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ABSTRACT

Cloud computing has enormous potentials but still suffers from numerous 
security issues. Hence, there is a need to safeguard the cloud resources to ensure the 
security of clients’ data in the cloud. Existing cloud Intrusion Detection System (IDS) 
suffers from poor detection accuracy due to the dynamic nature of cloud as well as 
frequent Virtual Machine (VM) migration causing network traffic pattern to undergo 
changes. This necessitates an adaptive IDS capable of coping with the dynamic 
network traffic pattern. Therefore, the research developed an adaptive cloud intrusion 
detection scheme that uses Binary Segmentation change point detection algorithm to 
track the changes in the normal profile of cloud network traffic and updates the IDS 
Reference Model when change is detected. Besides, the research addressed the issue 
of poor detection accuracy due to insignificant features and coordinated attacks such 
as Distributed Denial of Service (DDoS). The insignificant feature was addressed 
using feature selection while coordinated attack was addressed using distributed IDS. 
Ant Colony Optimization and correlation based feature selection were used for feature 
selection. Meanwhile, distributed Stochastic Gradient Decent and Support Vector 
Machine (SGD-SVM) were used for the distributed IDS. The distributed IDS 
comprised detection units and aggregation unit. The detection units detected the 
attacks using distributed SGD-SVM to create Local Reference Model (LRM) on 
various computer nodes. Then, the LRM was sent to aggregation units to create a 
Global Reference Model. This Adaptive and Distributed scheme was evaluated using 
two datasets: a simulated datasets collected using Virtual Machine Ware (VMWare) 
hypervisor and Network Security Laboratory-Knowledge Discovery Database (NSL- 
KDD) benchmark intrusion detection datasets. To ensure that the scheme can cope 
with the dynamic nature of VM migration in cloud, performance evaluation was 
performed before and during the VM migration scenario. The evaluation results of the 
adaptive and distributed scheme on simulated datasets showed that before VM 
migration, an overall classification accuracy of 99.4% was achieved by the scheme 
while a related scheme achieved an accuracy of 83.4%. During VM migration 
scenario, classification accuracy of 99.1% was achieved by the scheme while the 
related scheme achieved an accuracy of 85%. The scheme achieved an accuracy of 
99.6% when it was applied to NSL-KDD dataset while the related scheme achieved an 
accuracy of 83%. The performance comparisons with a related scheme showed that 
the developed adaptive and distributed scheme achieved superior performance.
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ABSTRAK

Pengkomputeran awan mempunyai potensi besar, namun masih mengalami 
banyak masalah keselamatan. Oleh itu, terdapat keperluan dalam sistem perlindungan 
sumber awan untuk memastikan keselamatan data pelanggan di awan. Sistem 
Pengesanan Pencerobohan (IDS) awan sedia ada mengalami ketepatan pengesanan 
yang lemah disebabkan sifat awan yang dinamik serta penghijrahan Mesin Maya (VM) 
yang menyebabkan pola trafik rangkaian mengalami perubahan. Ini memerlukan IDS 
adaptif yang mampu mengendalikan corak trafik rangkaian yang dinamik. Oleh itu, 
penyelidikan ini membangunkan skim pengesanan pencerobohan awan adaptif yang 
menggunakan algoritma pengesanan titik perubahan Pensegmenan Binari untuk 
mengesan perubahan dalam profil normal trafik rangkaian awan dan mengemas kini 
Model Rujukan IDS apabila terdapat perubahan. Selain itu, penyelidikan ini 
membincangkan isu ketepatan pengesanan lemah yang disebabkan oleh ciri-ciri yang 
tidak penting dan serangan terancang seperti Perkhidmatan Penafian Teragih (DDoS). 
Ciri tidak penting ditangani menggunakan pemilihan ciri manakala serangan terancang 
ditangani menggunakan IDS teragih. Pengoptimuman Koloni Semut dan pemilihan 
ciri berasaskan korelasi digunakan untuk proses pemilihan ciri. Selain itu, Penurunan 
Cerun Stokastik teragih dan Mesin Vektor Sokongan (SGD-SVM) telah digunakan 
untuk IDS teragih. IDS teragih terdiri daripada unit pengesanan dan unit 
pengagregatan. Unit pengesanan mengesan serangan menggunakan SGD-SVM 
teragih untuk mencipta Model Rujukan Tempatan (LRM) pada sebilangan nod 
komputer. Kemudian LRM dihantar ke unit pengagregatan untuk penciptaan Model 
Rujukan Global. Skim Adaptif dan Teragih telah dinilai menggunakan dua dataset: 
dataset simulasi yang dikumpulkan menggunakan dataset pengesanan pencerobohan 
penanda aras pengkomputeran makmal (VMWare) dan hypervisor serta Database 
Keselamatan Makmal-Pangkalan Data Pengetahuan (NSL-KDD). Untuk memastikan 
kaedah ini dapat menangani sifat dinamik penghijrahan VM di awan, penilaian prestasi 
dilakukan sebelum dan semasa senario penghijrahan VM. Hasil penilaian skim adaptif 
dan teragih pada dataset simulasi menunjukkan sebelum penghijrahan VM, ketepatan 
klasifikasi keseluruhan sebanyak 99.4% dicapai oleh skim adaptif dan teragih 
manakala skim yang berkaitan mencapai ketepatan 83.4%. Semasa senario migrasi 
VM, ketepatan pengelasan 99.1% dicapai oleh skim cadangan manakala skim 
berkaitan mencapai ketepatan 85%. Skim ini mencapai ketepatan 99.6% apabila ia 
digunakan untuk dataset NSL-KDD manakala skim yang berkaitan mencapai 
ketepatan 83%. Perbandingan yang dibuat menunjukkan bahawa prestasi skim 
cadangan adalah lebih hebat daripada skim berkaitan.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Cloud computing is a computing paradigm that offers computing resources as 

