the issues 

regarding HCR performances particularly at the feature extraction and classification 

stages. In relation to feature extraction stage, the problem identified is related to 

continuous and minimum chain code feature extraction at its  starting and revisit points 

due to branches of handwritten character. As for the classification stage, the problems 

identified are related to the input feature for classification that results in low accuracy 

of classification and classification model particularly in Artificial Neural Network 

(ANN) learning problem. Thus, the aim of this study is to extract the continuous chain 

code feature for handwritten character along with minimising its length and then 

proceed to develop and enhance the ANN classification model based on the extracted 

chain code in order to identify the handwritten character better. Four phases were 

involved in accomplishing the aim of this study. First, thinning algorithm was applied 

to remove the redundancies of pixel in handwritten character binary image. Second, 

graph based-metaheuristic feature extraction algorithm was proposed to extract the 

continuous chain code feature of the handwritten character image while minimising 

the route length of the chain code. Graph theory was then utilised as a solution 

representation. Hence, two metaheuristic approaches were adopted; Harmony Search 

Algorithm (HSA) and Flower Pollination Algorithm (FPA). As a result, HSA graph-

based metaheuristic feature extraction algorithm was proposed to extract the 

continuous chain code feature for handwritten character. Based on the experiment 

conducted, it was demonstrated that the HSA graph-based metaheuristic feature 

extraction algorithm showed better performance in generating the shortest route length 

of chain code with minimum computational time compared to FPA. Furthermore, 

based on the evaluation of previous works, the proposed algorithm showed notable 

performance in terms of shortest route length of chain code for extracting handwritten 

character. Third, a feature vector was derived to address the input feature issue. The 

derivation of feature vector based on proposed formation rule namely Local Value 

Formation Rule (LVFR) and Global Value Formation Rule (GVFR) was adopted to 

create the image features for classification purpose. ANN was applied to classify the 

handwritten character based on the derived feature vector. Fourth, a hybrid of Firefly 

Algorithm (FA) and ANN (FA-ANN) classification model was proposed to solve the 

ANN network learning issue. Confusion Matrix was generated to evaluate the 

performance of the model in terms of precision, sensitivity, specificity, F-score, 

accuracy and error rate. As a result, the proposed hybrid FA-ANN classification model 

is superior in classifying the handwritten characters compared to the proposed feature 

vector-based ANN with 1.59 percent incremental in terms of accuracy model. 

Furthermore, the proposed hybrid FA-ANN also exhibits better performances 

compared to previous related works on HCR. 
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ABSTRAK 

Pengecaman Aksara Tulisan Tangan (HCR) adalah proses penukaran teks 

tulisan tangan ke bentuk yang boleh dibaca oleh mesin dan terdiri daripada tiga 

peringkat, iaitu prapemprosesan, pengekstrakan fetur dan klasifikasi. Kajian ini telah 

mengenal pasti masalah yang berkaitan dengan prestasi HCR khususnya pada 

peringkat pengekstrakan fetur dan klasifikasi. Pada peringkat pengekstrakan fetur, 

masalah yang dikenal pasti adalah berkaitan dengan mengekstrak kod rantai yang 

berterusan dan minimun yang berkait dengan isu titik mula dan titik berulang kesan 

daripada cawangan aksara tulisan tangan. Dalam fasa klasifikasi, masalah yang dikenal 

pasti adalah berkaitan dengan fetur input yang akan mengakibatkan ketepatan 

klasifikasi yang rendah dan model klasifikasi terutamanya isu pembelajaran dalan 

Rangkaian Neural Buatan (ANN). Oleh itu, matlamat kajian ini adalah untuk 

mengekstrak kod rantai berterusan bagi aksara tulisan tangan dengan meminimumkan 

panjangnya dan seterusnya membangun dan meningkatkan model klasifikasi ANN 

berdasarkan kod rantai yang telah diekstrak bagi mengecam aksara tulisan tangan 

dengan lebih baik. Terdapat empat fasa terlibat untuk mencapai matlamat kajian ini. 

