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ABSTRACT 

Feature selection is one of the main challenges in sentiment analysis to find an 

optimal feature subset from a real-world domain. The complexity of an optimal feature 

subset selection grows exponentially based on the number of features for analysing 

and organizing data in high-dimensional spaces that lead to the high-dimensional 

problems. To overcome the problem, this study attempted to enhance the feature subset 

selection in high-dimensional data by removing irrelevant and redundant features 

using filter and wrapper approaches. Initially, a filter method based on dispersion of 

samples on feature space known as mutual standard deviation method was developed 

to minimize intra-class and maximize inter-class distances. The filter-based methods 

have some advantages such as they are easily scaled to high-dimensional datasets and 

are computationally simple and fast. Besides, they only depend on feature selection 

space and ignore the hypothesis model space. Hence, the next step of this study 

developed a new feature ranking approach by integrating various filter methods. The 

ordinal-based and frequency-based integration of different filter methods were 

developed. Finally, a hybrid harmony search based on search strategy was developed 

and used to enhance the feature subset selection to overcome the problem of ignoring 

the dependency of feature selection on the classifier. Therefore, a search strategy on 

feature space using integration of filter and wrapper approaches was introduced to find 

a semantic relationship among the model selections and subsets of the search features. 

Comparative experiments were performed on five sentiment datasets, namely movie, 

music, book, electronics, and kitchen review dataset. A sizeable performance 

improvement was noted whereby the proposed integration-based feature subset 

selection method yielded a result of 98.32% accuracy in sentiment classification using 

POS-based features on movie reviews. Finally, a statistical test conducted based on the 

accuracy showed significant differences between the proposed methods and the 

baseline methods in almost all the comparisons in k-fold cross-validation. The findings 

of the study have shown the effectiveness of the mutual standard deviation and 

integration-based feature subset selection methods have outperformed the other 

baseline methods in terms of accuracy.   
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ABSTRAK 

Pemilihan ciri merupakan salah satu cabaran utama dalam analisis sentimen 

untuk mencari subset ciri optimum dari domain dunia sebenar. Kerumitan pilihan 

subset ciri optimum berkembang pesat berdasarkan bilangan ciri-ciri untuk 

menganalisis dan menganjurkan data dalam ruang dimensi tinggi yang membawa 

kepada masalah dimensi tinggi. Untuk mengatasi masalah ini, kajian ini cuba untuk 

meningkatkan pemilihan subset ciri dalam data dimensi tinggi dengan membuang ciri-

ciri tidak relevan dan berlebihan menggunakan pendekatan penapis dan bungkus. Pada 

mulanya, kaedah penapis berdasarkan penyebaran sampel pada ruang ciri yang 

dikenali sebagai kaedah sisihan piawai bersama telah dibangunkan untuk 

meminimumkan kelas intra dan memaksimumkan jarak antara kelas. Kaedah 

berasaskan penapis mempunyai beberapa kelebihan seperti mudah diperingkatkan 

kepada dataset berkepadatan tinggi dan dikira mudah dan cepat. Selain itu, ia hanya 

bergantung kepada ruang pemilihan ciri dan mengabaikan ruang model hipotesis. Oleh 

itu, langkah seterusnya dalam kajian ini adalah untuk membangunkan pendekatan 

skala ciri baru dengan mengintegrasikan pelbagai kaedah penapis. Penyepaduan 

berasaskan ordinal dan frekuensi berasaskan kaedah penapis yang berbeza telah 

dibangunkan. Akhirnya, pencarian harmoni hibrid berdasarkan strategi pencarian telah 

dibangunkan dan digunakan untuk meningkatkan pemilihan subset ciri untuk 

mengatasi masalah mengabaikan ketergantungan pemilihan ciri pada pengelas. Oleh 

itu, strategi carian pada ruang ciri menggunakan pendekatan penapis dan bungkus 

diperkenalkan untuk mencari hubungan semantik antara pilihan model dan subset ciri 

carian. Eksperimen perbandingan dilakukan pada lima kumpulan sentimen, iaitu filem, 

muzik, buku, elektronik, dan kajian semula peralatan kajian. Penambahbaikan prestasi 

yang besar telah diperhatikan di mana kaedah pemilihan subset ciri yang berasaskan 

integrasi yang dicadangkan menghasilkan hasil ketepatan 98.32% dalam klasifikasi 

sentimen menggunakan ciri berdasarkan POS pada ulasan filem. Akhir sekali, ujian 

statistik yang dijalankan berdasarkan ketepatan menunjukkan perbezaan yang ketara 

antara kaedah yang dicadangkan dan kaedah asas dalam hampir semua perbandingan 

dalam k-fold cross-validation. Dapatan kajian telah menunjukkan keberkesanan 

kaedah sisihan piawai bersama dan kaedah pemilihan subset ciri berasaskan integrasi 

telah mengatasi kaedah asas lain dari segi ketepatan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