a service via the internet (Xiong et al., 2014). It has revolutionized the conventional 

usage of hardware and software resources as organizations can cut the cost of 

purchasing and maintaining expensive hardware and software by subscribing for it on 

a pay-per-use basis. Cloud computing is a promising and emerging IT technology with 

enormous potentials and benefits to customers; however it has underlying security 

issues and vulnerabilities (Khorshed et al., 2012). Examples of security threats capable 

of compromising the cloud security are Virtual Machine Monitor (VMM) DoS, port 

scanning and Man-in-the-Middle-Attack (Mishra et al., 2017). Also, new features of 

cloud computing such as virtualization and VM migration introduces additional 

challenges to cloud security as studies report that the detection accuracy of anomaly 

detection system is degraded during the migration of VM from one host to another 

(Adamova et al., 2014; Shirazi et al., 2014). Performance degradation during VM 

migration can result because the cloud behaviour constantly changes during VM 

migration (Huang et al., 2013), thereby making it difficult to maintain a consistent 

normal profile for anomaly detection. Therefore, providing effective security is crucial 

to the quality of service in cloud computing.

Intrusion detection is the process of monitoring events occurring in a system 

or network and analysing it for evidences of security incidents that breaches or presents 

impending threat of breach of system security policy or standard security practice 

(Scarfone and Mell, 2007). IDS can be classified into signature-based and anomaly 

detection depending on whether the kind of attack to be detected is known beforehand 

or unknown. The signature-based detection process captures activities in a network 

and compare them with a collection of attack signatures (Liao et al., 2013). Anomaly

1



detection is concerned with the identification of events that appears to be anomalous 

with respect to normal system behaviour. Figure 1.1 shows the anomaly detection 

process. Anomaly detection has been well researched as a classical issue in the domain 

of intrusion detection and machine learning. Due to the recent advent of cloud 

computing with its new operational and technical features the problem of anomaly 

detection has risen again though well-established in classical computer system (Huang 

et al., 2016). Anomaly detection techniques can be used for cloud to detect both known 

and unknown attacks at different levels such as IaaS, PaaS and SaaS (Modi et al.,

2013). The three major categories of anomaly-based IDS are: statistical-based, 

knowledge-based and machine learning (Garcia-Teodoro et al., 2009). Anomaly 

detection using statistical technique involves observing the data of the current network 

profile and comparing it against the statistical profile previously created (Denning and 

Neumann, 1985). Knowledge-based techniques uses expert system for anomaly 

detection by employing a set of rules to classify a set of data (Anderson et al., 1995). 