Pertama, algoritma penipisan digunakan untuk menyingkirkan lebihan piksel dalam 

imej binari aksara tulisan tangan. Kedua, algoritma pengekstrakan fetur metaheuristik 

berasaskan graf dicadangkan untuk mengekstrak kod rantai berterusan di samping 

meminimumkan panjang laluan kod rantai bagi imej aksara tulisan tangan. Teori graf 

digunakan sebagai perwakilan penyelesaian. Dengan yang demikian, dua kaedah 

metaheuristik diadaptasi, iaitu Algoritma Carian Harmoni (HSA) dan Algoritma 

Pendebungaan Bunga (FPA). Hasilnya, algoritma pengekstrakan fetur metaheuristik 

berasaskan graf dicadangkan bagi mengekstrak kod rantai berterusan aksara tulisan 

tangan. Berdasarkan eksperimen, dapat dinyatakan bahawa algoritma pengekstrakan 

fetur metaheuristik HSA berdasarkan graf menunjukkan prestasi yang lebih baik dalam 

pengekstrakan panjang laluan terpendek kod rantai dan masa komputasi yang minima 

berbanding dengan FPA. Di samping itu, berdasarkan penilaian kerja terdahulu, 

algoritma yang dicadangkan menunjukkan prestasi yang lebih baik daripada segi 

panjang laluan terpendek kod rantai mengekstrak  aksara tulisan tangan. Ketiga, vektor 

fetur diterbitkan berkaitan dengan isu fetur input. Penerbitan vektor fetur yang 

berasaskan peraturan pembentukan yang dicadangkan, iaitu Peraturan Pembentukan 

Nilai Tempatan (LVFR) dan Peraturan Pembentukan Nilai Global (GVFR) diadaptasi 

untuk menerbitkan fetur input untuk tujuan klasifikasi. Bagi tujuan klasifikasi, ANN 

digunakan untuk mengkelaskan aksara tulisan tangan berasaskan vektor fetur yang 

telah diterbitkan. Keempat, model klasifikasi hibrid antara Algoritma Kelip-Kelip 

(FA) dan ANN (FA-ANN) dicadangkan berkaitan dengan isu pembelajaran rangkaian 

ANN. Matriks Keliru telah dijana untuk menilai pencapaian model dari segi 

kepersisan, sensitiviti, spesifisiti, skor-F, ketepatan dan kadar ralat. Hasilnya, model 

klasifikasi hibrid FA-ANN yang dicadangkan didapati adalah lebih baik dalam 

mengklasifikasi aksara tulisan tangan berbanding dengan model klasifikasi vektor 

fetur berasakan ANN dengan 1.59 peratus kenaikan dari segi ketepatan model. 

Lagipun, model hibrid FA-ANN yang dicadangkan  juga menunjukkan prestasi yang 

lebih baik berbanding dengan kerja terdahulu dalam HCR. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Machine simulation of human function has been a very challenging research 

field since the advent of a digital computer (Chaudhuri et al., 2017). It is always 

fascinating to be able to find ways of enabling a computer or machine to mimic a 

human function, like the ability to read, to write, to speak, to see things, and so on. 

Machine simulation of human reading is one of these areas (Babu, 2014). Human 

recognized characters easily and they repeat the character recognition process 

thousands of times every day. In our daily life, as we read papers and books, our brain 

continuously does the character recognition. We match it with our experience and 

memory, then based on that we react or take an action or infer some new things. So, 

this is our natural character recognition. How about recognizing characters with 

machine abilities? 

Handwritten Character Recognition (HCR) is an area of character recognition 

which defines an ability of a machine to analyze patterns and identify the handwritten 

character. At present, handwritten characters are increasingly used in daily life. 

Handwritten information comes in a variety of different forms, including bills, 

manuscripts, documents, forms and photographed documents. Handwritten character 

recognition has wide application prospects, and there is great demand for it in 

industrial fields such as image recognition systems and handwritten text input devices 

as society develops and progresses (LeCun et al., 2015). Development of HCR started 

in the early 1950s and its development advanced during 1970s and 1980s because of 

the advent of a lot of handwriting recognition applications (Chaudhuri et al., 2017). 

After 1980, the character recognition system advanced rapidly in terms of algorithm 

and techniques because of the intensive research and development.  
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Despite the fact that the research in HCR has been studied extensively for more 

than five decades, but yet still an active and challenging area since many researchers 

have been engaged in this topic in present (Tiwari et al., 2019; Cilia et al., 2019 and 

Deepak Gowda et al., 2019). Jain and Sharma (2018) stated, the variations in 

handwriting pose major challenge in developing accurate recognition system. 

Moreover, Konar and Kar (2018) had stated that handwritten character has the infinite 

variety of writing style from one person to another. Due to this wide range of 

variability, it is difficult to recognize a handwritten character by a machine.  Therefore, 

this study observed that there is still scoping to work on HCR research area. 

