
 

 

IDENTIFICATION OF PATHWAY AND GENE MARKERS 

USING ENHANCED DIRECTED RANDOM WALK FOR 

MULTICLASS CANCER EXPRESSION DATA 

 

 

 

 

NIES HUI WEN 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

 

School of Computing 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

JUNE 2020 



iv 

DEDICATION 

 

 

 

 

 

 

This thesis is dedicated to my parents, brother, supervisors, 

godparents, friends, and late grandma, who taught me that “learning 

from mistakes”, “don’t speak unless you can improve on the silence”, 

“self-control is a key to achieve success”, and “always remember who 

lent you a helping hand before”.   

  



v 

ACKNOWLEDGEMENT 

In preparing this thesis, I received non-stop caring, love, and 

support from many people.  At the same time, I was in contact with 

researchers and academicians.  They have contributed towards my 

understanding and thoughts.  First, I wish to convey my deepest 

gratitude to my supervisors, Dr. Zalmiyah Zakaria, Dr. Chan Weng 

Howe, and Professor Dr. Mohd Saberi Mohamad (from Universiti 

Malaysia Kelantan [UMK], Malaysia) for their encouragement, 

guidance, and critics.  Also, I am thankful to the head of Artificial 

Intelligence and Bioinformatics Research Group (AIBIG), Dr. 

Azurah A Samah for her guidance and advice.  Additionally, a special 

thanks to Professor Dr Nazar Zaki (from United Arab Emirate 

University [UAEU], UAE), Professor Dr Juan Manuel Corchado 

(from Universidad de Salamanca [USAL], Spain), and Professor Dr 

Javier Bajo (from Universidad Politécnica de Madrid, Spain) for 

sharing their ideas and supports.  I am also indebted to Universiti 

Teknologi Malaysia (UTM) Zamalah’s scholarship for funding my 

Ph.D. study.  Librarians at UTM and the Google Scholar also deserve 

special thanks for supplying the relevant literature.  My sincere 

appreciation also extends to those who have helped me on various 

occasions.  Unfortunately, it is impossible to list all of them here.  

Other than that, I am grateful to all my family members too.  Without 

all of you, I will not reach this stage, and this thesis would not have 

been presented here.  

  



vi 

ABSTRACT 

Cancer markers play a significant role in the diagnosis of the 

origin of cancers and in the detection of cancers from initial 

treatments.  This is a challenging task owing to the heterogeneity 

nature of cancers.  Identification of these markers could help in 

improving the survival rate of cancer patients, in which dedicated 

treatment can be provided according to the diagnosis or even 

prevention.  Previous investigations show that the use of pathway 

topology information could help in the detection of cancer markers 

from gene expression.  Such analysis reduces its complexity from 

thousands of genes to a few hundreds of pathways.  However, most 

of the existing methods group different cancer subtypes into just 

disease samples, and consider all pathways contribute equally in the 

analysis process.  Meanwhile, the interaction between multiple genes 

and the genes with missing edges has been ignored in several other 

methods, and hence could lead to the poor performance of the 

identification of cancer markers from gene expression.  Thus, this 

research proposes enhanced directed random walk to identify 

pathway and gene markers for multiclass cancer gene expression data.  

Firstly, an improved pathway selection with analysis of variances 

(ANOVA) that enables the consideration of multiple cancer subtypes 

is performed, and subsequently the integration of k-mean clustering 

and average silhouette method in the directed random walk that 

considers the interaction of multiple genes is also conducted.  The 

proposed methods are tested on benchmark gene expression datasets 

(breast, lung, and skin cancers) and biological pathways.  The 

performance of the proposed methods is then measured and compared 

in terms of classification accuracy and area under the receiver 

operating characteristics curve (AUC).  The results indicate that the 

proposed methods are able to identify a list of pathway and gene 

markers from the datasets with better classification accuracy and 

AUC.  The proposed methods have improved the classification 

performance in the range of between 1% and 35% compared with 

existing methods.  Cell cycle and p53 signaling pathway were found 

significantly associated with breast, lung, and skin cancers, while the 

cell cycle was highly enriched with squamous cell carcinoma and 

adenocarcinoma.   
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ABSTRAK 

Penanda kanser memainkan peranan penting dalam mengesan 

tanda-tanda penyakit kanser dan membolehkan rawatan dilakukan 

pada peringkat awal. Tugas ini mencabar disebabkan oleh keunikan 

sifat kanser itu sendiri. Pengenalpastian penanda ini boleh membantu 

meningkatkan kadar survival pesakit kanser apabila rawatan 

bersesuaian dapat diberikan dan usaha pencegahan dipertingkatkan. 

Kajian terdahulu menunjukkan bahawa penggunaan maklumat 

topologi dan laluan dapat membantu dalam mengesan penanda kanser 

dari ekspresi gen. Analisis ini dapat mengurangkan kerumitan sumber 

maklumatnya dari ribuan gen kepada ratusan laluan. Walau 

bagaimanapun, kebanyakan kaedah sedia ada mengkelaskan semua 

jenis kanser yang berbeza kepada satu petunjuk penyakit sahaja dan 

menganggap semua laluan adalah sama. Manakala dalam beberapa 

kaedah lain, interaksi antara gen dan gen yang terpisah daripada 

rangkaian telah diabaikan. Ini boleh menyebabkan kemerosotan 

prestasi pengenalpastian penanda kanser daripada ekspresi gen. 

Justeru, kajian ini mencadangkan kaedah yang dipertingkatkan bagi 

perjalanan rawak terarah untuk mengenalpasti gen dan laluan 

bermaklumat dari data ekspresi gen yang berasaskan pelbagai kelas 

kanser. Pertama, pemilihan laluan yang bertambah baik dilakukan 

dengan menggunakan analisis varians yang membolehkan 

pertimbangan pelbagai kelas kanser. Kedua, pengintegrasian 

pengelompokan k-means dan kaedah siluet purata dalam perjalanan 

rawak terarah yang mempertimbangkan interaksi pelbagai gen pula 

dilakukan. Kaedah yang dicadangkan telah diuji pada kumpulan data 

penanda aras iaitu ekspresi gen (kanser payudara, paru-paru, dan 

kulit) dan laluan biologi. Prestasi pengkelasan dari segi ketepatan dan 

luas di bawah lengkung berasaskan penerima operasi sifat yang dapat 

dicapai oleh kaedah yang dicadangkan ini telah diukur dan 

dibandingkan. Dapatan kajian menunjukkan bahawa kaedah yang 

dicadangkan dapat mengenalpasti senarai penanda laluan dan gen 

dengan ketepatan pengkelasan dan AUC yang lebih baik. Kaedah 

yang dicadangkan telah meningkatkan prestasi pengelasan dalam 

julat antara 1% hingga 35% berbanding dengan kaedah lain. Kitaran 

sel dan laluan isyarat p53 telah didapati secara ketara berkaitan 

dengan kanser payudara, paru-paru, dan kulit, sementara kitaran sel 

diperkayakan dengan karsinoma sel skuamus dan adenokarsinoma.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Cancer is caused by cells which grow uncontrollably 

(Makropoulou, 2016).  This disease is associated with abnormal 

alterations that lead to the dysregulation of the cellular system (Vaske 

et al., 2010).  According to the report of World Health Organization 

(WHO) in 2012, cancer contributes to approximately 14 million new 

cases and 8.2 million deaths.  Bioinformatics develops computational 

methods to understand the molecular basis of disease (Napier and 

Limogiannis, 2016).  The improved understanding of molecular 

biology and cellular biology has led to new cancer treatments since 

Richard Nixon (United States President) declared the “War on 

Cancer” in 1971.  The cancer death rate was then declined by five 

percent between 1950 and 2005.  Accurate classification of diseases 

and treatment responses is helpful in clinical and cancer research 

(Vaske et al., 2010; Liu et al., 2013a; Mohapatra et al., 2016).  The 

classification can identify groups of patients who share similar 

clinical features (characteristics) for the identification and 

implementation of suitable treatment (Macher and Crocq, 2004).  

Integrating pathway and topology information into microarray 

analysis can reduce the complexity of analysis from thousands of 

genes to a few hundreds of pathways (AlAjlan and Badr, 2015).  This 
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analysis is also aimed to identify more robust cancer markers to the 

disease of interest (Shi et al., 2018).   

1.2 Problem Background 

Figure 1.1 presented an overview of the computational method 

to use in cancer classification.  The common problem of cancer 

classification is the nature of cancer datasets, which have thousands 

of genes and characterized by small sample sizes based on different 

conditions (Su et al., 2010; Jia et al., 2011).  In the literature, the use 

of microarray is different from macroarray, especially in term of 

probe density.  Microarray contained a higher number of probes and 

such higher density of probes than macroarray (Vrana et al., 2003).  

Macroarray was unique because it used radioactive target labelling for 

detection (Gammill and Lee, 2008).  Since each picked clone must be 

sequenced to identify its identity, macroarray poorly annotated for 

potential novel genes.  In the field of bioinformatics, microarray 

analysis is useful to measure the change of gene expression level in 

cancer datasets (Grewal and Das, 2013; Rajkumar et al., 2013; 

Chandra and Babu, 2014).  It is insufficient to use gene expression 

data only for microarray analysis, such as principal component 

analysis (PCA) in combination with agglomerative hierarchical 

clustering (AHC), mean-centering and magnitude normalization 

(Yasrebi et al., 2009; Karn et al., 2010).   
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Figure 1.1 An overview of the pathway topology-based 

microarray analysis. 

Pathway topology-based microarray analysis (e.g., Directed 

Random Walk [DRW]) is one of the categories for pathway-based 

microarray analysis, which can map genes on the precompiled 

pathways to visualize the whole chain of events in gene expression 

data (Grewal and Das, 2013).  Since pathway topology-based 

microarray analysis can interpret pathways from the gene expression 

levels, pathway marker was more reliable than gene marker.  The 

pathways were functionally related to the specified member genes 

with similar molecular mechanisms based on cancer subtypes (Zhao 

et al., 2011; Hung and Chiu, 2017).  Since tumour profiling of patients 

annotated in clinical practice, cancer markers were potentially further 

studied for new drug development and decision making in oncology 

to increase cancer survival (Wang et al., 2015).  DRW used weighting 
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strategy to create weights for each gene in the directed graph based 

on the pathway knowledge to infer a higher reproducibility power of 

pathway activity (Liu et al., 2013a; Tian et al., 2016).  This method 

can reduce the effect of noise measurements and a correlation 

between genes in the same pathway (Su et al., 2010).  Besides, restart 

probability (r = 0.7) was the only parameter of DRW to characterize 

the level of strongly connected genes (e.g., a neighbourhood can be 

influenced by a seed gene to its neighbour gene) in the directed graph 

(Liu et al., 2013a; Wang et al., 2017).  The process of DRW with 

restart probability was iterated until all genes were visited.   