By the exponential growth of World Wide Web (WWW), many people are able 

to post their opinions or sentiments on a range of topics in different websites. These 

online posts can help people to observe and receive each other’s opinions. Therefore, 

there is a large amount of data containing opinions generated from a variety of sources 

such as reviews, forum discussions, post from blogs, and other Carey-Simos (2015). 

Online reviews provide a significant information source to help customers and 

companies make decisions. In fact, these reviews can reassess their purchase decision 

and ultimately change their purchasing behaviour (Ye et al., 2011). 

Some studies reveal the interest that customers show in online reviews about 

product and services in term of relying on the online advice or recommendations to 

make purchase decision. For example, a study by Shrestha (2016) indicated that 92% 

of customers read online reviews before purchasing the product, whereas 66% of 

people rely on online product reviews (Stone, 2015). In addition, 63% of customers 

are more interested in purchasing products or services from website which has user 

reviews (iPerceptions, 2011). As a result, the request for sentiment analysis is 

important because of this surge of interest. In other words, it can be useful for making 

intelligent decisions by knowing the product’s positive and negative sentiments. 

Sentiment analysis is the type of a field in the computational study to process 

opinions, attitudes, sentiments and to assess people's comment about movies, events, 

products, topics, and their respective characteristics. There are different names for this 

area of study, such as sentiment mining, review mining, text mining, opinion 

extraction, subjectivity analysis, and emotion analysis. Opinion mining is a process for 

extracting subjective information from a text or a review while the main aim of 
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sentiment analysis is to identify and extract opinions, attitudes and comments in the 

overwhelming majority of generated content, whereas sentiment analysis is the 

evaluation of the extracted information. Recent studies have presented different 

techniques of sentiment extraction and analysis. Sentiment analysis is intended to 

identify and extract the opinions, attitudes, and sentiments in the overwhelming 

majority of generated online contents and classify them into polarity sentiment 

(positive and negative). The main task of sentiment analysis is categorized into two 

main steps: the first step involves selection or extraction of the relevant features from 

the textual reviews, and the last step covers the sentiment classification of the reviews 

into multi-classes (Ekbal and Saha, 2013; Pang and Lee, 2005). 

Feature selection is one of the main challenges in sentiment analysis. More 

reviews on document-level have expressed a high-dimensional in feature space. The 

main task of feature selection is the reduction of dimension in feature space by 

removing irrelevant and redundant features in order to improve the performance of 

sentiment classification (Saeys et al., 2007). To overcome this problem, using filter-

based feature selection method can be helpful because of the advantages of filter-based 

methods. They are fast and simple in computation, easily scaled to a high-dimensional 

feature space, and independent from the classifier. As a result, to overcome the 

problem of optimal feature subset selection in high-dimensional space, this study 

makes a different view to filter methods based on the distribution of features on space 

and also the integration of different filter methods using heuristic algorithm. In this 

research, feature subset selection by using hybridizations of the filter and wrapper 

methods are proposed to improve the sentiment classification accuracy. 

1.2 Background of the Study 

Nowadays, reviews, are created by users, are very important in e-commerce 

and business. They can help companies to improve product quality and customers to 

select a better product. To this end, the science of sentiment analysis and opinion 

mining, which are a combination of information retrieval methods and natural 

language processing methods, have emerged to help to analyse opinions, emotions, 
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and attitudes of the user about products, to classify subjective text into negative and 

positive sentiment classes.  

Two primary works attempting the sentiment analysis task were demonstrated 

by Pang et al. (2002) and Turney (2002) who introduced two different approaches. 