Machine learning techniques create a model that is used to classify the pattern 

analysed. Various anomaly detection techniques have been used for cloud based IDS 

such as Local Outlier Factor (Huang, et al., 2013), PCA and K-Means clustering 

(Shirazi, et al., 2014), Naive Bayes and Random Forest (Idhammad, et al. 2018), Fuzzy 

C-Means clustering (Mehibs and Hashim (2018).

Network Traffic

Packet Sniffer Packet

(PCAP file) 1 Preprocessor

Normal Detection Engine Alert and Log
profile ^ -------- (Classification generator Cloud Admin/client

Database algorithms) (Malicious Traffic)

Update/Retrain existing 
profile

Figure 1. 1 Anomaly detection process (Mishra et al., 2017)
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1.2 Problem Background

The distributed and multi-tenant nature of cloud computing makes it vulnerable 

to security threats. Cloud computing systems can be exposed to threats to its 

availability, data and the virtualized infrastructure which can be used as a launching 

pad for new attacks (Patel et al., 2013). Cloud computing resources have always been 

primary target for DoS attack. Data of all costumers are kept at one geographical 

location and the Cloud service providers offers its services through the Internet. This 

makes Cloud data centres more vulnerable to attack. According to Cloud Security 

Alliance report Ko and Lee (2013), the number of incidents on Cloud environment has 

risen over the years. In fact, from 2009 to 2011, the number of Cloud vulnerability 

incidents has increased from 33 to 71, most likely due to the phenomenal growth in 

the Cloud services. There are three types of DoS attacks which are: volume-based 

attack, protocol attack, and application layer attack. According to Arbor Networks 

(2014), 61% of the organizations surveyed have faced volume-based attack, 24% faced 

protocol attack and 20 % faced application layer attack. Combination of more than one 

type of DDoS attack (multi-vector attack) is becoming a new trend among the 

attackers. According to Incapsula report Incapsula Inc. (2014), 81 % of the attacks are 

multi-vector attacks. Also, according to Incapsula Inc. (2014) SYN flood DDoS attack 

is the most common form of DDoS attack against the cloud infrastructure. Therefore 

it is essential to safeguard the cloud resources against DDoS attacks.

A number of research works have been conducted in cloud IDS both on host- 

based ( Kwon et al., 2011; Alarifi and Wolthusen, 2013) and network based (Modi et 

al., 2012; Xiong, et al., 2014). On the detection methodology numerous research works 

have been conducted on anomaly detection such as (Shamsolmoali and Zareapoor, 

2014; Shirazi, et al., 2014) and the signature-based technique (Ficco et al., 2012; Gupta 

et al., 2013). The signature based detection approach is known for its accuracy in 

detecting known attack signature as long as the database is always up-to-date. The 

major drawback is its inability to detect unknown attacks or variation of known attack 

signatures (Osanaiye, et al., 2016b). Anomaly detection on the other hand is more 

suited for detection of unknown attack but it suffers from high false alarm (Garcia- 

Teodoro, et al., 2009; Singh et al., 2016). The false alarm can be attributed to 

redundant and noisy features because they can have negative impact on the accuracy

3



of IDS (Aghdam and Kabiri, 2016). Also, the behaviour of the cloud network rapidly 

changes due to the heterogeneity of the clients using the service, the elastic nature of 

the services delivered (Dalmazo et al., 2014; Xiong, et al., 2014) and the dynamic 

nature of VM migration (Huang, et al., 2013; Nagarajan and Perumal, 2015; Huang, 

et al., 2016) which results in load fluctuation which affects the ability of the security 

monitoring system to detect attacks (Giannakou, et al., 2015). VM migration adds 

difficulty to anomaly detection since it is based on large number of memory copy 

operations which may result in anomaly (Zhang et al., 2013). Furthermore, 

coordinated attacks such as DDoS attacks which simultaneously occur in many 

network results in difficulties in detection of this attack (Zhou et al., 2009). This 

difficulty is due to the coordinated nature of the attacks where attack are spread over 

multiple network. Therefore a collaborative effort is required to tackle the attack. For 

instance Smurf based DDoS uses a spoofed IP address to send ICMP request to large 

number of reflector host when the reflector host receives the request, they reply to the 

spoofed IP address thereby flooding it (Bhuyan et al., 2015). The overall problem 

situation leading to detection inaccuracy in cloud IDS as shown in Figure 1.2 can be 

summarized into three points namely: redundant and insignificant features, dynamic 

cloud nature and distributed attacks.
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Cloud Computing

1. On-demand-self-service: Ability of clients to unilaterally provision 
computing resources automatically without involving the service provider.
2. Broad network access: Services are accessible via internet using thin or thick 
consumer platform (mobile phones, tablets and laptops).
3. Rapid elasticity. Cloud services can be elastically provisioned to scaled up or 
down in accordance to consumer demand.
4. Measured service. Resource utilization can be monitored using metering 
capabilities.