In general, pathway activity is the formation of gene 

expression data and pathway data (with directed graph) by pathway 

topology-based microarray analysis.  The analysis of the directed 

graph can reflect the functional robustness of topology in vital 

biochemical processes (Zhao et al., 2011; Roy et al., 2019).  All the 

pathways used in the research were converted to a directed graph 

using SubpathwayMiner in R software package and its information 

was retrieved from the pathway database (e.g., Kyoto Encyclopaedia 

of Genes and Genomes [KEGG]) (Liu et al., 2013a; Dimitrakopoulos 

and Beerenwinkel, 2017).  The topological information of the directed 

graph included types of interaction between two genes (direction of 

the edges), the weight of genes, and such position of genes.  The 

interaction types between two genes showed how the two genes 

interacted and regulated each other in the processes of inhibition or 

activation.   
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The most common cancer deaths are caused in lung, breast, 

liver, colon, oesophagus, and stomach.  Breast cancer is the most 

common cancer in women across every single ethnic group in 

Malaysia (Beshir and Hanipah, 2012; Nies et al., 2017b).  The breast 

cancer molecular subtypes are luminal A, luminal B, basal, ERBB2, 

and normal.  The main subtypes of lung cancer are adenocarcinoma, 

large cell carcinoma, and squamous cell carcinoma.  Some existing 

methods of pathway-based microarray analysis are restricted to 

classify the datasets between normal and tumour samples with the use 

of t-test, such as negatively correlated feature sets with ideal markers 

(NCFS-i), negatively correlated feature sets with condition-

responsive genes (NCFS-CORG), and DRW (Chan et al., 2011; 

Chandra and Gupta, 2011; Sootanan et al., 2011; Liu et al., 2013a; 

Yang et al., 2014; Phongwattana et al., 2015; Ross and Willson, 

2017).  Besides, some methods modify t-test and ANOVA to deal 

with multiclass issues, such as weighted-significance analysis of 

microarray-gene set reduction (Weighted-SAMGSR), negatively 

correlated feature sets (NCFS), gene-set activity toolbox, and 

ANOVA-based feature set (AFS) (Chen et al., 2005; Engchuan and 

Chan, 2012, 2015; Engchuan et al., 2016; Kar et al., 2016; Tian et al., 

2016; Ortiz-Ramón et al., 2018).  Multiclass classification methods 

can be divided into two types.  First, this involves extending the 

binary classification to deal with the multiclass problems directly (Li 

et al., 2004; Ferdowsi et al., 2014).  Another type involves 

decomposing multiclass issues into binary problems.  One-versus-one 

and one-versus-the-rest are common strategies for dealing with 

multiclass problems, but some are not extensible to multiclass 

approaches (Gu et al., 2014; Ferdowsi et al., 2014).  To date, recent 
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medical studies reported the necessity to diagnose more than two 

classes of disease (Engchuan and Chan, 2012, 2015; Yang and 

Naiman, 2014; Yang et al., 2014).  Clinical experiments can produce 

multiclass gene expression data in the detection of tumours based on 

their stage, grade, survival time, and drug sensitivity that are further 

studied for cancer treatments (Yang and Naiman, 2014; Wang et al., 

2015).  For example, stages of such disease depend on the thickness 

of tumour at the time of surgical treatment.   

Several studies in pathway-based microarray analysis do not 

select pathways, including DRW.  Since pathways were commonly 

curated from the literature, non-informative genes can be included 

and affect the accuracy of the methods (Evangeline et al., 2013; Zhe 

et al., 2013; Creixell et al., 2015; Li et al., 2017).  If a gene (e.g., 

tumor protein p53) is chosen, all the pathways (e.g., cell cycle and 

MAPK signaling pathway) consist of such gene will also be selected.  

Figure 1.2 illustrated the presence of non-informative genes in a 

pathway.  Pathway selection can reduce the dimension and select 

informative pathways in all the examples (Zhe et al., 2013; Gu et al., 

2014).  With cases of existing methods performed pathway selection 

using t-test and Fisher-test, such as redundancy removable pathway-

based feature selection method and the network and node selection 

approach.   
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Figure 1.2 The presence of non-informative genes in a pathway. 

In literature, random walk used the theory of Markov chain to 

rank genes from high to low probabilities, but it extracted local 

information from a large graph without knowledge of the whole graph 

data (Liu et al., 2013a, 2017b; Liu et al., 2015b; Zhang et al., 2016; 

Dimitrakopoulos and Beerenwinkel, 2017; Wang and Liu, 2018; Peng 

et al., 2019).  Hence, a large directed graph can include non-

informative genes, which can result in low accuracy of the methods 

(Evangeline et al., 2013; Peng et al., 2019).  Besides, DRW used the 

theory of random walk to identify the genes having similar structural 

properties of networks (Re and Valentini, 2012; Petrochilos et al., 

2013).  However, most methods (including DRW) ignored the 

interaction between multiple genes in a directed graph and the genes 

with missing edges (Madhukar et al., 2015; Liu et al., 2017a).  Figure 

1.3 illustrated the common neighbour and non-informative genes in a 
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directed graph.  A gene was important (e.g., gene Entrez ID 5901) if 

it interacted with many other genes (Zhu et al., 2018).   

 

Figure 1.3 The presence of common neighbour and non-

informative genes in a directed graph. 

Several previous studies have noted the importance of 

clustering to identify co-expressed genes in a cluster and inactive 

genes in another cluster (Mehmood et al., 2018; Chandra and Tripathi, 

2019).  Clustering can also discover the fundamental hidden structure 

of biomedical data and identify cancer subtypes that used for 

diagnosis and treatments.  DRW is also one of the density-based 

clustering techniques, but it has a high runtime analysis to detect 

clusters (Deng et al., 2018b).  Detection of clusters using partitioning 
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clustering has low time complexity and high computing efficiency, 

which can solve the issue above (Xu and Tian, 2015).  Researchers 

focused on partitioning clustering techniques (e.g., k-means 

clustering) by assuming the number of clusters beforehand, which can 

lead to the poor quality of clusters (Bajo et al., 2010; Wang et al., 

2018a; Majhi and Biswal, 2019).   

1.3 Problem Statements 

Pathway topology-based microarray analysis used pathway 

data, directed graph, and gene expression data to identify pathway and 

gene markers in cancer classification.  However, most existing 

techniques analyse the datasets by grouping different cancer subtypes 

into disease sample only.  All the pathways consisted of the specified 

gene were selected and considered these pathways equally.  Several 

current methods ignore the genes with missing edges and the 

interaction between multiple genes.  All the issues can lead to low 

accuracy and large-scale variation in weight vectors.  Partitioning 

clustering techniques are useful to detect clusters, but it can lead to 

poor quality of clustering by assuming to initialize the number of 

potential clusters beforehand.   

The main research question of this research is:   

How to identify pathway and gene markers for multiclass 

cancer expression data in order to improve the use of weight strategy 

in pathway topology-based microarray analysis?   
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Thus, the following issues will be considered to solve the 

problem:   

• How to identify pathway markers between multiple classes of 

samples in order to improve the weight of genes?   

• How to identify pathway markers from all the pathways and 

increase the accuracy of the method for multiclass cancer 

expression data?   

• How to identify the number of potential clusters needed to 

initialize for k-means clustering technique in order to improve 

the quality of clustering?   

• How to integrate k-means clustering and average silhouette 

method into the method in the directed graph for identifying 

gene markers for multiclass cancer expression data?   

1.4 Research Goal 

The goal of the research is to propose enhanced directed 

random walk with improved use of weight strategy in topology-

based microarray analysis and consideration of the interaction 

between genes for identification of pathway and gene markers 

from multiclass cancer expression data.   
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1.5 Research Objectives 

The objectives of the research are: 

• To propose an enhanced directed random walk method 

(eDRW+) for identification of pathway markers from 

multiclass cancer expression data to improve the use of weight 

strategy and pathway selection based on the greatest 

reproducibility power.   

• To propose skeDRW+ based on the integration of k-means 

clustering and average silhouette method into eDRW+ for 

identification of gene markers from multiclass cancer 

expression data in order to improve the quality of clustering.   

• To biologically validate pathway and gene markers using 

PubMed text data mining and functional enrichment analysis 

in pathway data, directed graph, and gene expression data.   

1.6 Research Scopes 

This research focuses on the identification of cancer markers 

and emphasizes the issues of pathway topology-based microarray 

analysis.  This research also aims to improve the weight of genes and 

improve the quality of clustering for identifying similar biological 

functions of genes.  Figure 1.4 illustrated the flow of the research from 

bioinformatics to the discovery of cancer markers.   
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Figure 1.4 The flow of the research from bioinformatics to the 

discovery of cancer markers. 

The following points are the research scopes: 

• According to the research focus, three components constitute 

the scopes of the research.  The research investigates directed 

random walk method (DRW) [WHAT] as pathway topology-

based method in identifying pathway and gene markers for 

multiclass cancer expression data [WHERE] in order to 

improve survival and quality of life [WHY].  The cancer 

markers can identify drug targets and look for cancer subtypes 

with clinically distinct outcomes.   
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• This research uses gene expression data (lung, breast, and skin 

cancers), pathway data (metabolic and non-metabolic 

pathways), and directed graph.   

• The development of the proposed methods is implemented in 

the R platform with version 3.3.3.   

• The performance of this research is measured in a stratified 

ten-fold cross-validation, which was mostly used in previous 

works.  The experimental results are compared in terms of area 

under the receiver operating characteristics curve (AUC) and 

accuracy (%) to justify the performance improvement.   

• The identified pathways and genes are biologically validated 

using PubMed text data mining and functional enrichment 

analysis to show the relationship between pathways, genes, 

and cancers.   

1.7 Research Significances 

This research is considered significant as it tends to identify 

pathway and gene markers for multiclass cancer expression data using 

pathway topology-based microarray analysis.  This method used 

multiple data types to infer a greater reproducibility power of pathway 

activity with higher classification accuracy.  There is a need to 

classify the datasets into multiple classes of samples, which can deal 

with grouping different cancer subtypes into disease sample only.  

The use of pathway data can help to study molecular mechanisms 
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based on cancer subtypes.  Pathway selection can identify more 

pathway markers, although the non-informative genes included in the 

pathways.  To increase the efficiency of identifying gene markers and 

improve the weight of genes in the directed graph, partitioning 

clustering and optimization techniques integrated into pathway 

topology-based microarray analysis can reduce the variation in weight 

vectors and improve its quality during initialization of the intended 

cluster number.  Furthermore, the identified pathway and gene 

markers can be further used in new drug development and clinical 

implications for cancers.  It can also help patients having early 

detection and diagnosis.   

1.8 Thesis Organization 

This thesis is organized into six chapters. The flow of the 

following chapters is presented as follows.  Chapter 2 aims to describe 

some basic knowledge related to this research.  This chapter also 

includes reviewing some preliminary collections of present works 

done in previous studies related to this research area.  Chapter 3 aims 

to discuss the details of the research methodology employed in this 

research.  The research framework is explained in this chapter to 

achieve the goal and objectives of the research.  This chapter also 

includes input data, a summary of the proposed methods, software and 

hardware requirements used in this research.  Performance 

measurements are also explained in this chapter to evaluate and 

compare among the methods.  Chapter 4 aims to present the proposed 

methods, eDRW+ and skeDRW+, in identifying pathway and gene 
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markers for multiclass cancer expression data.  Chapter 5 aims to 

present and discuss the experimental results generated by eDRW+ and 

skeDRW+.  Chapter 6 aims to conclude the findings, contribution, 

and suggestions for future works in this research.   

  



 

203 

REFERENCES 

Aarthi, P., and Gothai, E. (2014). Improving Class Separability for 

Microarray datasets using Genetic Algorithm with KLD 

Measure. Int. J. Eng. Sci. Innov. Technol, 3(2), 514-521. 

Abraham, A., Das, S., and Roy, S. (2008). Swarm intelligence 

algorithms for data clustering. In Soft computing for 

knowledge discovery and data mining (pp. 279-313). 

Springer, Boston, MA. 

Acharya, S., Saha, S., and Sahoo, P. (2019). Bi-clustering of 

microarray data using a symmetry-based multi-objective 

optimization framework. Soft Computing, 23(14), 5693-5714. 

Adeleye, Y., Andersen, M., Clewell, R., Davies, M., Dent, M., 

Edwards, S., Fowler, P., Malcomber, S., Nicol, B., Scott, A. 

and Scott, S. (2015). Implementing Toxicity Testing in the 

21st Century (TT21C): Making safety decisions using toxicity 

pathways, and progress in a prototype risk assessment. 

Toxicology, 332, 102-111. 

AlAjlan, A., and Badr, G. (2015, July). Data Mining in Pathway 

Analysis for Gene Expression. In Industrial Conference on 

Data Mining (pp. 69-77). Springer, Cham. 

Aly, M. (2005). Survey on multiclass classification methods. Neural 

networks, 19, pp. 1–9. 

An, J., Kim, K., Chae, H., and Kim, S. (2014). DegPack: a web 

package using a non-parametric and information theoretic 

algorithm to identify differentially expressed genes in 

multiclass RNA-seq samples. Methods, 69(3), 306-314. 



204 

Azzawi, H., Hou, J., Alanni, R., Xiang, Y., Abdu-Aljabar, R., and 

Azzawi, A. (2017, November). Multiclass lung cancer 

diagnosis by gene expression programming and microarray 

datasets. In International Conference on Advanced Data 

Mining and Applications (pp. 541-553). Springer, Cham. 