The unsupervised learning approach was used by Turney (2002) while the sentiment 

lexicon was used to identify and classify documents to sentiment polarity by 

calculating the word sentiment orientation using the POS patterns or a dictionary and 

using a search engine to estimate the association of words with a known polarity seed 

set. These works are known as unsupervised learning methods and are strongly 

dependent on sentiment lexicons. Furthermore, some of the researches have been 

undertaken based on unsupervised learning methods (Harb et al., 2008; Hu et al., 2013; 

Taboada et al., 2011; Turney, 2002). On the other hand, Pang et al. (2002) exploited 

the corpus-based approach to sentiment classification in supervised learning. Some 

researchers used a set of several features to improve the accuracy of classification (Liu, 

2012; Ortigosa-Hernández et al., 2012; Zhou et al., 2013; Zhu et al., 2013). Other 

feature selection methods were employed to earn better performance such as 

Information Gain (Ye and Keogh, 2009). Further, some researches also attempted to 

ensemble several methods using hybrid classifiers (Prabowo and Thelwall, 2009). 

Sentiment classification using supervised learning is a popular approach in recent 

researches that attempts to train a classifier from a large amount of labelled data (Pang 

et al., 2002; Zhang and Liu, 2011). 

In addition, three levels of sentiment analysis based on the level of 

granularities, namely the document, sentence and aspect levels, have been investigated 

in recent researches (Liu and Zhang, 2012). Sentiment classification based on 

document-level granularity is performed to classify one whole document as showing 

either an overall negative or positive sentiment (Liu, 2012; Taboada et al., 2011). A 

research by McDonald et al. (2007) and Nakagawa et al. (2010) used sentence-level 

granularity to determine whether each sentence presented a negative, positive or 

neutral sentiment. This task is often called subjective classification in the literature 

(Tang et al., 2009). Instead of investigating at the language structure-level, aspect-

level or feature-based level, it looks directly at the opinions on the basis of the overall 
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opinion (that contains a polarity sentiment) and a target opinion (Jin et al., 2015; Qiu 

et al., 2011). 

The main task of sentiment analysis is categorized into two main steps: the first 

step involves selection of the relevant features from the textual reviews, and the last 

step covers the sentiment classification of the reviews into multi-classes (Ekbal and 

Saha, 2013; Pang and Lee, 2005). Furthermore, feature selection methods in order to 

select a subset of most relevant features are classified according to three main aims: 

(1) techniques for overcoming of the overfitting problem and the improvement of the 

performance of sentiment classification, (2) techniques to provide a model with less 

time complexity and more cost-effectiveness, and (3) techniques to obtain the best 

understanding of the basic process for the data generated. As a result, The selection of 

an optimal subset of the features is the main task before applying a learning algorithm 

in designing systems based on machine learning and pattern recognition (Jin et al., 

2015; Sotoca and Pla, 2010). A survey by Saeys et al. (2007) investigated that feature 

selection techniques can be classified into three categories: filter, wrapper, and 

embedded. 

1) The filter approach provides ways to assess the relevance of features by looking 

only at the  properties of the data in order to find an optimal feature subset. In 

most cases, score is calculated for each feature and low-scoring features will be 

removed. The related advantages of the filter approach are easily scaling of high-

dimensional data and offering a simple and quick computation method. However, 

it suffers from problems such as ignoring the interaction with the classifier and 

relinquishing relationships between features (Ekbal and Saha, 2013; Saeys et al., 

2007). 

2) In the wrapper approach, the choice of an optimal feature subset is provided by 

generating and evaluating complete subsets on the feature space of states. To 

search the all possible features space, a search algorithm is wrapped around the 

classification model which has a time complexity of O(2N). In fact, as the feature 

space exponentially grows with the number of features, heuristic search 

techniques are employed to reduce the search time for finding an optimal subset. 
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For example, Meta-heuristic algorithms, which are inspired by behaviors in 

nature, have been used in optimization problems (Geem et al., 2001b). In order to 

generate the subsets, meta-heuristic methods are used to solve the exponential 

time to find a candidate feature subset. Regarding the evaluation of candidate 

subsets, the classifier evaluates the effect of selecting a feature subset on the 

performance of sentiment classification to find an optimal feature subset. The 

advantage of the wrapper approach is finding a semantic relationship between the 

hypothesis model selections and subsets of the search features. These methods 

depend on classification algorithms. Nevertheless, they have a higher overfitting 

risk and significant complexity in computation and cost. 

3) In the third approach, which is termed as embedded approach, the search comes 

with combining of the feature selection strategy into a classifier structure 

(hypothesis model). The advantages of embedded approach are that it reduces the 

computational time in comparison with wrapper methods, and it is able to interact 

with the classifier model to select most effective features, but they suffer from 

classifier dependent selection (Ekbal and Saha, 2013; Tabakhi et al., 2014). 