IE
Limitations of existing 

cloud IDS.
1. Inability to select 
optimal features.
2. Inadequately adaptive 
for cloud environment.
3. Poor detection of 
coordinated attack.

IE

IE
Challenges of IDS in 
Cloud.
1. Dynamic cloud nature.
2. Virtualization and VM 
migration.
3. Coordinated attacks
4. Insignificant features

IE
Required Solution

1. Accurate attack detection by selecting optimal features
2. Adaptive to dynamic cloud nature
3. Cope with challenges of virtualization and VM migration that degrade 
detection accuracy of cloud IDS.
4. Effectively detect coordinated attacks

Figure 1.2 Scenario leading to the problem

a. Insignificant and Redundant Features

Insignificant and redundant features can have a negative impact on the 

accuracy of IDS hence it is necessary to remove the insignificant features to improve 

performance accuracy (Aghdam and Kabiri, 2016). A pre-processing component for 

choosing only significant features is an essential component for an effective IDS 

(Kannan et al., 2012). The accuracy and efficiency of a machine learning based IDS is 

hinged on the features selected. Data that is explained with fewer features offers a 

better explanation of the processes underlying the data and therefore simplify the 

process of knowledge extraction (Kang and Kim, 2016). Feature selection is the 

process of eliminating redundant features in a dataset in order to improve classification
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accuracy. In cloud IDS various feature selection techniques have been proposed as 

follows.

Osanaiye, et al. (2016a) used a combination of four filters (Information Gain, 

Gain Ratio, ReliefF and Chi-Square) to select features from NSL-KDD intrusion 

detection dataset. However, the filter approach may discard important features that are 

less informative on their own but more informative when combined with others 

(Chandrashekar and Sahin, 2014). Muthurajkumar et al. (2013) proposed a technique 

for feature selection using Rough Set Theory. Zhou et al. (2011) proposed a feature 

selection technique using multi-objective Particle Swarm Optimization. Kannan et al.

(2012) proposed a technique for selecting significant features for intrusion detection 

using Genetic Algorithm. However these approaches are based on the heuristic search 

and the heuristic techniques cannot guide to optimal subset every time (Jensen and 

Shen, 2005). Besides, the selected features are based on traditional network datasets 

that may not capture and represent the cloud peculiarities.

b. Dynamic Cloud Nature

The behaviour of the cloud network changes due to the heterogeneity of the 

clients using the services, the elastic nature of the services delivered (Xiong, et al.,

2014) and dynamic nature of VM migration (Huang, et al., 2013; Huang, et al., 2016). 

Cloud computing enables virtual machines to be migrated from one node to another in 

order to provide efficient elasticity, load balancing and fault tolerance (Huang et al., 

2016). Despite being a key feature in cloud computing, VM migration poses security 

challenge to anomaly detection system. For instance legitimate migration can be 

misclassified as anomaly (Shirazi, et al., 2014), since the cloud infrastructure settings 

may change a lot during migration (Huang, et al., 2013).The normal behaviour of 

cloud applications may change owing to technical and non-technical reasons. Changes 

due to technical reasons involve cloud migrations and software/hardware upgrade 

while non-technical aspect could be due to seasonal events. Moreover, updating of IDS 

model is even more important during migration process since the infrastructure 

settings may change a lot during migration (Huang, et al., 2013). In addition, VM 

migration adds difficulty to anomaly detection since it is based on large number of 

memory copy operations which may result in anomaly. Also anomaly detection
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becomes challenging when VMs’ are migrated to destination with different 

infrastructural settings such as network conditions, memory size and workload making 

the applications behave differently (Zhang, et al., 2013). Due to the changing 

behaviour of cloud environment there is a need for cloud anomaly detection system to 

be adaptive.