Bäck, T., Fogel, D. B., and Michalewicz, Z. (Eds.). (2018). 

Evolutionary computation 1: Basic algorithms and operators. 

CRC press. 

Bäck, T., Rudolph, G., and Schwefel, H. P. (1993, February). 

Evolutionary programming and evolution strategies: 

Similarities and differences. In In Proceedings of the Second 

Annual Conference on Evolutionary Programming. 

Bajo, J., De Paz, J. F., Rodríguez, S., and González, A. (2011). A new 

clustering algorithm applying a hierarchical method neural 

network. Logic Journal of IGPL, 19(2), 304-314. 

Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). A 

simulated annealing-based multiobjective optimization 

algorithm: AMOSA. IEEE transactions on evolutionary 

computation, 12(3), 269-283. 

Bao, Z., Zhu, Y., Ge, Q., Gu, W., Dong, X., and Bai, Y. (2019). 

gwSPIA: Improved Signaling Pathway Impact Analysis With 

Gene Weights. IEEE Access, 7, 69172-69183. 

Baranzini, S. E., Galwey, N. W., Wang, J., Khankhanian, P., 

Lindberg, R., Pelletier, D., Wu, W., Uitdehaag, B.M., Kappos, 

L., GeneMSA Consortium and Polman, C. H. (2009). Pathway 

and network-based analysis of genome-wide association 

studies in multiple sclerosis. Human molecular genetics, 

18(11), 2078-2090. 



 

205 

Bassani, H. F., and Araujo, A. F. (2014). Dimension selective self-

organizing maps with time-varying structure for subspace and 

projected clustering. IEEE transactions on neural networks 

and learning systems, 26(3), 458-471. 

Bayerlová, M., Jung, K., Kramer, F., Klemm, F., Bleckmann, A., and 

Beißbarth, T. (2015). Comparative study on gene set and 

pathway topology-based enrichment methods. BMC 

bioinformatics, 16(1), 334. 

Ben-Hamo, R., Gidoni, M., and Efroni, S. (2014). PhenoNet: 

identification of key networks associated with disease 

phenotype. Bioinformatics, 30(17), 2399-2405. 

Bénichou, O., Cazabat, A. M., Moreau, M., and Oshanin, G. (1999). 

Directed random walk in adsorbed monolayer. Physica A: 

Statistical Mechanics and its Applications, 272(1-2), 56-86. 

Bernhardson, C. S. (1975). 375: Type I error rates when multiple 

comparison procedures follow a significant F test of ANOVA. 

Biometrics, 229-232. 

Besaw, M. E. (2013). Protein lounge. Journal of the Medical Library 

Association: JMLA, 101(2), 164. 

Beshir, S. A., and Hanipah, M. A. (2012). Knowledge, perception, 

practice and barriers of breast cancer health promotion 

activities among community pharmacists in two Districts of 

Selangor state, Malaysia. Asian Pacific Journal of Cancer 

Prevention, 13(9), 4427-4430. 

Bholowalia, P., and Kumar, A. (2014). EBK-means: A clustering 

technique based on elbow method and k-means in WSN. 

International Journal of Computer Applications, 105(9). 

Billmann, M., Chaudhary, V., ElMaghraby, M. F., Fischer, B., and 



206 

Boutros, M. (2018). Widespread rewiring of genetic networks 

upon cancer signaling pathway activation. Cell systems, 6(1), 

52-64. 

Brazma, A., and Vilo, J. (2000). Gene expression data analysis. FEBS 

letters, 480(1), 17-24. 

Breitkreutz, D., Hlatky, L., Rietman, E., and Tuszynski, J. A. (2012). 

Molecular signaling network complexity is correlated with 

cancer patient survivability. Proceedings of the National 

Academy of Sciences, 109(23), 9209-9212. 

Brown, I., and Mues, C. (2012). An experimental comparison of 

classification algorithms for imbalanced credit scoring data 

sets. Expert Systems with Applications, 39(3), 3446-3453. 

Bryant, A., and Cios, K. (2018). RNN-DBSCAN: A density-based 

clustering algorithm using reverse nearest neighbor density 

estimates. IEEE Transactions on Knowledge and Data 

Engineering, 30(6), 1109-1121. 

Cao, Y., Lu, Y., Pan, X. and Sun, N. (2019). An improved global best 

guided artificial bee colony algorithm for continuous 

optimization problems. Cluster computing, 22(2), 3011-3019. 

Carneiro, M. G., Cheng, R., Zhao, L. and Jin, Y. (2019). Particle 

swarm optimization for network-based data classification. 

Neural Networks, 110, 243-255. 

Carson, M. B. and Lu, H. (2015). Network-based prediction and 

knowledge mining of disease genes. BMC medical genomics, 

8(2), S9. 

Chan, J. H., Sootanan, P. and Larpeampaisarl, P. (2011, July). Feature 

selection of pathway markers for microarray-based disease 

classification using negatively correlated feature sets. In The 



 

207 

2011 International Joint Conference on Neural Networks (pp. 

3293-3299). IEEE. 

Chandra, B. and Babu, K. N. (2014). Classification of gene expression 

data using spiking wavelet radial basis neural network. Expert 

systems with applications, 41(4), 1326-1330. 

Chandra, B. and Gupta, M. (2011). An efficient statistical feature 

selection approach for classification of gene expression data. 

Journal of biomedical informatics, 44(4), 529-535. 

Chandra, G. and Tripathi, S. (2019). A Column-Wise Distance-Based 

Approach for Clustering of Gene Expression Data with 

Detection of Functionally Inactive Genes and Noise. In 

Advances in Intelligent Computing (pp. 125-149). Springer, 

Singapore. 

Che, J., Yue, D., Zhang, B., Zhang, H., Huo, Y., Gao, L., Zhen, H., 

Yang, Y. and Cao, B. (2018). Claudin-3 inhibits lung 

squamous cell carcinoma cell epithelial-mesenchymal 

transition and invasion via suppression of the Wnt/β-catenin 

signaling pathway. International journal of medical sciences, 

15(4), 339. 

Chehouri, A., Younes, R., Khoder, J., Perron, J. and Ilinca, A. (2017). 

A selection process for genetic algorithm using clustering 

analysis. Algorithms, 10(4), 123. 

Chen, D., Liu, Z., Ma, X. and Hua, D. (2005). Selecting genes by test 

statistics. BioMed Research International, 2005(2), 132-138. 

Chen, X., Li, J., Gray, W. H., Lehmann, B. D., Bauer, J. A., Shyr, Y. 

and Pietenpol, J. A. (2012). TNBCtype: a subtyping tool for 

triple-negative breast cancer. Cancer informatics, 11, CIN-

S9983. 



208 

Chen, Y., Tang, S., Bouguila, N., Wang, C., Du, J. and Li, H. (2018). 

A fast clustering algorithm based on pruning unnecessary 

distance computations in DBSCAN for high-dimensional 

data. Pattern Recognition, 83, 375-387. 

Cheng, C. and Bao, C. (2017, February). A kernelized fuzzy C-means 

clustering algorithm based on glowworm swarm optimization 

algorithm. In Proceedings of the 9th International Conference 

on Computer and Automation Engineering (pp. 78-82). 

Cheng, W., Wang, W. and Batista, S. (2018). Grid-Based Clustering. 

Data Clustering, pp. 128–148, London, United Kingdom: 

Chapman and Hall, CRC. 

Civicioglu, P. and Besdok, E. (2013). A conceptual comparison of the 

Cuckoo-search, particle swarm optimization, differential 

evolution and artificial bee colony algorithms. Artificial 

Intelligence Review, 39(4), pp. 315–346. 

Clarke, P. A., te Poele, R., Wooster, R. and Workman, P. (2001). Gene 

expression microarray analysis in cancer biology, 

pharmacology, and drug development: progress and potential. 

Biochemical pharmacology, 62(10), pp. 1311–1336. 

Creixell, P., Reimand, J., Haider, S., Wu, G., Shibata, T., Vazquez, 

M., Mustonen, V., Gonzalez-Perez, A., Pearson, J., Sander, C. 

and Raphael, B. J. (2015). Pathway and network analysis of 

cancer genomes. Nature methods, 12(7), 615. 

Das, D., Pratihar, D. K., Roy, G. G. and Pal, A. R. (2018). 

Phenomenological model-based study on electron beam 

welding process, and input-output modeling using neural 

networks trained by back-propagation algorithm, genetic 

algorithms, particle swarm optimization algorithm and bat 



 

209 

algorithm. Applied Intelligence, 48(9), pp. 2698–2718. 

Datta, Susmita and Datta, Somnath (2006). Methods for evaluating 

clustering algorithms for gene expression data using a 

reference set of functional classes. BMC Bioinformatics, 7(1), 

p. 397. 

Davidson, I. and Ravi, S. S. (2005, October). Agglomerative 

Hierarchical Clustering with Constraints: Theoretical and 

Empirical Results. In European Conference on Principles of 

Data Mining and Knowledge Discovery (pp. 59-70). Springer, 

Berlin, Heidelberg. 

de Barros Franco, D. G. and Steiner, M. T. A. (2018). Clustering of 

solar energy facilities using a hybrid fuzzy c-means algorithm 

initialized by metaheuristics. Journal of cleaner production, 

191, pp. 445–457. 

Dembele, D. and Kastner, P. (2003). Fuzzy C-means method for 

clustering microarray data. Bioinformatics, 19(8), pp. 973–

980. 

Deng, C., Song, J., Sun, R., Cai, S. and Shi, Y. (2018a). GRIDEN: An 

effective grid-based and density-based spatial clustering 

algorithm to support parallel computing. Pattern Recognition 

Letters, 109, pp. 81–88. 

Deng, C., Song, J., Sun, R., Cai, S. and Shi, Y. (2018b). Gridwave: a 

grid-based clustering algorithm for market transaction data 

based on spatial-temporal density-waves and synchronization. 

Multimedia Tools and Applications, 77(22), pp. 29623–

29637. 

Dimitrakopoulos, C. M. and Beerenwinkel, N. (2017). Computational 

approaches for the identification of cancer genes and 



210 

pathways. Wiley Interdisciplinary Reviews: Systems Biology 

and Medicine, 9(1), p. e1364. 

Ding, F., Wang, J., Ge, J. and Li, W. (2018). Anomaly detection in 

large-scale trajectories using hybrid grid-based hierarchical 

clustering. International Journal of Robotics and Automation, 

33(5), pp. 474–480. 

Dinu, I., Potter, J. D., Mueller, T., Liu, Q., Adewale, A. J., Jhangri, G. 

S., Einecke, G., Famulski, K. S., Halloran, P. and Yasui, Y. 

(2008). Gene-set analysis and reduction. Briefings in 

bioinformatics, 10(1), pp. 24–34. 

Dong, X., Hao, Y., Wang, X. and Tian, W. (2016). LEGO: a novel 

method for gene set over-representation analysis by 

incorporating network-based gene weights. Scientific reports, 

6, p. 18871. 

Doungpan, N., Engchuan, W., Chan, J. H. and Meechai, A. (2016). 

GSNFS: Gene subnetwork biomarker identification of lung 

cancer expression data. BMC Medical Genomics, 9(S3), p. 70. 

Doungpan, N., Engchuan, W., Meechai, A. and Chan, J. H. (2015, 

July). Clustering-based gene-subnetwork biomarker 

identification using gene expression data. In 2015 

International Joint Conference on Neural Networks (IJCNN) 

(pp. 1-7). IEEE. 

Duarte, E. and Wainer, J. (2017). Empirical comparison of cross-

validation and internal metrics for tuning SVM 

hyperparameters. Pattern Recognition Letters, 88, pp. 6–11. 

Duval, B., Hao, J. K. and Hernandez Hernandez, J. C. (2009, July). A 

memetic algorithm for gene selection and molecular 

classification of cancer. In Proceedings of the 11th Annual 



 

211 

conference on Genetic and evolutionary computation (pp. 

201-208). 

Efroni, S., Schaefer, C. F. and Buetow, K. H. (2007). Identification of 

Key Processes Underlying Cancer Phenotypes Using Biologic 

Pathway Analysis. PLoS ONE, 2(5), e425. 