1.2 Background of Study 

In general, there are three stages in HCR which are preprocessing, feature 

extraction and classification. First stage, preprocessing is a process of enhancing the 

image character, which should be used for further processing. Preprocessing is almost 

one of the basic steps in HCR. Usually, it is used to remove noise and different 

variations in the data. It may include binarization, noise reduction, data normalization 

and data compression. The purpose of preprocessing is to produce a clean character of 

handwritten character image that can be used directly and efficiently by the feature 

extraction stage. 

Second stage, feature extraction is a process to produce several characteristics 

or features from the image character. Feature extraction related to extraction method 

to find the most representative information, which minimizes the within class pattern 

variability while enhancing the between class pattern variability (Li et al., 2017). 

Based on literature review, two factors need to be considered in selection of feature 

extraction method which are simple and efficient. Wang et al. (2018) stated that, 

finding the features, it should be noted that in order to avoid extra complexity and to 

increase the accuracy of recognition, a more compact features is required. 

Furthermore, Mari and Raju (2015) stated, finding simple and efficient features for 

handwritten character recognition is still an active area of research. 
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Chain code by Freeman (1961) as one of the feature extraction method under 

geometrical and topological representation category, has been extensively applied for 

feature extraction purpose. This is due to its ease and minimal storage needs (Zalik et 

al., 2018; Suliman et al., 2010 Shaojie and Kai Kuang, 2000; Neuhoff and Castor, 

1985). Furthermore, Dingli et al. (2018) stated that, chain code is widely used for 

descriptions of object borders in image processing, shape analysis and pattern 

recognition fields because of simple and compact form of data representation and its 

suitability for fast processing. Subsequently in HCR, literature had shown that chain 

code representation is still relevant in representing in HCR due to recent work on chain 

code for handwritten character by (Naik and Desai, 2019; Jangid and Srivastava, 2018; 

Dingli et al. (2018). 

Unfortunately, the problem of chain code feature extraction process is the chain 

coding process would be very much on the way of the image would be traversed and 

the starting point of the traversing method (Nasien et al., 2014).  A start point of a 

character will produce a different chain code direction even though is the same image. 

Means, the starting node of chain code construction influences its length. Moreover, 

the problem become worse when involving handwritten character recognition since 

handwritten character usually contains branches on each character. This causes 

difficulty to decide which direction would the traverse continues and a revisit to 

previous visited node is often needed to visit all the nodes. Nasien et al. (2014) had 

suggested that one continuous route is needed to solve such problems, which cover all 

the nodes of the image. Chain code construction using one continuous route has not 

widely explored such a method would enable to extract and recognize such difficult 

characters and to find approximate solutions for chain code generation along with 

minimizing its length. 

While as third stage of HCR, the intention of classification stage is a process 

to recognise the images of handwritten character by used the extracted features to 

recognize the feature class based on the properties in the features.  Two important 

issues before building the classification procedure which are the data input for 

classification and classification method (Rao et al., 2018). First, Rao et al. (2018) has 

stated, improper step during data input preparation will result to low accuracy and 
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misguide output. The data input is related to feature vector as the feature vector is built 

from the extracted features in feature extraction stage. The performance of a 

classification is depending on the feature vector that contain the extracted features as 

provide data input for the classifier. 

Second issue, classification method generally can be traced from template 

matching, statistical approach, and syntactic. Present, machine learning is introduced 

by many researchers to facilitate the process of solving classification of HCR. Machine 

learning techniques are applied due to the constraints of classification problems in 

recognising the conditions especially for procedures that involve complex data 

structures (Hasan et al., 2012).  Common machine learning methods that have been 

used by many researchers are Artificial Neural Network (ANN), Support Vector 

Machine (SVM), Genetic Algorithm (GA), Swarm Intelligence (SI) and Fuzzy Set. 

ANN is one of the most applied machine learning methods by researchers 

(Negnevitsky, 2005). Furthermore, Tautu and Leon (2011) had state that ANN seem 

to be the preferred solutions to the classification problem due to their proven accuracy 

in classifying new data. 

The most difficult and important part for any types of neural network is 

learning (Russell and Norvig, 2016).  For ANN, most applications have used standard 

or improved Back-Propagation (BP) algorithm as their training method 

(Samarasinghe, 2016). There are two important factors that give an impact to the 

modelling effect and precisions during the learning and training of BP. The factors are 

the initial interconnecting weights of the network and the modified quantities. 