Anomaly based intrusion detection creates a normal usage profile and a 

deviation from this profile is flagged as anomaly (Tsai, et al., 2009). The normal 

profile creation can be static or adaptively updated in order to prevent false alarm 

caused by changing network pattern. The static anomaly-based IDS performs one-time 

training at the beginning of the IDS development to obtain a reference model which is 

subsequently used during detection stage to predict network behaviour while the 

adaptive IDS adopt a dynamic strategy to update the normal reference model (Zainal, 

2011). According to Krishnan and Chatterjee (2012) an anomaly-based adaptive IDS 

should have a crucial surveillance component that monitors the normal profile for 

changes in order to update the normal profile when a change is observed. This 

surveillance component can help in reducing false alarm by adaptively updating the 

behavioural parameter. A number of research works have been proposed for adaptive 

cloud IDS as discussed in the following paragraph.

To address the performance degradation due to VM migration in cloud 

anomaly detection, an adaptive scheme for anomaly detection using Dimension- 

Reasoning Local Oulier Factor and Symbiolic Aggregate Approximation (DR-LOF- 

SAX) was proposed by Huang, et al., (2016). DR-LOF was used to identify the data 

dimensions with significant impact on the anomaly. To further validate the result 

obtained from the Local Outlier Factor (LOF), Symbolic Aggregate Approximation 

(SAX) algorithm was used for comparison of the symbolic distance before and after 

migration. Small distance that is below the threshold will be dismissed as a false alarm 

meanwhile; a large distance indicates that the behaviour is an anomaly. Huang, et al.

(2013) proposed an LOF based adaptive anomaly detection scheme that update the 

Reference Model each time test data is collected. However the limitations of these 

schemes is that they lack change tracking mechanism to determine when the changes 

in the normal profile is occurring and update the IDS model accordingly. In addition 

both schemes are host-based which will have a low visibility of the cloud network
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activities. Krishnan and Chatterjee (2012) proposed an adaptive IDS framework for 

cloud computing that incorporates signature based and anomaly detection and a 

component for surveillance of normal behaviour changes in order to update the IDS 

Reference Model. Giannakou, et al. (2015) proposed an adaptive IDS that uses two 

component namely infrastructure monitoring probe and adaptation manager to monitor 

change and perform update. However these approaches are based on theoretical 

framework with no algorithmic technique been proposed for the monitoring 

component nor performing experimental test to validate the efficacy of the technique. 

Other related adaptive IDS proposed for cloud are the work of (Meng et al., 2013; 

Chou and Wang, 2015; Toumi et al., 2015; Chouhan and Hasbullah, 2016; Wahab et 

al., 2017) . However these approaches are not suitable for the cloud environment as 

they do consider the effect of the critical cloud features such as VM migration which 

is reported to cause poor detection accuracy of cloud anomaly detection. Hence it is 

essential for cloud IDS to be able to cope with the challenges of VM migration for 

effective anomaly detection. In addition, the techniques to track changes prior to 

performing adaptive detection are not clearly specified.

In summary the limitations of the existing adaptive cloud-based IDS can be 

summarized as follows: no algorithmic technique has been proposed to track change 

in the normal profile of the data so as to update the IDS model accordingly. As earlier 

stated it is essential for an adaptive IDS to have change monitoring component to 

determine when the change in the normal profile is occurring in order to update the 

IDS model. This component can aid in reducing false alarm by updating the anomaly 

detection model parameters (Krishnan and Chatterjee 2012). Furthermore, most of the 

adaptive IDS proposed for cloud (Krishnan and Chatterjee, 2012; Huang, et al., 2013; 

Meng, et al., 2013; Chou and Wang, 2015; Toumi, et al., 2015; Chouhan and 

Hasbullah, 2016; Wahab, et al., 2017) are not adequate for the cloud environment as 

they do not consider the cloud peculiarities such as VM migration. The adaptive IDS 

(Huang, et al., 2016) proposed to address VM migration issues is limited to host based 

which will have a low visibility of the cloud network.
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c. Detection of distributed attacks

The proliferation of distributed attacks such as DDoS and distributed port scan 

has brought forth challenges to centralized cloud-based IDS. A single IDS only 

monitors a single sub-network. Hence, it is unable to detect distributed attack 

accurately as it lacks the ability to link attack information from various sub-network 

(Zhou, et al., 2009). To tackle the distributed nature of this attack, a collaborative 

defence mechanism is required.