Eiben, A. E. and Smith, J. (2015). From evolutionary computation to 

the evolution of things. Nature, 521(7553), p. 476. 

Enerly, E., Steinfeld, I., Kleivi, K., Leivonen, S.-K., Aure, M. R., 

Russnes, H. G., Rønneberg, J. A., Johnsen, H., Navon, R., 

Rødland, E., Mäkelä, R., Naume, B., Perälä, M., Kallioniemi, 

O., Kristensen, V. N., Yakhini, Z. and Børresen-Dale, A.-L. 

(2011). miRNA-mRNA Integrated Analysis Reveals Roles for 

miRNAs in Primary Breast Tumors. PLoS ONE, 6(2), e16915. 

Engchuan, W. and Chan, J. H. (2012, November). Pathway-Based 

Multi-class Classification of Lung Cancer. In International 

Conference on Neural Information Processing (pp. 697-702). 

Springer, Berlin, Heidelberg. 

Engchuan, W. and Chan, J. H. (2013). Apriori gene set-based 

microarray analysis for disease classification using unlabeled 

data. Procedia Computer Science, 23, pp. 137–145. 

Engchuan, W. and Chan, J. H. (2015). Pathway activity 

transformation for multi-class classification of lung cancer 

datasets. Neurocomputing, 165, pp. 81–89. 

Engchuan, W., Meechai, A., Tongsima, S., Doungpan, N. and Chan, 

J. H. (2016). Gene-set activity toolbox (GAT): A platform for 

microarray-based cancer diagnosis using an integrative gene-

set analysis approach. Journal of Bioinformatics and 

Computational Biology, 14(04), p. 1650015. 



212 

Ester, M., Kriegel, H. P., Sander, J. and Xu, X. (1996, August). A 

density-based algorithm for discovering clusters in large 

spatial databases with noise. In The Knowledge Discovery and 

Data Mining Conferences (KDD) (Vol. 96, No. 34, pp. 226-

231). 

Evangeline, D. P., Sandhiya, C., Anandhakumar, P., Raj, G. D. and 

Rajendran, T. (2013, December). Feature subset selection for 

irrelevant data removal using Decision Tree Algorithm. In 

2013 Fifth International Conference on Advanced Computing 

(ICoAC) (pp. 268-274). IEEE. 

Eyileten, C., Wicik, Z., De Rosa, S., Mirowska-Guzel, D., Soplinska, 

A., Indolfi, C., Jastrzebska-Kurkowska, I., Czlonkowska, A. 

and Postula, M. (2018). MicroRNAs as Diagnostic and 

Prognostic Biomarkers in Ischemic Stroke-A Comprehensive 

Review and Bioinformatic Analysis. Cells, 7(12), p. 249. 

Farmer, P., Bonnefoi, H., Becette, V., Tubiana-Hulin, M., Fumoleau, 

P., Larsimont, D., MacGrogan, G., Bergh, J., Cameron, D., 

Goldstein, D., Duss, S., Nicoulaz, A.-L., Fiche, M., Brisken, 

C., Delorenzi, M. and Iggo, R. (2005). Identification of 

molecular apocrine breast tumours by microarray analysis. 

Breast Cancer Research, 7(S2), P2.11. 

Ferdowsi, S., Voloshynovskiy, S., Gabryel, M. and Korytkowski, M. 

(2014, June). Multi-class Classification: A Coding Based 

Space Partitioning. In International Conference on Artificial 

Intelligence and Soft Computing (pp. 593-604). Springer, 

Cham. 

Fister, I., Fister Jr, I., Yang, X. S. and Brest, J. (2013). A 

comprehensive review of firefly algorithms. Swarm and 



 

213 

Evolutionary Computation, 13, pp. 34–46. 

Gammill, L. S. and Lee, V. M. (2008). Gene Discovery: Macroarrays 

and Microarrays. Methods in cell biology, 87, 297-312. 

Gandomi, A. H., Yang, X.-S. and Alavi, A. H. (2013a). Cuckoo 

search algorithm: a metaheuristic approach to solve structural 

optimization problems. Engineering with Computers, 29(1), 

pp. 17–35. 

Gandomi, A. H., Yang, X.-S., Alavi, A. H. and Talatahari, S. (2013b). 

Bat algorithm for constrained optimization tasks. Neural 

Computing and Applications, 22(6), pp. 1239–1255. 

Gao, H., Jiang, J., She, L. and Fu, Y. (2010). A new agglomerative 

hierarchical clustering algorithm implementation based on the 

map reduce framework. International Journal of Digital 

Content Technology and its Applications, 436(3), pp. 95–100. 

García, J., Crawford, B., Soto, R. and Astorga, G. (2019). A clustering 

algorithm applied to the binarization of Swarm intelligence 

continuous metaheuristics. Swarm and Evolutionary 

Computation, 44, pp. 646–664. 

Garg, S. and Batra, S. (2018). Fuzzified cuckoo based clustering 

technique for network anomaly detection. Computers and 

Electrical Engineering, 71, pp. 798–817. 

Garzón, J. A. C. and González, J. R. (2015). A gene selection 

approach based on clustering for classification tasks in colon 

cancer. ADCAIJ: Advances in Distributed Computing and 

Artificial Intelligence Journal, 4(3), pp. 1–10. 

Geng, Y. A., Li, Q., Zheng, R., Zhuang, F., He, R. and Xiong, N. 

(2018). RECOME: A new density-based clustering algorithm 

using relative KNN kernel density. Information Sciences, 436, 



214 

pp. 13–30. 

Ghaedi, A. M., Ghaedi, M., Vafaei, A., Iravani, N., Keshavarz, M., 

Rad, M., Tyagi, I., Agarwal, S. and Gupta, V. K. (2015). 

Adsorption of copper (II) using modified activated carbon 

prepared from Pomegranate wood: optimization by bee 

algorithm and response surface. Journal of Molecular Liquids, 

206, pp. 195–206. 

Gibson, G. (2003). Microarray Analysis. PLoS Biology, 1(1), e15. 

Gomez-Pilar, J., Poza, J., Bachiller, A., Gómez, C., Núñez, P., 

Lubeiro, A., Molina, V. and Hornero, R. (2018). 

Quantification of Graph Complexity Based on the Edge 

Weight Distribution Balance: Application to Brain Networks. 

International Journal of Neural Systems, 28(01), p. 1750032. 

Grewal, R. K. and Das, S. (2013). Microarray data analysis: Gaining 

biological insights. Journal of Biomedical Science and 

Engineering, 6(10), p. 996. 

Gu, J. L., Lu, Y., Liu, C. and Lu, H. (2014). Multiclass classification 

of sarcomas using pathway based feature selection method. 

Journal of theoretical biology, 362, pp. 3–8. 

Gu, Z., Liu, J., Cao, K., Zhang, J. and Wang, J. (2012). Centrality-

based pathway enrichment: a systematic approach for finding 

significant pathways dominated by key genes. BMC Systems 

Biology, 6(1), p. 56. 

Gu, Z. and Wang, J. (2013). CePa: an R package for finding 

significant pathways weighted by multiple network 

centralities. Bioinformatics, 29(5), pp. 658–660. 

Guebila, M. B., and Thiele, I. (2019). Predicting gastrointestinal drug 

effects using contextualized metabolic models. PLoS 



 

215 

computational biology, 15(6). 

Guven, A. and Aytek, A. (2009). New Approach for Stage-Discharge 

Relationship: Gene-Expression Programming. Journal of 

Hydrologic Engineering, 14(8), pp. 812–820. 

Haakensen, V. D., Steinfeld, I., Saldova, R., Shehni, A. A., Kifer, I., 

Naume, B., Rudd, P. M., Børresen-Dale, A. L. and Yakhini, 

Z. (2016). Serum N-glycan analysis in breast cancer patients–

relation to tumour biology and clinical outcome. Molecular 

oncology, 10(1), pp. 59–72. 

Halkidi, M. and Vazirgiannis, M. (2001). Clustering validity 

assessment: Finding the optimal partitioning of a data set. In 

Proceedings 2001 IEEE International Conference on Data 

Mining (pp. 187-194). IEEE. 

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and 

Witten, I. H. (2009). The WEKA data mining software: an 

update. ACM SIGKDD explorations newsletter, 11(1), pp. 10–

18. 

Han, J., Shi, X., Zhang, Y., Xu, Y., Jiang, Y., Zhang, C., Feng, L., 

Yang, H., Shang, D., Sun, Z. and Su, F. (2015). ESEA: 

discovering the dysregulated pathways based on edge set 

enrichment analysis. Scientific reports, 5, p. 13044. 

Handhayani, T. and Hiryanto, L. (2015). Intelligent kernel k-means 

for clustering gene expression. Procedia Computer Science, 

59, pp. 171–177. 

Handl, J., Knowles, J. and Kell, D. B. (2005). Computational cluster 

validation in post-genomic data analysis. Bioinformatics, 

21(15), pp. 3201–3212. 

Hochreiter, S., Clevert, D. A. and Obermayer, K. (2006). A new 



216 

summarization method for Affymetrix probe level data. 

Bioinformatics, 22(8), pp. 943–949. 

Hu, J. and Pei, J. (2018). Subspace multi-clustering: a review. 

Knowledge and Information Systems, 56(2), pp. 257–284. 

Huan, J., Wang, L., Xing, L., Qin, X., Feng, L., Pan, X. and Zhu, L. 

(2014). Insights into significant pathways and gene interaction 

networks underlying breast cancer cell line MCF-7 treated 

with 17β-estradiol (E2). Gene, 533(1), pp. 346–355. 

Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008). 

Bioinformatics enrichment tools: paths toward the 

comprehensive functional analysis of large gene lists. Nucleic 

acids research, 37(1), pp. 1–13. 

Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009). 

Systematic and integrative analysis of large gene lists using 

DAVID bioinformatics resources. Nature protocols, 4(1), p. 

44. 

Hung, F. H. and Chiu, H. W. (2017). Cancer subtype prediction from 

a pathway-level perspective by using a support vector 

machine based on integrated gene expression and protein 

network. Computer methods and programs in biomedicine, 

141, pp. 27–34. 

Ibrahim, M. A.-H., Jassim, S., Cawthorne, M. A. and Langlands, K. 

(2012). A Topology-Based Score for Pathway Enrichment. 

Journal of Computational Biology, 19(5), pp. 563–573. 

Ihnatova, I. and Budinska, E. (2015). ToPASeq: an R package for 

topology-based pathway analysis of microarray and RNA-Seq 

data. BMC Bioinformatics, 16(1), p. 350. 

Imdadullah, M., Aslam, M. and Altaf, S. (2016). mctest: An R 



 

217 

package for detection of collinearity among regressors. The R 

Journal, 8(2), pp. 499–509. 

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern 

Recognition Letters, 31(8), pp. 651–666. 

Jang, I. S., Dienstmann, R., Margolin, A. A. and Guinney, J. (2014). 

Stepwise group sparse regression (SGSR): gene-set-based 

pharmacogenomic predictive models with stepwise selection 

of functional priors. In Pacific Symposium on Biocomputing 

Co-Chairs (pp. 32-43). 

Jia, P., Kao, C.-F., Kuo, P.-H. and Zhao, Z. (2011). A comprehensive 

network and pathway analysis of candidate genes in major 

depressive disorder. BMC Systems Biology, 5(Suppl 3), p. 

S12. 

Jia, P. and Zhao, Z. (2014). Network-assisted analysis to prioritize 

GWAS results: principles, methods and perspectives. Human 

Genetics, 133(2), pp. 125–138. 

Johannes, M., Brase, J. C., Fröhlich, H., Gade, S., Gehrmann, M., 

Fälth, M., Sültmann, H. and Beißbarth, T. (2010). Integration 

of pathway knowledge into a reweighted recursive feature 

elimination approach for risk stratification of cancer patients. 

Bioinformatics, 26(17), pp. 2136–2144. 

Jonsson, T. and Wheater, J. F. (1998). Area distribution for directed 

random walks. Journal of statistical physics, 92(3–4), pp. 

713–725. 