Occasionally the interconnecting weights of BP are always stochastically and blindly 

produced. Therefore, to determine the initial interconnecting weights that are global is 

very difficult assignments. This might cause the network to run into partial 

optimisation and may decline the probability to obtain the best global solutions, 

(Zhang and Wang, 2008). The convergence velocity is always slow and sometimes the 

network does not even converge because of the Delta rule is always been used. The 

Delta rule is used to modify the interconnecting weights of BP. Hence, the weaknesses 

of BP that it has slow convergence rate and always been trapped in local minima. These 

weaknesses of are reasonable to be optimised and upgraded. 
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To sum up, basically the success rate of HCR is depending on entire stage 

which are preprocessing, feature extraction and classification stage. This study 

concentrates on feature extraction and classification stage only. As for preprocessing 

stage, the previous work is referred by applying the thinning process. So, the focus of 

this study on: 

(a) Implementation of thinning process in preprocessing stage. 

The implementation of thinning process is based on the previous work. This 

study only implemented the preprocessing stage by applying thinning process to 

handwritten character image in order to produced Thinned Binary Image (TBI). The 

TBI is then utilised as input for the next feature extraction stage. 

(b) Feature extraction stage related to chain code feature extraction problem.  

The two issues regarding in handling the chain code extraction of handwritten 

character which are starting point of chain code that influence the length of the 

extracted chain code; and branches of handwritten character that lead to the problem 

revisit to the previous visited nodes. These issues have motivated this study on 

construction of chain code using one continuous route which is such a method would 

enable to extract and recognize such difficult characters and to find approximate 

solutions for chain code generation along with minimizing its length. So, the focus in 

this study is on extraction of continuous chain code feature of handwritten character 

by propose graph-based metaheuristic feature extraction algorithm. The idea is, in 

order to carry out chain code feature extraction process, metaheuristic approach is 

utilised in chain code feature extraction process in order to find solutions for chain 

code generation along with searching the optimised chain code features in terms of 

minimising its length in relatively shorter computational time with shorter route length.  

Hence, graph theory is presented as solution representation for the proposed 

metaheuristic feature extraction approach. The importance of concept of the graph 

theory in the proposed metaheuristic approach, the starting point of chain code does 

not need to specify. To the best of our knowledge, the HSA and FPA have been not 

implemented for feature extraction problem yet. 
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(c) Classification stage related to derivation of feature vector and optimisation of 

ANN learning. 

Derivation of a feature vector is a target of data input preparation for 

classification model as the data input will determined the classification performance. 

The focus in this study is on the derivation of feature vector based on the proposed 

formation rule. Then the feature vector-based ANN is develop aimed to validate the 

feature vector in recognizing the handwritten character. The purpose is to observe the 

relation between the number of features in feature vector and the result of classifying 

the handwritten character.  Consequently, as classification problem in ANN learning, 

the focus in this study is on the ANN network learning is optimised by metaheuristic 

approach namely Firefly Algorithm (FA). This study explores the potential of FA as 

optimisation method to enhance the ANN classification model. The idea is that the 

created network of the ANN classification model is trained using the generated value 

of weight by FA approach in order to obtain an optimised network of the ANN 

classification model. At the time of writing, there are no researches on applying FA in 

ANN. 

1.3 Problem Statement 

So, there are two subjects considered to drive in this study related to feature 

extraction stage problem and classification stage problem. As feature extraction stage, 

the problem is related to continuous chain code construction in relation to the issues 

of starting point and revisit point due to branches of handwritten character would 

influences the length of extracted chain code. As for classification stage, the problems 

are related to the input feature for classification that would be resulting in low accuracy 

of classification and classification model particularly in ANN learning problem. 
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1.4 Research Question 

The research question of this study can be stated as: 

1. How to extract continuous chain code feature of handwritten character along 

minimising its length? 

2. How to derive the feature vector as input for classification model based on 

extracted chain code feature? 

3. How to validate the feature vector in influencing the classification of 

handwritten character? 

4. How to enhance the ANN classification model of handwritten character? 

 

1.5 Research Aim 

The aim of this study is to extract the continuous chain code feature for 

handwritten character along minimising its length and then develop and enhance the 

ANN classification model based on the extracted chain code to recognize the 

handwritten character. 