In collaborative IDS, participating agents collaborate to detect distributed 

attacks by sharing attack information among themselves (Perez et al., 2013). In cloud 

computing both standalone and distributed approach have been adopted to detect 

distributed attacks. Under the standalone category a number of research works have 

been conducted (Bakshi and Dujodwala, 2010; Sahi et al., 2017) however an isolated 

IDS cannot accurately detect coordinated attacks like DDoS (Singh et al., 2016; Al 

Haddad et al., 2016). Therefore this research focused on distributed approach. A 

distributed or collaborative IDS is comprised of many IDS over different sub networks 

or host that share alerts among each other to detect coordinated attacks. A collaborative 

IDS have the potentials of detecting attacks shared over several host or networks by 

linking attack evidence across several sub networks (Elshoush and Osman, 2011). 

Collaborative or distributed IDS consists of detection units and aggregation units. The 

detection units detect attacks and send to aggregation unit for aggregation (Patel et al., 

2013). The research work in distributed cloud IDS aimed at detecting distributed 

DDoS can be classified as signature-based proposed by Gul and Hussain, (2011) and 

Lo, et al., (2010), however the limitation of the signature-based approach is that the 

attack information is sent from detection units to aggregation unit whenever new 

signature is found and the limitation of this is that zero-day attacks will not be detected. 

The anomaly detection approach proposed by Badis et al., (2015) and Bharajwaja et 

al., (2011) sends attack information from detection units to aggregation unit whenever 

anomaly is detected and this could lead to high false alarm. Because the anomaly 

detection approach is prone to false alarm (Garcia-Teodoro, et al., 2009; Singh et al., 

2016) while the hybrid techniques (Man and Huh 2012; Singh et al, 2016; Al Haddad 

et al., 2016) send alert from detection units to aggregation units whenever attack 

signature is found or an anomaly is detected and this technique also inherits the 

limitations of both signature-based and anomaly detection. Further limitations of these
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works is that they are not adequate for the cloud environment as the effect of certain 

cloud peculiarities such as VM migration which is reported to cause false alarm in 

cloud IDS (Shirazi et al., 2014) is not investigated. Hence it is essential for cloud IDS 

to be able to cope with the challenges of VM migration for effective anomaly detection.

1.3 Problem Statement

The behaviour of the cloud network rapidly changes due to the heterogeneity 

of the clients using the services, the elastic nature of the services delivered and the 

migration of VM from one host to another makes it difficult to create a consistent 

normal profile for anomaly detection. Existing research works on adaptive approach 

proposed to address peformance degradation due to VM migration is limited to host- 

based which does not cover the effect of the entire migration picture in the cloud 

network. Furthermore an approach to monitor the changes in the normal profile of the 

data to determine when changes occur in order to update the IDS reference model 

accordingly has not been investigated using practical algorithmic approach.

In addition, the widespread of coordinated attacks such as DDoS has 

introduced challenge to centralized cloud-based IDS, hence a distributed IDS is 

required to tackle coordinated attacks. However, existing distributed cloud IDS do not 

address the appropriate time to share attack information among the nodes in the 

distributed IDS. In addition, they are not adequate for the cloud environment, as they 

do not address the peculiarities of cloud computing such as the issue of VM migration.

Furthermore, an IDS requires a pre-processing component for choosing only 

significant features. However, existing feature selection technique proposed for cloud 

IDS are based on heuristic search techniques which cannot guarantee optimal features. 

Besides the selected features are based on traditional network datasets that may not 

capture and represent the cloud peculiarities.
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The Research Hypothesis is:

Poor accuracy o f  cloud-based IDS due to dynamic nature o f  VM migration and 

distributed attacks can be improved using an adaptive and distributed cloud-based 

IDS. Detection accuracy fo r  cloud-based IDS can be improved using feature selection 

technique.

The research aims to address the following research questions:

i. How to select optimal feature subset using feature selection technique in 

order to improve detection accuracy of cloud IDS.

ii. How to determine the change pattern in the normal profile of the data and 

update IDS Reference Model according to change pattern.

iii. How to determine when to share Reference Model for detecting attack 

among distributed IDS to improve detection accuracy of distributed 

attacks.