Kamat, P., Zhang, Y., Trappe, W. and Ozturk, C. (2005, June). 

Enhancing source-location privacy in sensor network routing. 

In 25th IEEE international conference on distributed 

computing systems (ICDCS'05) (pp. 599-608). IEEE. 



218 

Kar, S., Sharma, K. D. and Maitra, M. (2016). A particle swarm 

optimization based gene identification technique for 

classification of cancer subgroups. In 2016 2nd International 

Conference on Control, Instrumentation, Energy and 

Communication (CIEC) (pp. 130-134). IEEE. 

Karaboga, D. and Akay, B. (2009). A survey: algorithms simulating 

bee swarm intelligence. Artificial Intelligence Review, 31(1–

4), pp. 61–85. 

Karn, T., Metzler, D., Ruckhäberle, E., Hanker, L., Gätje, R., Solbach, 

C., Ahr, A., Schmidt, M., Holtrich, U., Kaufmann, M. and 

Rody, A. (2010). Data driven derivation of cutoffs from a pool 

of 3,030 Affymetrix arrays to stratify distinct clinical types of 

breast cancer. Breast Cancer Research and Treatment, 120(3), 

pp. 567–579. 

Karo, I. M. K., MaulanaAdhinugraha, K. and Huda, A. F. (2017, 

November). A cluster validity for spatial clustering based on 

Davies Bouldin index and Polygon Dissimilarity function. In 

2017 Second International Conference on Informatics and 

Computing (ICIC) (pp. 1-6). IEEE. 

Kaufman, L. and Rousseeuw, P. (2009). Finding groups in data: an 

introduction to cluster analysis. John Wiley & Sons. 

Kavzoglu, T., Sahin, E. K. and Colkesen, I. (2014). Landslide 

susceptibility mapping using GIS-based multi-criteria 

decision analysis, support vector machines, and logistic 

regression. Landslides, 11(3), pp. 425–439. 

Khatri, P., Sirota, M. and Butte, A. J. (2012). Ten Years of Pathway 

Analysis: Current Approaches and Outstanding Challenges. 

PLoS Computational Biology, 8(2), e1002375. 



 

219 

Kim, E. K. and Choi, E. J. (2010). Pathological roles of MAPK 

signaling pathways in human diseases. Biochimica et 

Biophysica Acta (BBA)-Molecular Basis of Disease, 1802(4), 

pp. 396–405. 

Kim, S. Y. and Volsky, D. J. (2005). PAGE: parametric analysis of 

gene set enrichment. BMC Bioinformatics, 6(1), p. 144. 

Kiselev, V. Y., Andrews, T. S. and Hemberg, M. (2019). Challenges 

in unsupervised clustering of single-cell RNA-seq data. 

Nature Reviews Genetics, 20, pp. 273–282. 

Kittas, A., Delobelle, A., Schmitt, S., Breuhahn, K., Guziolowski, C. 

and Grabe, N. (2016). Directed random walks and constraint 

programming reveal active pathways in hepatocyte growth 

factor signaling. FEBS Journal, 283(2), pp. 350–360. 

Knowles, J. D. and Corne, D. W. (2000). M-PAES: A memetic 

algorithm for multiobjective optimization. In Proceedings of 

the 2000 Congress on Evolutionary Computation (pp. 325–

332). IEEE, Turkey. 

Kothandan, R. and Biswas, S. (2015). Identifying microRNAs 

involved in cancer pathway using support vector machines. 

Computational biology and chemistry, 55, pp. 31–36. 

Kourou, K., Papaloukas, C. and Fotiadis, D. I. (2016, February). 

Gene-based pathway enrichment analysis of oral squamous 

cell carcinoma patients. In 2016 IEEE-EMBS International 

Conference on Biomedical and Health Informatics (BHI) (pp. 

360-363). IEEE. 

Kriegel, H., Kröger, P., Sander, J. and Zimek, A. (2011). Density-

based clustering. Wiley Interdisciplinary Reviews: Data 

Mining and Knowledge Discovery, 1(3), pp. 231–240. 



220 

Kumar, P. and Wasan, S. K. (2011). Comparative study of k-means, 

pam and rough k-means algorithms using cancer datasets.  In 

Proceedings of CSIT: 2009 International Symposium on 

Computing, Communication, and Control (ISCCC 2009) 

(Vol. 1, pp. 136-140). Singapore. 

Kuner, R., Muley, T., Meister, M., Ruschhaupt, M., Buness, A., Xu, 

E. C., Schnabel, P., Warth, A., Poustka, A., Sültmann, H. and 

Hoffmann, H. (2009). Global gene expression analysis reveals 

specific patterns of cell junctions in non-small cell lung cancer 

subtypes. Lung Cancer, 63(15), pp. 32–38. 

Labed, K., Fizazi, H., Mahi, H. and Galvan, I. M. (2018). A 

Comparative Study of Classical Clustering Method and 

Cuckoo Search Approach for Satellite Image Clustering: 

Application to Water Body Extraction. Applied Artificial 

Intelligence, 32(1), pp. 96–118. 

Lai, C. Y., Tsai, P. F., Chang, S., Wang, Y. C. and Teng, L. W. (2017). 

The productivity opportunities by applying machine learning 

algorithms in a fab. In 2017 Joint International Symposium on 

e-Manufacturing and Design Collaboration (eMDC) and 

Semiconductor Manufacturing (ISSM) (pp. 1-2). IEEE. 

Li, Q., Yu, M. and Wang, S. (2017). A statistical framework for 

pathway and gene identification from integrative analysis. 

Journal of multivariate analysis, 156, pp. 1–17. 

Li, T., Zhang, C. and Ogihara, M. (2004). A comparative study of 

feature selection and multiclass classification methods for 

tissue classification based on gene expression. Bioinformatics, 

20(15), pp. 2429–2437. 

Li, X., Peng, S., Zhan, X., Zhang, J. and Xu, Y. (2011). Comparison 



 

221 

of feature selection methods for multiclass cancer 

classification based on microarray data. In 2011 4th 

International Conference on Biomedical Engineering and 

Informatics (BMEI) (Vol. 3, pp. 1692-1696). IEEE. 

Li, X., Shen, L., Shang, X. and Liu, W. (2015). Subpathway Analysis 

based on Signaling-Pathway Impact Analysis of Signaling 

Pathway. PLoS ONE, 10(7), e0132813. 

Li, Y. and Patra, J. C. (2010). Integration of multiple data sources to 

prioritize candidate genes using discounted rating system. 

BMC Bioinformatics, 11(SUPPLL.1). 

Li, Y., Wang, G., Chen, H., Shi, L. and Qin, L. (2013). An Ant Colony 

Optimization Based Dimension Reduction Method for High-

Dimensional Datasets. Journal of Bionic Engineering, 10(2), 

pp. 231–241. 

Liu, C., Lehtonen, R. and Hautaniemi, S. (2018a). PerPAS: topology-

based single sample pathway analysis method. IEEE/ACM 

Transactions on Computational Biology and Bioinformatics 

(TCBB), 15(3), pp. 1022–1027. 

Liu, D., Li, T. and Liang, D. (2014). Incorporating logistic regression 

to decision-theoretic rough sets for classifications. 

International Journal of Approximate Reasoning, 55(1), pp. 

197–210. 

Liu, H. C., Ma, F., Shen, Y., Hu, Y. Q. and Pan, S. (2015a). 

Overexpression of SMAR1 enhances radiosensitivity in 

human breast cancer cell line MCF7 via activation of p53 

signaling pathway. Oncology Research Featuring Preclinical 

and Clinical Cancer Therapeutics, 22(5–6), pp. 293–300. 

Liu, J., Lu, F., Gong, Y., Zhao, C., Pan, Q., Ballantyne, S., Zhao, X., 



222 

Tian, S. and Chen, H. (2018b). High expression of synthesis 

of cytochrome c oxidase 2 and TP53-induced glycolysis and 

apoptosis regulator can predict poor prognosis in human lung. 

Human pathology, 77, pp. 54–62. 

Liu, L., Wei, J. and Ruan, J. (2017a). Pathway enrichment analysis 

with networks. Genes, 8(10), p. 246. 

Liu, W., Li, C., Xu, Y., Yang, H., Yao, Q., Han, J., Shang, D., Zhang, 

C., Su, F., Li, Xia, Li, Xiaoxi, Xiao, Y., Zhang, F. and Dai, M. 

(2013a). Topologically inferring risk-active pathways toward 

precise cancer classification by directed random walk. 

Bioinformatics, 29(17), pp. 2169–2177. 

Liu, W., Wang, Q., Zhao, J., Zhang, C., Liu, Y., Zhang, J., Bai, X., 

Li, X., Feng, H., Liao, M. and Wang, W. (2015b). Integration 

of pathway structure information into a reweighted partial Cox 

regression approach for survival analysis on high-dimensional 

gene expression data. Molecular bioSystems, 11(7), pp. 1876–

1886. 

Liu, W., Wang, W., Tian, G., Xie, W., Lei, L., Liu, J., Huang, W., Xu, 

L. and Li, E. (2017b). Topologically inferring pathway 

activity for precise survival outcome prediction: breast cancer 

as a case. Molecular bioSystems, 13(3), pp. 537–548. 

Liu, X. Y., Wu, J. and Zhou, Z. H. (2008). Exploratory undersampling 

for class-imbalance learning. IEEE Transactions on Systems, 

Man, and Cybernetics, Part B (Cybernetics), 39(2), pp. 539–

550. 

Liu, Y., Li, Z., Xiong, H., Gao, X. and Wu, J. (2010, December). 

Understanding of internal clustering validation measures. In 

2010 IEEE International Conference on Data Mining (pp. 



 

223 

911-916). IEEE. 

Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J. and Wu, S. (2013b). 

Understanding and enhancement of internal clustering 

validation measures. IEEE transactions on cybernetics, 43(3), 

pp. 982–994. 

Liu, Z., Lu, Y., He, Z., Chen, L. and Lu, Y. (2015c). Expression 

analysis of the estrogen receptor target genes in renal cell 

carcinoma. Molecular Medicine Reports, 11(1), pp. 75–82. 

Lix, L. M., Keselman, J. C. and Keselman, H. J. (1996). 

Consequences of Assumption Violations Revisited: A 

Quantitative Review of Alternatives to the One-Way Analysis 

of Variance F Test. Review of Educational Research, 66(4), 

pp. 579–619. 

Lorena, A. C., De Carvalho, A. C. and Gama, J. M. (2008). A review 

on the combination of binary classifiers in multiclass 

problems. Artificial Intelligence Review, 30(1–4), p. 19. 

Lovász, L. (1993). Random walks on graphs: A survey. Paul erdos is 

eighty, 2(1), pp. 1–46. 

Lu, Y. and Han, J. (2003). Cancer classification using gene expression 

data. Information Systems, 28(4), pp. 243–268. 

Ludwig, J. A. and Weinstein, J. N. (2005). Biomarkers in cancer 

staging, prognosis and treatment selection. Nature Reviews 

Cancer, 5(11), p. 845. 

Ludwig, S. A., Picek, S. and Jakobovic, D. (2018). Classification of 

Cancer Data: Analyzing Gene Expression Data Using a Fuzzy 

Decision Tree Algorithm. In Operations Research 

Applications in Health Care Management (pp. 327-347). 

Springer, Cham. 



224 

Lynn, N., Ali, M. Z. and Suganthan, P. N. (2018). Population 

topologies for particle swarm optimization and differential 

evolution. Swarm and Evolutionary Computation, 39, pp. 24–

35. 

Ma, C., Chen, Y., Wilkins, D., Chen, X. and Zhang, J. (2015). An 

unsupervised learning approach to find ovarian cancer genes 

through integration of biological data. BMC Genomics, 

16(S9), S3. 

Macher, J. P. and Crocq, M. A. (2004). Treatment goals: response and 

nonresponse. Dialogues in clinical neuroscience, 6(1), p. 83. 

Madhukar, N. S., Elemento, O. and Pandey, G. (2015). Prediction of 

Genetic Interactions Using Machine Learning and Network 

Properties. Frontiers in Bioengineering and Biotechnology, 3, 

p. 172. 