1.6 Research Objectives 

To achieve the aim of this study, the objectives are defined below: 

1. To develop Harmony Search Algorithm (HSA) and Flower Pollination 

Algorithm (FPA) Graph-Based Metaheuristic Feature Extraction Algorithm in 

extracting continuous chain code features of handwritten character image. 
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2. To propose formation rule for derivation of feature vector based on chain code 

features and image properties as input for classification model. 

3. To develop Feature Vector-based Artificial Neural Network (ANN) 

classification model for handwritten character recognition. 

4. To enhance the proposed feature vector-based ANN classification model by 

hybridising with Firefly Algorithm (FA-ANN). 

 

1.7 Research Scopes 

The scopes of the study are. 

1. Data of handwritten character used for this study are from two databases 

sources which are Centre of Excellent for Document Analysis and Recognition 

(CEDAR) and National Institute of Standards and Technology (NIST). 

2. Data of handwritten character consist of Uppercase (A-Z), Lowercase (a-z), 

Letter (mixture of uppercase/lowercase), Digit (0-9) and Characters (mixture 

of letter/digit). 

3. As preprocessing stage, the established thinning algorithm is applied to 

produce Thinned Binary Image (TBI). For CEDAR dataset, method proposed 

by Engkamat (2005) is used, while ‘bwmorph’ function is applied to NIST for 

the same thinning purpose. 

4. Eight-directional of chain code is utilised, starts from 1 to 8 direction labelling. 
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1.8 Significant of Study 

The findings of this study will contribute to the feature extraction and 

classification stage of handwritten character recognition. In relation to feature 

extraction stage, graph based-metaheuristic feature extraction algorithm is developed 

to generate chain code feature for handwritten character aim to find continuous route 

of chain code that covers all the nodes of the handwritten character image while 

satisfying the objective to minimise the route length of the chain code. On the other 

hand, in relative to classification stage, formation rule of derivation feature vector is 

proposed to derive feature vector aim to prepare input data to be fed to the 

classification model that influence the classification accuracy. Furthermore, hybrid 

FA-ANN is developed to optimise the ANN network learning process to enhance the 

ANN classification model to classify the handwritten character. 

1.9 Thesis Organisation 

This thesis is structured into eight chapters. The descriptions of each chapter 

are given as a brief introduction. The present chapter introduced the overview of the 

handwritten character recognition concern including the issues related to feature 

extraction problem and classification problem. Objectives and scopes of the research 

stated related to the issues, then followed by significant of the study. 

Chapter 2 appraises the literature review. It discusses the related works for this 

study including introduction of pattern recognition and HCR, handwriting style and 

database, stage of HCR i.e. preprocessing stage, feature extraction stage, and 

classification stage. Metaheuristic approaches and performances measure are also 

included in this chapter. Chapter 3 grants the research methodology used to build up 

this study. This chapter presents the research framework, problem definition, data 

definition, preprocessing, development of graph-based metaheuristic feature 

extraction algorithms, derivation of feature vector and proposed feature vector-based 

ANN classification model, proposed hybrid FA-ANN classification model, evaluation, 

implementation and summary. 
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Chapter 4 explains the development of the proposed graph-based metaheuristic 

feature extraction algorithm to construct one continuous chain code feature for 

handwritten character. It describes the structure of the algorithms and its data structure, 

Harmony Search Algorithm, Flower Pollination Algorithm, testing algorithm 

procedure, result of the generating the chain code, evaluation and selection and 

followed by the summary. Chapter 5 describes the development of proposed feature 

vector-based Artificial Neural Network (ANN) classification model to classify the 

handwritten character based on the extracted chain code in previous chapter. It 

discussed the derivation of feature vector as input for classification model based on 

the proposed formation rule. Then, the development of feature vector-based ANN 

classification model, feasibility analysis, the classification results are reported in this 

chapter and followed by the summary. Chapter 6 briefs the development of proposed 

hybrid Firefly Algorithm and Artificial Neural Network (FA-ANN) classification 

model. It discusses introduction, experiment setup, parameter setting, training and 

testing procedure, validation, FA-ANN classification result and followed by summary.  

Chapter 7 discuses result analysis and evaluation. It explains the analysis 

results of proposed graph-based metaheuristic feature extraction algorithm and 

proposed classification algorithms consists of feature vector-based ANN and hybrid 

FA-ANN classification model. Furthermore, evaluation of proposed works in this 

study with previous related works are discussed and followed by summary. Chapter 8 

concludes the conclusion and future work. This chapter illustrates summary of study, 

benefit of study, contribution of study, conclusion and the suggestion for possible 

future work. 
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