1.4 Research Aim

The aim of this research is to propose an adaptive and distributed cloud 

intrusion detection scheme that uses change point detection to determine when to 

update the IDS reference model and when to share attack information among nodes in 

the distributed IDS to improve detection accuracy of cloud IDS.

1.5 Research Objectives

The research aims to achieve the following objectives:

i. To propose an enhanced hybrid Ant Colony Optimization and Correlation- 

based feature selection technique capable of selecting optimal feature set to 

improve accuracy of cloud IDS.
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ii. To design an adaptive cloud intrusion scheme that can improve detection 

accuracy of cloud IDS by monitoring change pattern in the normal profiles and 

update the IDS Reference Model accordingly.

iii. To propose an enhanced adaptive and distributed cloud intrusion detection 

scheme that monitors the traffic volume of destination IP address from the 

various computing nodes in the distributed IDS to determine when to aggregate 

the reference models from the various computing nodes in order to improve 

detection accuracy of coordinated attacks.

1.6 Scope of Study

The research is limited to the following:

i. The effect of VM migration was only investigated on attacks such as port 
scanning and Distributed Denial of Service (DDoS).These attacks were also 
considered by other cloud researchers such as (Adamova, et al., 2014; Shirazi, 
et al., 2014). These attacks are considered because the cloud has suffered from 
several outages due to DDoS attacks. Therefore it is imperative to safeguard 
the cloud from such attack.

ii. The study is limited to attack detection and does not consider pre-emptive 
actions.

iii. Three machine learning techniques such as Stochastic Gradient Descent, 
Support Vector Machine, and Random Forest were investigated as a proof of 
concept for the proposed scheme.

1.7 Significance of the Research

The research is significant from a theoretical and practical perspective. The 

motivation and the rationale for the research are:

i. Cloud computing is confronted by an increasing number of cyber-attacks. 

Various security measures have been proposed to enable the detection of 

attacks in cloud computing. To enable cloud-based IDS effectively detect 

attacks when the normal reference model is frequently changing due to
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dynamic cloud characteristics. It is essential to design adaptive IDS that can 

cope with the dynamic cloud nature.

ii. The research findings is expected to offer better insight and contribute to the 

robustness of the cloud security.

iii. Both practitioners and researchers can benefit from the research. As more data 

and applications from various sectors such as academia, government and 

industries are being migrated to the cloud therefore providing security 

measures to allay consumers worry about the security issues in cloud is crucial.

Figure 1.3 Phases in the design of the adaptive and distributed 

cloud intrusion detection scheme

1.8 Research Contributions

In this section, the contribution of the research is discussed. The research has 

three contributions as shown in Figure 1.4.
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An adaptive cloud intrusion detection scheme that tracks the 
change pattern in the network traffic using Binary 

Segmentation and update the IDS reference model based on 
change pattern.

An adaptive and distributed
cloud intrusion detection scheme that 

monitors traffic volume of destination IP 
using Binary Segmentation to determine 

approprate time to share attack information 
among nodes in a distributed IDS.

A hybrid ACO-CFS 
feature selection 

technique for 
cloud IDS.

Figure 1.4 Research contribution

i. The first contribution is an adaptive cloud intrusion detection scheme that uses 

change points detection to track the change pattern in the cloud data and 

perform Reference Model update according to the change pattern. The design 

is based on the philosophy of tracking change in statistical property of the data 

using Binary Segmentation change point detection algorithms and updating 

the IDS Reference Model periodically based on change pattern.

ii. The second contribution of the research is an adaptive and distributed cloud 

intrusion detection scheme that monitors the traffic volume of destination IP 

using Binary Segmentation to determine the appropriate period to share attack 

information among nodes in the distributed IDS.

iii. The third contribution is a hybrid Ant Colony Optimization and Correlation- 

based Feature Selection (ACO-CFS) technique for cloud IDS.
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1.9 Thesis Organization

The Thesis is comprised of seven chapters. Chapter 1 introduces the research. 

Chapter 2 provides a review on the current IDS in cloud computing and the issues that 

need to be addressed. Chapter 3 presents the research methodology. Chapter 4 

discusses on feature selection and data pre-processing, Chapter 5 presents the adaptive 

cloud intrusion detection scheme, Chapter 6 presents the adaptive and distributed cloud 

intrusion detection scheme and chapter seven concludes the research.
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