Majhi, S. K. and Biswal, S. (2018). Optimal cluster analysis using 

hybrid K-Means and Ant Lion Optimizer. Karbala 

International Journal of Modern Science, 4(4), pp. 347–360. 

Majhi, S. K. and Biswal, S. (2019). A Hybrid Clustering Algorithm 

Based on Kmeans and Ant Lion Optimization. In Emerging 

Technologies in Data Mining and Information Security (pp. 

639-650). Springer, Singapore. 

Makropoulou, M. (2016). Cancer and electromagnetic radiation 

therapy: Quo Vadis? Medical Physics. 

Martini, P., Sales, G., Massa, M. S., Chiogna, M. and Romualdi, C. 

(2012). Along signal paths: an empirical gene set approach 

exploiting pathway topology. Nucleic acids research, 41(1), 

pp. e19–e19. 

Mary, C. and Raja, S. K. (2009). Refinement of Clusters from K-



 

225 

Means with Ant Colony Optimization. Journal of Theoretical 

and Applied Information Technology, 10(1). 

Mehmood, R., El-Ashram, S., Bie, R. and Sun, Y. (2018). Effective 

cancer subtyping by employing density peaks clustering by 

using gene expression microarray. Personal and Ubiquitous 

Computing, 22(3), pp. 615–619. 

Menashe, I., Figueroa, J. D., Garcia-Closas, M., Chatterjee, N., 

Malats, N., Picornell, A., Maeder, D., Yang, Q., Prokunina-

Olsson, L., Wang, Z., Real, F. X., Jacobs, K. B., Baris, D., 

Thun, M., Albanes, D., Purdue, M. P., Kogevinas, M., 

Hutchinson, A., Fu, Y.-P., Tang, W., Burdette, L., Tardón, A., 

Serra, C., Carrato, A., García-Closas, R., Lloreta, J., Johnson, 

A., Schwenn, M., Schned, A., Andriole, G., Black, A., Jacobs, 

E. J., Diver, R. W., Gapstur, S. M., Weinstein, S. J., Virtamo, 

J., Caporaso, N. E., Landi, M. T., Fraumeni, J. F., Chanock, S. 

J., Silverman, D. T. and Rothman, N. (2012). Large-Scale 

Pathway-Based Analysis of Bladder Cancer Genome-Wide 

Association Data from Five Studies of European Background. 

PLoS ONE, 7(1), e29396. 

Mikaeil, R., Haghshenas, S. S. and Hoseinie, S. H. (2018). Rock 

penetrability classification using artificial bee colony (ABC) 

algorithm and self-organizing map. Geotechnical and 

Geological Engineering, 36(2), pp. 1309–1318. 

Mitra, A. P., Almal, A. A., George, B., Fry, D. W., Lenehan, P. F., 

Pagliarulo, V., Cote, R. J., Datar, R. H. and Worzel, W. P. 

(2006). The use of genetic programming in the analysis of 

quantitative gene expression profiles for identification of 

nodal status in bladder cancer. BMC Cancer, 6(1), p. 159. 



226 

Mitrea, C., Taghavi, Z., Bokanizad, B., Hanoudi, S., Tagett, R., 

Donato, M., Voichiţa, C. and Drăghici, S. (2013). Methods 

and approaches in the topology-based analysis of biological 

pathways. Frontiers in Physiology, 4, p. 278. 

Mohamad, M. S., Omatu, S., Deris, S. and Yoshioka, M. (2013a, 

April). A constraint and rule in an enhancement of binary 

particle swarm optimization to select informative genes for 

cancer classification. In Pacific-Asia Conference on 

Knowledge Discovery and Data Mining (pp. 168-178). 

Springer, Berlin, Heidelberg. 

Mohamad, M. S., Omatu, S., Deris, S., Yoshioka, M., Abdullah, A. 

and Ibrahim, Z. (2013b). An enhancement of binary particle 

swarm optimization for gene selection in classifying cancer 

classes. Algorithms for Molecular Biology, 8(1), p. 15. 

Mohammadrezapour, O., Kisi, O. and Pourahmad, F. (2018). Fuzzy 

c-means and K-means clustering with genetic algorithm for 

identification of homogeneous regions of groundwater 

quality. Neural Computing and Applications. 1-13. 

Mohammed, A., Biegert, G., Adamec, J. and Helikar, T. (2017). 

Identification of potential tissue-specific cancer biomarkers 

and development of cancer versus normal genomic classifiers. 

Oncotarget, 8(49), p. 85692. 

Mohapatra, P., Chakravarty, S. and Dash, P. K. (2016). Microarray 

medical data classification using kernel ridge regression and 

modified cat swarm optimization based gene selection system. 

Swarm and Evolutionary Computation, 28, pp. 144–160. 

Moorthy, K. and Mohamad, M. S. (2011, July). Random Forest for 

Gene Selection and Microarray Data Classification. In 



 

227 

Knowledge Technology Week (pp. 174-183). Springer, Berlin, 

Heidelberg. 

Moreno-Torres, J. G., Sáez, J. A. and Herrera, F. (2012). Study on the 

Impact of Partition-Induced Dataset Shift on-Fold Cross-

Validation. IEEE Transactions on Neural Networks and 

Learning Systems, 23(8), pp. 1304–1312. 

Mortazavi, A., Toğan, V. and Moloodpoor, M. (2019). Solution of 

structural and mathematical optimization problems using a 

new hybrid swarm intelligence optimization algorithm. 

Advances in Engineering Software, 127, pp. 106–123. 

Murohashi, M., Hinohara, K., Kuroda, M., Isagawa, T., Tsuji, S., 

Kobayashi, S., Umezawa, K., Tojo, A., Aburatani, H. and 

Gotoh, N. (2010). Gene set enrichment analysis provides 

insight into novel signalling pathways in breast cancer stem 

cells. British journal of cancer, 102(1), p. 206. 

Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical 

clustering: an overview. Wiley Interdisciplinary Reviews: 

Data Mining and Knowledge Discovery, 2(1), pp. 86–97. 

Mushtaq, H., Khawaja, S. G., Akram, M. U., Yasin, A., Muzammal, 

M., Khalid, S. and Khan, S. A. (2018). A Parallel Architecture 

for the Partitioning around Medoids (PAM) Algorithm for 

Scalable Multi-Core Processor Implementation with 

Applications in Healthcare. Sensors, 18(12), p. 4129. 

Nacu, Ş., Critchley-Thorne, R., Lee, P. and Holmes, S. (2007). Gene 

expression network analysis and applications to immunology. 

Bioinformatics, 23(7), pp. 850–858. 

Nagpal, A., Jatain, A. and Gaur, D. (2013, April). Review based on 

data clustering algorithms. In 2013 IEEE Conference on 



228 

Information and Communication Technologies (pp. 298-303). 

IEEE. 

Nair, R. P., Duffin, K. C., Helms, C., Ding, J., Stuart, P. E., Goldgar, 

D., Gudjonsson, J. E., Li, Y., Tejasvi, T., Feng, B. J. and 

Ruether, A. (2009). Genome-wide scan reveals association of 

psoriasis with IL-23 and NF-κB pathways. Nature Genetics, 

41(2), p. 199. 

Napier, N. and Limogiannis, N. (2016). A Bioinformatic Approach to 

MSI Cancer Research. Bioengineering and Bioscience, 4(1), 

pp. 7–10. 

Nayak, J., Naik, B. and Behera, H. S. (2015). Fuzzy C-means (FCM) 

clustering algorithm: a decade review from 2000 to 2014. In 

Computational intelligence in data mining-volume 2 (pp. 133-

149). Springer, New Delhi. 

Nazarenko, A. V. (2011). Directed random walk on the lattices of 

genus two. International Journal of Modern Physics B, 

25(26), pp. 3415–3433. 

Ng, R. T. and Han, J. (2002). CLARANS: A method for clustering 

objects for spatial data mining. IEEE Transactions on 

Knowledge and Data Engineering, 56, pp. 1003–1016. 

Nies, H. W., Mohd Daud, K., Remli, M. A., Mohamad, M. S., Deris, 

S., Omatu, S., Kasim, S. and Sulong, G. (2017a, June). 

Classification of Colorectal Cancer Using Clustering and 

Feature Selection Approaches. In International Conference on 

Practical Applications of Computational Biology and 

Bioinformatics (pp. 58-65). Springer, Cham. 

Nies, H. W., Zakaria, Z., Mohamad, M. S., Chan, W. H., Zaki, N., 

Sinnott, R. O., Napis, S., Chamoso, P., Omatu, S. and 



 

229 

Corchado, J. M. (2019). A Review of Computational Methods 

for Clustering Genes with Similar Biological Functions. 

Processes, 7(9), p. 550. 

Nies, H. W. (2020). Identification of Pathway and Gene Markers 

Using Enhanced Directed Random Walk for Multiclass 

Cancer Expression Data. (Current Thesis) 

Nies, Y. H., Islahudin, F., Chong, W. W., Abdullah, N., Ismail, F., 

Bustamam, R. S. A., Wong, Y. F., Saladina, J. J. and Shah, N. 

M. (2017b). Treatment decision-making among breast cancer 

patients in Malaysia. Patient Preference and Adherence, 11, 

pp. 1767–1777. 

Nur, U., Shack, L. G., Rachet, B., Carpenter, J. R. and Coleman, M. 

P. (2009). Modelling relative survival in the presence of 

incomplete data: a tutorial. International journal of 

epidemiology, 39(1), pp. 118–128. 

Obuchowski, N. A. and Bullen, J. A. (2018). Receiver operating 

characteristic (ROC) curves: review of methods with 

applications in diagnostic medicine. Physics in Medicine and 

Biology, 63(7), 07TR01. 

Ortiz-Ramón, R., Larroza, A., Ruiz-España, S., Arana, E. and 

Moratal, D. (2018). Classifying brain metastases by their 

primary site of origin using a radiomics approach based on 

texture analysis: a feasibility study. European Radiology, 

28(11), pp. 4514–4523. 

Otukei, J. R. and Blaschke, T. (2010). Land cover change assessment 

using decision trees, support vector machines and maximum 

likelihood classification algorithms. International Journal of 

Applied Earth Observation and Geoinformation, 12, pp. S27–



230 

S31. 

Oyelade, J., Isewon, I., Oladipupo, F., Aromolaran, O., Uwoghiren, 

E., Ameh, F., Achas, M. and Adebiyi, E. (2016). Clustering 

Algorithms: Their Application to Gene Expression Data. 

Bioinformatics and Biology Insights, 10, BBI.S38316. 

Pacheco, T. M., Gonçalves, L. B., Ströele, V. and Soares, S. S. R. 

(2018, July). An Ant Colony Optimization for Automatic Data 

Clustering Problem. In 2018 IEEE Congress on Evolutionary 

Computation (CEC) (pp. 1-8). IEEE. 

Patel, N., Jhadav, B., Aljouie, A. and Roshan, U. (2015, November). 

Cross-validation and cross-study validation of chronic 

lymphocytic leukemia with exome sequences and machine 

learning. In 2015 IEEE International Conference on 

Bioinformatics and Biomedicine (BIBM) (pp. 1367-1374). 

IEEE. 

Pawitan, Y., Bjöhle, J., Amler, L., Borg, A.-L., Egyhazi, S., Hall, P., 

Han, X., Holmberg, L., Huang, F., Klaar, S., c E. T., Miller, 

L., Nordgren, H., Ploner, A., Sandelin, K., Shaw, P. M., 

Smeds, J., Skoog, L., Wedrén, S. and Bergh, J. (2005). Gene 

expression profiling spares early breast cancer patients from 

adjuvant therapy: derived and validated in two population-

based cohorts. Breast Cancer Research, 7(6), p. R953. 

Pécuchet, N., Popova, T., Manié, E., Lucchesi, C., Battistella, A., 

Vincent-Salomon, A., Caux-Moncoutier, V., Bollet, M., 

Sigal-Zafrani, B., Sastre-Garau, X., Stoppa-Lyonnet, D. and 

Stern, M.-H. (2013). Loss of heterozygosity at 13q13 and 

14q32 predicts BRCA2 inactivation in luminal breast 

carcinomas. International Journal of Cancer, 133(12), 2834-



 

231 

2842. 