Furthermore, filter methods are a popular approach because of simple methods 

and low time computational, efficiency, scaling high-dimensional, and independence 

of the learning algorithms. In order to the high-dimensional problem, Rogati and Yang 

(2002) investigated feature selection using several filter methods to deal with high-

dimensional data for text classification. They scored features by five methods: 

information gain (IG), mutual information (MI), chi-square (CHI), document 

frequency (DF), and term frequency (TF). Another work by Yang and Pedersen (1997) 

improved classification accuracy with the removal of up to 98% unique features 

through the IG and CHI methods. In some studies, feature selection methods such as 

the IG and CHI methods were found to achieve better accuracy than other methods 

(Uğuz, 2011; Ye and Keogh, 2009). Feature ranking using filter methods are divided 

into four categories based on information, distance, dependence, consistency 

measures. Information-based feature ranking method is a popular approach in recent 

research. For instance, many researchers have used filter methods based on 

information-based, such as document frequency and term frequency (Rogati and Yang, 
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2002; Yang and Pedersen, 1997), information gain,  Chi-square (Rogati and Yang, 

2002; Uğuz, 2011; Yang and Pedersen, 1997; Ye and Keogh, 2009), conditional 

mutual information (Peng and Fan, 2017), maximizing global information gain (Shang 

et al., 2013), and dynamic mutual information (Hua et al., 2009). Some filter methods 

based on distance-based ranking were employed, such as term variance (Tabakhi et 

al., 2014), Euclidean distance-based (Li and Lu, 2009), Laplacian score (He et al., 

2006), fisher Markov selector (Cheng et al., 2011). Also, other filter methods using 

the dependency of the features were introduced, such as covariance, correlation 

coefficient, and predominant correlation (Yu and Liu, 2003). The consistency-based 

filter as a consistency measures was investigated by (Bolón-Canedo et al., 2014). 

Common drawbacks of these filter methods are that they suffer from problems like 

redundant features and the lack of interaction information between the feature 

selection and the classifier. 

In wrapper method, meta-heuristic algorithms are the most efficient techniques 

to search for global-optimal solutions by overcoming the main problem of local-search 

techniques in large-scale problems, for example, getting trapped in local extremes in 

the space of the search (Oreski and Oreski, 2014). One of the meta-heuristic methods 

for optimization of feature subset selection problem is harmony search (HS) algorithm 

(Geem et al., 2001a). Diao and Shen (2012) introduced a method for feature selection 

using HS which escapes from local-solutions and identifies multiple solutions with 

respect to the stochastic nature of HS and controls its parameters. They compared the 

HS algorithm with other meta-heuristic techniques (such as the genetic algorithm-GA) 

on the UCI benchmark datasets and showed that the HS was able to identify good-

quality feature subsets for most of the test datasets. Moreover, in the wrapper method, 

feature selection using HS, was first manifested by Diao and Shen (2012). They 

applied the HS algorithm for feature selection on the UCI benchmark datasets. They 

showed that the HS algorithm is able to identify good-quality feature subsets. On the 

other hand, Wang et al. (2015) used the HS algorithm for feature selection in email 

classification. In a research related to HS, a few modified variants of the original HS 

algorithm were proposed by Geem et al. (2001b), to enhance the accuracy and 

convergence rate without targeting any specific application. Using dynamically 

adjusted parameters instead of constant parameters by mathematical techniques, 

Mahdavi et al. (2007) proposed an improved HS algorithm to increase the accuracy 
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and convergence rate of the original HS algorithm. Furthermore, Omran and Mahdavi 

(2008) introduced a global-based HS algorithm that exploits the concept of swarm 

intelligence. In addition, a self-adaptive HS algorithm was developed by Wang and 

Huang (2010) whereby the values of the HS parameters are adjusted automatically 

based on past experiences. Moreover, some applications of HS in engineering, 

medical, robotics, and control fields were investigated (Manjarres et al., 2013). 