Peng, J., Zhu, L., Wang, Y. and Chen, J. (2019). Mining Relationships 

among Multiple Entities in Biological Networks. IEEE/ACM 

Transactions on Computational Biology and Bioinformatics 

(TCBB). 

Petrochilos, D., Shojaie, A., Gennari, J. and Abernethy, N. (2013). 

Using random walks to identify cancer-associated modules in 

expression data. BioData Mining, 6(1), p. 17. 

Phongwattana, T., Engchuan, W. and Chan, J. H. (2015, January). 

Clustering-based multi-class classification of complex 

disease. In 2015 7th International Conference on Knowledge 

and Smart Technology (KST) (pp. 25-29). IEEE. 

Pilevar, A. H. and Sukumar, M. (2005). GCHL: A grid-clustering 

algorithm for high-dimensional very large spatial data bases. 

Pattern Recognition Letters, 26(7), pp. 999–1010. 

Pillai, R. N., Behera, M., Berry, L. D., Rossi, M. R., Kris, M. G., 

Johnson, B. E., Bunn, P. A., Ramalingam, S. S. and Khuri, F. 

R. (2017). HER2 mutations in lung adenocarcinomas: A 

report from the Lung Cancer Mutation Consortium. Cancer, 

123(21), pp. 4099–4105. 

Quintela-Fandino, M., Arpaia, E., Brenner, D., Goh, T., Yeung, F. A., 

Blaser, H., Alexandrova, R., Lind, E. F., Tusche, M. W., 

Wakeham, A. and Ohashi, P. S. (2010). HUNK suppresses 

metastasis of basal type breast cancers by disrupting the 

interaction between PP2A and cofilin-1. Proceedings of the 

National Academy of Sciences, 107(6), 2622-2627. 

Rajkumar, P., Vennila, I. and Nirmalakumari, K. (2013). A novel 

hybrid method for gene selection in microarray based cancer 



232 

classification. International Journal of Engineering Science 

and Technology, 5(5), p. 1104. 

Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2009). GSA: a 

gravitational search algorithm. Information Sciences, 179(13), 

pp. 2232–2248. 

Re, M. and Valentini, G. (2012, September). Random Walking on 

Functional Interaction Networks to Rank Genes Involved in 

Cancer. In IFIP International Conference on Artificial 

Intelligence Applications and Innovations (pp. 66-75). 

Springer, Berlin, Heidelberg. 

Rechkalov, T. V. (2015). Partition Around Medoids Clustering on the 

Intel Xeon Phi Many-Core Coprocessor. In CEUR Workshop 

Proceedings. Vol. 1513: Proceedings of the 1st Ural 

Workshop on Parallel, Distributed, and Cloud Computing for 

Young Scientists (Ural-PDC 2015).—Yekaterinburg, 2015. 

Rejani, Y. I. A. and Selvi, S. T. (2009). Early Detection of Breast 

Cancer using SVM Classifier Technique. International 

Journal on Computer Science and Engineering (IJCSE), 1(3), 

pp. 127–130. 

Remli, M. A., Mohd Daud, K., Nies, H. W., Mohamad, M. S., Deris, 

S., Omatu, S., Kasim, S. and Sulong, G. (2017, June). K-

Means Clustering with Infinite Feature Selection for 

Classification Tasks in Gene Expression Data. In 

International Conference on Practical Applications of 

Computational Biology and Bioinformatics (pp. 50-57). 

Springer, Cham. 

Roberts, M. and Russo, R. (2014). A student’s guide to analysis of 

variance. 1st Edition. London: Routledge. 



 

233 

Rodriguez, J. D., Perez, A. and Lozano, J. A. (2009). Sensitivity 

analysis of k-fold cross validation in prediction error 

estimation. IEEE transactions on pattern analysis and 

machine intelligence, 32(3), pp. 569–575. 

Ross, A. and Willson, V. L. (2017). One-Way ANOVA. Basic and 

Advanced Statistical Tests, pp. 21–24. 

Roux, M. (2018). A Comparative Study of Divisive and 

Agglomerative Hierarchical Clustering Algorithms. Journal 

of Classification, 35(2), pp. 345–366. 

Roy, S., Shah, V. K. and Das, S. K. (2019). Design of Robust and 

Efficient Topology using Enhanced Gene Regulatory 

Networks. IEEE Transactions on Molecular, Biological and 

Multi-Scale Communications. 

Sáez, A., Sánchez-Monedero, J., Gutiérrez, P. A. and Hervás-

Martínez, C. (2015). Machine learning methods for binary and 

multiclass classification of melanoma thickness from 

dermoscopic images. IEEE transactions on medical imaging, 

35(4), pp. 1036–1045. 

Sahoo, G. and Kumar, Y. (2012). Analysis of parametric and non 

parametric classifiers for classification technique using 

WEKA. International Journal of Information Technology and 

Computer Science (IJITCS), 4(7), p. 43. 

Sahu, V., Mohan, A. and Dey, S. (2019). p38 MAP kinases: plausible 

diagnostic and prognostic serum protein marker of non small 

cell lung cancer. Experimental and Molecular Pathology. 

Academic Press, 107, pp. 118–123. 

Sanchez-Palencia, A., Gomez-Morales, M., Gomez-Capilla, J. A., 

Pedraza, V., Boyero, L., Rosell, R. and Fárez-Vidal, M. E. 



234 

(2011). Gene expression profiling reveals novel biomarkers in 

nonsmall cell lung cancer. International Journal of Cancer, 

129(2), pp. 355–364. 

Santhisree, K. and Damodaram, A. (2011, April). CLIQUE: 

Clustering based on density on web usage data: Experiments 

and test results. In 2011 3rd International Conference on 

Electronics Computer Technology (Vol. 4, pp. 233-236). 

IEEE. 

Schaffer, C. (1993). Selecting a classification method by cross-

validation. Machine Learning, 13(1), pp. 135–143. 

Schoenborn, N. L., Xue, Q. L., Pollack, C. E., Janssen, E. M., Bridges, 

J. F., Wolff, A. C. and Boyd, C. M. (2019). Demographic, 

health, and attitudinal factors predictive of cancer screening 

decisions in older adults. Preventive medicine reports, 13, pp. 

244–248. 

Seah, C. S., Kasim, S., Fudzee, M. F. M., Ping, J. M. L. T., Mohamad, 

M. S., Saedudin, R. R. and Ismail, M. A. (2017). An enhanced 

topologically significant directed random walk in cancer 

classification using gene expression datasets. Saudi journal of 

biological sciences, 24(8), pp. 1828–1841. 

Shanmugam, C. and Sekaran, E. C. (2019). IRT image segmentation 

and enhancement using FCM-MALO approach. Infrared 

Physics and Technology, pp. 187–196. 

Shchur, L. N., Heringa, J. R. and Blöte, H. W. J. (1997). Simulation 

of a directed random-walk model The effect of pseudo-

random-number correlations. Physica A: Statistical 

Mechanics and its Applications, 241(3–4), pp. 579–592. 

Shen, L. and Tan, E. C. (2005). Dimension reduction-based penalized 



 

235 

logistic regression for cancer classification using microarray 

data. IEEE/ACM Transactions on Computational Biology and 

Bioinformatics (TCBB), 2(2), pp. 166–175. 

Shi, K., Gao, L. and Wang, B. (2018, June). Inferring Dysregulated 

Pathways of Driving Cancer Subtypes Through Multi-omics 

Integration. In International Symposium on Bioinformatics 

Research and Applications (pp. 101-112). Springer, Cham. 

Sootanan, P., Meechai, A., Prom-on, S. and Chan, J. H. (2011, 

November). Pathway-Based Microarray Analysis with 

Negatively Correlated Feature Sets for Disease Classification. 

In International Conference on Neural Information 

Processing (pp. 676-683). Springer, Berlin, Heidelberg. 

Srivastava, A., Chakrabarti, S., Das, S., Ghosh, S. and Jayaraman, V. 

K. (2013). Hybrid Firefly Based Simultaneous Gene Selection 

and Cancer Classification Using Support Vector Machines 

and Random Forests. In Proceedings of seventh international 

conference on bio-inspired computing: theories and 

applications (BIC-TA 2012) (pp. 485-494). Springer, India. 

Su, J., Yoon, B.-J. and Dougherty, E. R. (2010). Identification of 

diagnostic subnetwork markers for cancer in human protein-

protein interaction network. BMC Bioinformatics, 11(6), p. 

S8. 

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, 

B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, 

T. R., Lander, E. S. and Mesirov, J. P. (2005). Gene set 

enrichment analysis: a knowledge-based approach for 

interpreting genome-wide expression profiles. Proceedings of 

the National Academy of Sciences, 102(43), pp. 15545–15550. 



236 

Sugiyama, M., Yamada, M., Kimura, M. and Hachiya, H. (2011). On 

Information-Maximization Clustering: Tuning Parameter 

Selection and Analytic Solution. In Proceedings of the 28th 

International Conference on Machine Learning (pp. 65-72). 

USA. 

Sun, G., Shan, M. H., Ma, B. L., Geng, Z. L., Alibiyati, A., Zhong, 

H., Wang, J., Ren, G. H., Li, H. T. and Dong, C. (2012). 

Identifying crosstalk of mTOR signaling pathway of lobular 

breast carcinomas. European Review for Medical and 

Pharmacological Sciences, 16(10), pp. 1355–1361. 

Swindell, W. R., Johnston, A., Carbajal, S., Han, G., Wohn, C., Lu, 

J., Xing, X., Nair, R. P., Voorhees, J. J., Elder, J. T., Wang, 

X.-J., Sano, S., Prens, E. P., DiGiovanni, J., Pittelkow, M. R., 

Ward, N. L. and Gudjonsson, J. E. (2011). Genome-Wide 

Expression Profiling of Five Mouse Models Identifies 

Similarities and Differences with Human Psoriasis. PLoS 

ONE, 6(4), e18266. 

Tamposis, I. A., Tsirigos, K. D., Theodoropoulou, M. C., Kontou, P. 

I., Tsaousis, G. N., Sarantopoulou, D., Litou, Z. I. and Bagos, 

P. G. (2019). JUCHMME: A Java Utility for Class Hidden 

Markov Models and Extensions for biological sequence 

analysis. Bioinformatics, pp. 1–4. 

Tang, H., Zeng, T. and Chen, L. (2019). High-Order Correlation 

Integration for Single-Cell or Bulk RNA-seq Data Analysis. 

Frontiers in Genetics, 10. 

Tarca, A. L., Lauria, M., Unger, M., Bilal, E., Boue, S., Kumar Dey, 

K., Hoeng, J., Koeppl, H., Martin, F., Meyer, P. and Nandy, 

P. (2013). Strengths and limitations of microarray-based 



 

237 

phenotype prediction: lessons learned from the IMPROVER 

Diagnostic Signature Challenge. Bioinformatics, 29(22), pp. 

2892–2899. 

Tharwat, A. and Hassanien, A. E. (2019). Quantum-Behaved Particle 

Swarm Optimization for Parameter Optimization of Support 

Vector Machine. Journal of Classification, pp. 1–23. 

Tian, J. and Gu, M. (2019). Subspace Clustering Based on Self-

organizing Map. In Proceeding of the 24th International 

Conference on Industrial Engineering and Engineering 

Management 2018 (pp. 151-159). Springer, Singapore. 

Tian, S., Chang, H. H. and Wang, C. (2016). Weighted-SAMGSR: 

combining significance analysis of microarray-gene set 

reduction algorithm with pathway topology-based weights to 

select relevant genes. Biology Direct, 11(1), p. 50. 

Usoskin, D., Furlan, A., Islam, S., Abdo, H., Lönnerberg, P., Lou, D., 

Hjerling-Leffler, J., Haeggström, J., Kharchenko, O., 

Kharchenko, P. V. and Linnarsson, S. (2015). Unbiased 

classification of sensory neuron types by large-scale single-

cell RNA sequencing. Nature neuroscience, 18(1), p. 145. 

Van De Leemput, J., Boles, N. C., Kiehl, T. R., Corneo, B., Lederman, 

P., Menon, V., Lee, C., Martinez, R. A., Levi, B. P., 

Thompson, C. L., Yao, S., Kaykas, A., Temple, S. and Fasano, 

C. A. (2014). CORTECON: A Temporal Transcriptome 

Analysis of In Vitro Human Cerebral Cortex Development 

from Human Embryonic Stem Cells. Neuron, 83(1), pp. 51–

68. 

Vaske, C. J., Benz, S. C., Sanborn, J. Z., Earl, D., Szeto, C., Zhu, J., 

Haussler, D. and Stuart, J. M. (2010). Inference of patient-



238 

specific pathway activities from multi-dimensional cancer 

genomics data using PARADIGM. Bioinformatics. 26(12), 

i237–i245. 

Vijendra, S. (2011). Efficient clustering for high dimensional data: 

Subspace based clustering and density based clustering. 

Information Technology Journal, 10(6), pp. 1092–1105. 

Vrana, K. E., Freeman, W. M. and Aschner, M. (2003). Use of 

microarray technologies in toxicology research. 

Neurotoxicology, 24(3), pp. 321–332. 

Wang, B., Zhang, L. and Gong, N. Z. (2017, May). SybilSCAR: Sybil 

detection in online social networks via local rule based 

propagation. In IEEE INFOCOM 2017-IEEE Conference on 

Computer Communications (pp. 1-9). IEEE. 

Wang, J., Zhu, C., Zhou, Y., Zhu, X., Wang, Y. and Zhang, W. 

(2018a). From partition-based clustering to density-based 

clustering: Fast find clusters with diverse shapes and densities 

in spatial databases. IEEE Access, 6, pp. 1718–1729. 

Wang, J., Zuo, Y., Man, Y. G., Avital, I., Stojadinovic, A., Liu, M., 

Yang, X., Varghese, R. S., Tadesse, M. G. and Ressom, H. W. 

(2015). Pathway and network approaches for identification of 

cancer signature markers from omics data. Journal of Cancer, 

6(1), p. 54. 

Wang, K., Li, M. and Hakonarson, H. (2010). Analysing biological 

pathways in genome-wide association studies. Nature 

Reviews Genetics, 11(12), p. 843. 

Wang, R., Cai, Y., Zhang, B. and Wu, Z. (2018b). A 16-gene 

expression signature to distinguish stage I from stage II lung 

squamous carcinoma. International journal of molecular 



 

239 

medicine, 41(3), pp. 1377–1384. 

Wang, W. and Liu, W. (2018). Integration of gene interaction 

information into a reweighted random survival forest 

approach for accurate survival prediction and survival 

biomarker discovery. Scientific reports, 8(1), p. 13202. 

Wang, W., Yang, J. and Muntz, R. (1997, August). STING: A 

statistical information grid approach to spatial data mining. In 

Proceedings of 23rd International Conference on Very Large 

Data Bases (VLDB) (Vol. 97, pp. 186-195). Athens, Greece. 

Wang, Y., Tetko, I. V., Hall, M. A., Frank, E., Facius, A., Mayer, K. 

F. and Mewes, H. W. (2005). Gene selection from microarray 

data for cancer classification-a machine learning approach. 

Computational biology and chemistry, 29(1), pp. 37–46. 

Wei, H. and Zheng, H. R. (2015). A signaling pathway analysis 

method based on information divergence. In 12th 

International Symposium on Operations Research and its 

Applications in Engineering, Technology and Management 

(ISORA 2015). 

Wei, Z. and Li, H. (2007). A Markov random field model for network-

based analysis of genomic data. Bioinformatics, 23(12), pp. 

1537–1544. 

Xu, D. and Tian, Y. (2015). A Comprehensive Survey of Clustering 

Algorithms. Annals of Data Science, 2(2), pp. 165–193. 

Xu, R. and Wunsch, D. C. (2010). Clustering algorithms in 

biomedical research: a review. IEEE reviews in biomedical 

engineering, 3, pp. 120–154. 

Xu, X., Li, J., Zhou, M., Xu, J. and Cao, J. (2018). Accelerated two-

stage particle swarm optimization for clustering not-well-



240 

separated data. IEEE Transactions on Systems, Man, and 

Cybernetics: Systems, 99, pp. 1–12. 

Yang, L., Ainali, C., Tsoka, S. and Papageorgiou, L. G. (2014). 

Pathway activity inference for multiclass disease 

classification through a mathematical programming 

optimisation framework. BMC Bioinformatics, 15(1), p. 390. 

Yang, Q., Wang, S., Dai, E., Zhou, S., Liu, D., Liu, H., Meng, Q., 

Jiang, B. and Jiang, W. (2017). Pathway enrichment analysis 

approach based on topological structure and updated 

annotation of pathway. Briefings in bioinformatics, 20(1), pp. 

168–177. 

Yang, R., Daigle, B. J., Petzold, L. R. and Doyle, F. J. (2012). Core 

module biomarker identification with network exploration for 

breast cancer metastasis. BMC Bioinformatics, 13(1), p. 12. 

Yang, S. and Naiman, D. Q. (2014). Multiclass cancer classification 

based on gene expression comparison. Statistical applications 

in genetics and molecular biology, 13(4), 477-496. 

Yao, Y., Richman, L., Morehouse, C., de los Reyes, M., Higgs, B. W., 

Boutrin, A., White, B., Coyle, A., Krueger, J., Kiener, P. A. 

and Jallal, B. (2008). Type I Interferon: Potential Therapeutic 

Target for Psoriasis?. PLoS ONE, 3(7), e2737. 

Yasrebi, H., Sperisen, P., Praz, V. and Bucher, P. (2009). Can 

Survival Prediction Be Improved By Merging Gene 

Expression Data Sets?. PLoS ONE, 4(10), e7431. 

Yazdani, S., Nezamabadi-pour, H. and Kamyab, S. (2014). A 

gravitational search algorithm for multimodal optimization. 

Swarm and Evolutionary Computation, 14, pp. 1–4. 

Ye, S., Huang, X., Teng, Y. and Li, Y. (2018, March). K-means 



 

241 

clustering algorithm based on improved Cuckoo search 

algorithm and its application. In 2018 IEEE 3rd international 

conference on big data analysis (ICBDA) (pp. 422-426). 

IEEE. 

Yeung, K. Y. and Bumgarner, R. E. (2003). Multiclass classification 

of microarray data with repeated measurements: application 

to cancer. Genome biology, 4(12), R83. 

Yu, X., Yu, G. and Wang, J. (2017). Clustering cancer gene 

expression data by projective clustering ensemble. PLOS 

ONE, 12(2), e0171429. 

Zelnik-Manor, L. and Perona, P. (2005). Self-tuning spectral 

clustering. Advances in neural information processing 

systems, pp. 1601–1608. 

Zhang, H., Raitoharju, J., Kiranyaz, S. and Gabbouj, M. (2016). 

Limited random walk algorithm for big graph data clustering. 

Journal of Big Data, 3(1), p. 26. 

Zhang, L. (2006, July). A self-adjusting directed random walk 

approach for enhancing source-location privacy in sensor 

network routing. In Proceedings of the 2006 international 

conference on Wireless communications and mobile 

computing (pp. 33-38). 

Zhao, L., Lee, V. H., Ng, M. K., Yan, H. and Bijlsma, M. F. (2018). 

Molecular subtyping of cancer: current status and moving 

toward clinical applications. Briefings in Bioinformatics, 

20(2), pp. 572–584. 

Zhao, X., Sala, A., Zheng, H. and Zhao, B. Y. (2011, October). 

Efficient shortest paths on massive social graphs. In 7th 

International Conference on Collaborative Computing: 



242 

Networking, Applications and Worksharing 

(CollaborateCom) (pp. 77-86). IEEE. 

Zhe, S., Naqvi, S. A., Yang, Y. and Qi, Y. (2013). Joint network and 

node selection for pathway-based genomic data analysis. 

Bioinformatics, 29(16), pp. 1987–1996. 

Zhou, J. and Fu, B. (2018). The research on gene-disease association 

based on text-mining of PubMed. BMC Bioinformatics, 19(1), 

p. 37. 

Zhu, H. and Li, L. (2011). Biological pathway selection through 

nonlinear dimension reduction. Biostatistics, 12(3), pp. 429–

444. 

Zhu, L., Su, F., Xu, Y. and Zou, Q. (2018). Network-based method 

for mining novel HPV infection related genes using random 

walk with restart algorithm. Biochimica et Biophysica Acta 

(BBA)-Molecular Basis of Disease, 1864(6), pp. 2376–2383. 

Zou, R., Zhang, D., Lv, L., Shi, W., Song, Z., Yi, B., Lai, B., Chen, 

Q., Yang, S. and Hua, P. (2019). Bioinformatic gene analysis 

for potential biomarkers and therapeutic targets of atrial 

fibrillation-related stroke. Journal of Translational Medicine, 

17(1), p. 45. 

Zuo, Y., Cui, Y., Yu, G., Li, R. and Ressom, H. W. (2017). 

Incorporating prior biological knowledge for network-based 

differential gene expression analysis using differentially 

weighted graphical LASSO. BMC Bioinformatics, 18(1), p. 

99. 

 

 

 



 

287 

LIST OF PUBLICATIONS 

Journal with Impact Factor 

1. Nies, H. W., Zakaria, Z., Mohamad, M. S., Chan, W. H., Zaki, N., 

Sinnott, R. O., Napis, S., Chamoso, P., Omatu, S. and Corchado, 

J. M. (2019). A Review of Computational Methods for Clustering 

Genes with Similar Biological Functions. Processes, 7(9), 550. 

(Q2, IF:1.963) 

2. Nies, H. W., Zakaria, Z., Mohamad, M. S., Chan, W. H., Zaki, N., 

and Ibrahim, Z. (under review). An Enhanced Directed Random 

Walk Method to Identify Pathway and Gene Markers for 

Multiclass Breast Cancer Expression Data. Computer Methods and 

Programs in Biomedicine. (Q1, IF: 3.424) 

Indexed Conference Proceedings 

1. Nies, H. W., Mohd Daud, K., Remli, M. A., Mohamad, M. S., 

Deris, S., Omatu, S., Kasim, S. and Sulong, G. (2017). 

Classification of Colorectal Cancer Using Clustering and Feature 

Selection Approaches. In International Conference on Practical 

Applications of Computational Biology and Bioinformatics (pp. 

58-65). Springer, Cham. (Indexed by SCOPUS) 

2. Remli, M. A., Daud, K. M., Nies, H. W., Mohamad, M. S., Deris, 

S., Omatu, S., Kasim, S. and Sulong, G. (2017, June). K-means 

clustering with infinite feature selection for classification tasks in 

gene expression data. In International Conference on Practical 

Applications of Computational Biology and Bioinformatic (pp. 50-

57). Springer, Cham. (Indexed by SCOPUS) 



288 

Non-Indexed Conference Proceedings 

1. Nies, H.W., Zakaria, Z., Mohamad, M.S., A. Samah, A., Chan, W. 

H., and Deris, S. (2018). Review on Pathway Topology-Based 

Microarray Analysis. In 7th International Graduate Conference on 

Engineering Science and Humanity 2018. 

3. Nies, H.W., Zakaria, Z., Mohamad, M.S., A. Samah, A., Chan, W. 

H., and Deris, S., (2018). Review on Weighting Category of 

Pathway Topology-Based Microarray Analysis in Multiclass 

Classification. UTM Computing Proceedings. 

Copyrights 

1. Nies, H. W., Zakaria, Z., Chan, W. H (2020). Automation of 

PubMed Text Data Mining for Biological Validation of Genes and 

Pathways. Universiti Teknologi Malaysia. 

2. Nies, H. W., Zakaria, Z., Chan, W. H (2020). Integration of K-

Means Clustering and Average Silhouette Method into Directed 

Random Walk to Increase the Efficiency of Identifying Informative 

Genes in the Directed Graph. Universiti Teknologi Malaysia. 

3. Nies, H. W., Zakaria, Z., Chan, W. H (2020). An Enhanced 

Directed Random Walk Method to Identify Informative Genes and 

Pathways from Multiclass Cancer Expression Data. Universiti 

Teknologi Malaysia. 