In general, the sentence like "the best feature selection method" merely does 

not exist for each problem in the literature. Thus, choosing one method over another 

is a difficult decision to make. Some researchers introduced ensemble feature selection 

methods using the two most popular approaches. In order to incorporate the advantages 

filter and wrapper methods, the hybrid approach has also been introduced to solve low-

accuracy sentiment classification in the filter methods and higher-computation burden 

problems respectively in wrapper approach. To solve these problems, this approach is 

employed by applying the methods to the selected feature subset using filtering method 

in the first step (Warren Liao, 2010). Moreover, a hybrid filter and wrapper methods 

for forecasting of short-term load has been introduced (Hu et al., 2015). 

Moreover, some researches, instead of using a single feature subset as a 

prediction model, used feature sets ensemble with aiming at combining these different 

feature sets while still taking advantage of their benefits, and improving their 

performance. As a result, bagging and boosting were the most popular approaches. For 

example, Xia et al. (2011) investigated the effectiveness of the ensemble technique on 

feature sets and sentiment classification in three main steps. First, they extracted 

feature sets using the part-of-speech-based (POS-based) and the word-relation-based. 

Second, they employed three base classifiers for each set with the use of the support 

vector machine (SVM), naive Bayes (NB) and maximum entropy (ME) classifiers. 

Last, they combined such methods based on the fixed, meta-classifier and weighted 

combination respectively as ensemble strategies. Research has shown ensemble 

methods result in higher accuracy and have demonstrated an efficient way to improve 

classification performance via a combination of different feature sets and classifiers. 
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In the next step of sentiment analysis, the sentiment classification task involves 

analysing and predicting opinions and sentiments in relation to the polarity sentiment 

classification. It presents an important role in social media and web. Sentiment 

classification using machine learning algorithms in a supervised approach was a 

popular approach in many recent researches, such as SVM (Badawi and Altınçay, 

2014; Boiy and Moens, 2009; Pang et al., 2002), NB (Pang and Lee, 2004; Tan and 

Zhang, 2008), ME (Pang et al., 2002; Speriosu et al., 2011), and linear discriminant 

function (LDF) (Guyon et al., 2002). 

Although the mentioned researches have attempted to overcome some 

problems in feature subset selection for sentiment analysis, there are still several 

problems in this area. These problems have rarely been considered in the literature 

such as, the high-dimensional data, time-complexity, difficult computational, diversity 

of classification result on the various domain, irrelevant and redundant features, risk 

of overfitting, dependent on a ranking method, dependent on the classifier. Filling of 

these gaps can potentially improve the performance of sentiment analysis in various 

domain using integration of different filter-based feature selection methods and 

wrapper methods. Figure 1.1 illustrates the problems and proposed desired solutions 

for feature subset selection in sentiment analysis. 
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Figure 1.1 Problems and desired solutions of feature subset selection 

1.3 Problem Statement 

In this study, overcoming the problem of optimal feature subset selection for 

sentiment analysis is intended. The problem can be defined as follow: 

Let a set of D = {d1, d2, .., dM} denotes the text documents set in polarity 

sentiment classification where di is a positive or negative text document and M is the 

number of the text documents. And also, a feature set F = {f1, f2, .., fN} denotes the 

features in the dataset with dimension N. The task of feature subset selection is a search 

to find an optimal subset of features S with dimension K on 2N candidate feature 

subsets where K  N, and S  F. The subset S should make equal or better classification 
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accuracy compared to feature set F. The main three problems are defined by existing 

feature subset selection for sentiment analysis as follow: 

1) Lack of information between feature subset search and class 

discriminatory in filter methods. More researches employed the information 

measure to weight and rank the features in literature. 

2) In filter approach, selected features are dependent on one feature ranking 

method. It causes diversity in classification accuracy at the various domains. 

On the other hand, filter-based methods have some advantages which are easily 

scaling the high-dimensional problem and also they are a simple and quick 

computation technique.  

3) Ignoring interaction information between feature subset search and the 

hypothesis model search. Whereas filter methods suffer from the problem of 

an optimal feature subset selection because of independency of the model 

selection step, wrapper methods embed the hypothesis model search within the 

feature subset search. Since filter methods rank each feature separately in 

which feature dependencies may be ignored, a poor classification performance 

may be obtained. In fact, these methods ignore dependencies between feature 

selection and classifier. 

1.4 Research Question 

By considering the defined problems for overcoming the feature subset 

selection in sentiment analysis, the research hypothesis is: 

"How to select a subset of the most relevant features so as to remove irrelevant and 

redundant features with keeping the most class discriminatory information at the 

same time based on a given collection of review documents" 

In order to answer the research hypothesis, the following research questions 

that address the problems in detail are defined: 
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1) How to improve filter-based feature selection methods with respect to 

dispersion of samples on feature space. 

2) How to integrate feature subset selection methods based on ranked features. 

3) How to hybrid the filter and wrapper methods in order to enhance the sentiment 

classification accuracy. 

1.5 Research Goal 

The aim of this thesis is to explore an effective way to select the most relevent 

features from raw reviews to improve the performance of sentiment classification. By 

addressing the existing problems in previous works, the research strives to propose 

enhanced methods for finding an optimal feature subset based on integration of filter 

and wrapper methods with the ultimate goal of improving the performance of 

sentiment analysis.  

1.6 Research Objective 

In order to attain the research goal, several research objectives have been 

identified and listed as follows: 

1) To propose a weighting method of the features using the distance-based 

measure in order to minimize intra-class and maximize extra-class distances 

for more class discrimination. 

2) To propose integration methods for different filter-based feature selection 

methods in order to reduce the problems such as dependency of the selected 

features on a feature ranking method and stability of classification accuracy on 

the various domains. 
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3) To propose a hybrid method with the ability of embedding the model 

hypothesis search within the feature subset search in order to find a semantic 

relationship among the model selection and features selection by integrating 

filter and wrapper methods. 

1.7 Research Scope 

To solve the feature subset selection problems in this research, the following 

constraints are considered: 

1) This research focuses on classifying the movie and Amazon products reviews 

in English language on the overall sentiment of each review dataset. 

2) This research uses some information retrieval tools to detect the useful features 

from raw review datasets to improve accuracy of sentiment classification. For 

example, the Stanford POS tagger tools is used in this research to annotate 

documents with the part-of-speech (POS).  

3) This research employs some machine learning algorithms to increase the 

performance of sentiment classification such as SVM, NB, ME, and LDF 

algorithms. 

4) The programming languages such as Microsoft visual C# 2012, MATLAB, and 

Excel are used for implementation and visualization of proposed methods. 

1.8 Significance of Research 

As mentioned in Pang and Lee (2008), 81% of internet users have performed 

online search on a product at least once and 73% to 87% of these users report that 

product reviews had a significant influence on their purchase. About 80% of these 

users expressed their opinions that reviews are of great importance in their decision 

making on the purchase. These statistics show that the sentiment classification of 
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reviews is very helpful to customers to select appropriate products which has 

motivated researchers to pay more attention to this area. Moreover, in many 

applications, companies want to analyze and compare the opinions of their customers 

on their services. This example can express that how reviews can be useful for 

selecting an ideal product by costumers. Analyzing and organizing these reviews leads 

to the high-dimensional problem. To deal with the problem, this study aims to propose 

some methods for selecting an optimal feature subset through the processing and 

understating information using information retrieval techniques and natural language 

processing algorithms to improve the sentiment classification. 

1.9 Thesis Outlines 

Seven chapters are organized in this research as follow: 

Chapter 1, Introduction, starts with an introduction to the research topic. The 

research background and research problems are explained. After that, the research 

questions and objectives are introduced. Finally, the importance of research is 

expressed. 

Chapter 2, Literature review, provides the background information and reviews 

the previous studies in this field that leads to find the research gaps and formulate the 

research problem. 

Chapter 3, Research methodology, explained the methods and datasets, which 

are used in this research. The research flow is described systematically in this chapter. 

Evaluation metric and evaluation framework also are explained in this chapter. 

Chapter 4, Mutual standard deviation method based on distance-based feature 

ranking, explains the development process of the first proposed method, which 

determine the relevance of features by respect to the distribution and dispersion of 

features on feature space. This method is evaluated and compared with some other 

baseline methods in this chapter. 
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Chapter 5, Ordinal-based and frequency-based integration of filter feature 

selection methods, addresses the design and development steps of the second proposed 

methods, which enhances the first proposed method through integration with other 

filter-based feature selection methods based on the sequence of the features of the 

vectors. 

Chapter 6, Integration of filter and wrapper methods using hybrid harmony 

search with controlled parameters, describes the design and implementation process 

of the last proposed method, in which hybrid basic harmony search and dynamic 

harmony search algorithms integrated based on proposed search strategy and 

integration of several filter-based feature selection methods to find an optimal feature 

subset. 

Chapter 7, Conclusion and future works, concludes the research, provides the 

list of contributions, states the limitations of proposed methods and expresses some 

recommendation for future study. 
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