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ABSTRACT 

Global warming has caused the air temperature to increase and this has a serious 
impact on the urban area whereby causing heat wave during the summer in temperate 
climate area and all year long in tropical region. In Malaysia, heat wave has caused 
residential buildings especially terrace houses in urban areas to experience thermal 
discomfort. Passive cooling strategies such as natural ventilation and building retrofit 
method is proven to be a more effective method to resolve thermal discomfort. Therefore, 
the objective of this study is to assess the performance of passive cooling with different 
natural ventilation and building retrofit methods on improving the indoor thermal 
conditions for terrace house in hot and humid climate conditions. The performance of 
each method was assessed based on the estimated operative temperature (Top) in the 
building and compared with American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) Standard 55, European Standard EN15251, and 
adaptive thermal comfort equation (ACE) developed from ASHRAE RP-884 database 
for hot and humid climate. The field measurement to measure the thermal conditions of 
the house was conducted in two stages in a corner terrace house located in Kuala Lumpur, 
Malaysia. Climatic data that influenced the Top, such as outdoor and indoor air temperature, 

relative humidity, outdoor wind velocity, indoor air velocity, indoor globe temperature, and 

outdoor solar radiation were measured. In the first stage, four types of natural ventilation 
which were full day ventilation (FV), full day no ventilation (WV), day ventilation (DV), 
and night ventilation (NV) were adopted to evaluate the performance of different natural 
ventilation strategies. The measurement was conducted in all rooms on the first floor. In 
the latter stage, the measurement was carried out in the master bedroom located on the 
first floor due to its west facing orientation and it being the hottest part in the investigated 
house. A study of four approaches on natural ventilation combined with different 
building retrofit methods which are high density polyethylene (HDPE) nets as roof cover, 
heat insulation above ceiling, and active cooling method with ceiling fan were conducted 
to analyse how each combination of methods assist in the thermal performance of the 
room. The results from the first stage showed that the mean indoor temperature under 
natural ventilation was approximately 27–37 °C, and FV and DV recorded better 
correlation between outdoor and indoor temperature compared with WV and NV. 
Although natural ventilation could improve the thermal condition in the room, but it was 
still not enough to achieve the acceptable indoor thermal condition under relevant 
international standards. The use of roof cover in the second stage reduced convective 
heat flux of approximately 70–80% in the attic and 88% in the room. Meanwhile, the 
mean of daytime air temperature in the room was reduced approximately 1°C. However, 
the heat insulation layer above the ceiling did not contribute much in improving thermal 
condition of the room during daytime. Whereas the thermal condition in the room became 
worse during night time due to the heat trapped by this heat insulation layer. As a 
conclusion, a roof cover with HDPE nets managed to improve the compliance on ACE 
hot and humid climate from 38% with only natural ventilation to 48% after a roof cover 
was added on the roof. Due to the effectiveness of improving the thermal condition in 
the house, this passive cooling method employing a roof cover with HDPE nets has the 
potential for further research and to be developed as a passive building retrofit method 
for low-cost landed houses with roof tiles in Southeast Asia such as in Indonesia and 
Thailand.  
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ABSTRAK 

Pemanasan global telah menyebabkan suhu udara bertambah di kawasan bandar dan 
memberi kesan yang serius melalui gelombang haba semasa musim panas di kawasan iklim 
empat musim dan sepanjang tahun di kawasan tropika. Di Malaysia, gelombang haba telah 
menyebabkan bangunan kediaman terutamanya rumah teres di kawasan bandar menghadapi 
ketidakselesaan haba. Strategi penyejukan pasif, seperti kaedah pengudaraan semula jadi dan 
pengubahsuaian bangunan telah terbukti sebagai kaedah yang lebih berkesan untuk 
menyelesaikan ketidakselesaan haba. Oleh itu, tujuan penyelidikan ini adalah untuk menilai 
pencapaian strategi penyejukan pasif dengan beberapa kaedah pengudaraan semula jadi dan 
kaedah pengubahsuaian bangunan bagi rumah teres di kawasan iklim panas dan lembab. 
Pencapaian setiap kaedah dinilai berasaskan suhu pengendalian (Top) dalam bangunan dan 
dibandingkan dengan American Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE) Standard 55, European Standard EN15251, dan persamaan keselesaan 
haba penyesuaian (ACE) dibangunkan daripada pangkalan data ASHRAE RP-884 untuk iklim 
panas dan lembab. Pengukuran keadaan haba dijalankan dalam dua peringkat di sebuah rumah 
teres lot tepi terletak di Kuala Lumpur, Malaysia. Data cuaca yang mempengaruhi Top, seperti 
suhu udara, kelembapan relatif dalaman dan luaran, kelajuan angin luaran dan udara dalaman, 
suhu globe dan sinaran matahari telah diukur. Pada peringkat pertama, empat kes pengudaraan 
semula jadi telah dikaji, iaitu pengudaraan sepanjang hari (FV), tanpa pengudaraan sepanjang 
hari (WV), pengudaraan waktu siang (DV), dan pengudaraan pada waktu malam (NV). 
Pengukuran telah dijalankan dalam semua bilik di tingkat atas rumah. Pada peringkat kedua, 
pengukuran hanya dijalankan dalam bilik tidur utama di tingkat atas, dengan alasan bahawa 
bilik itu menghadap arah barat dan merupakan bilik yang paling panas dalam bangunan itu. 
Empat kaedah penyelidikan dengan pengudaraan semula jadi digabungkan dengan pelbagai 
kaedah pengubahsuaian bangunan, iaitu penutup bumbung dengan jaring polyethylene 
(HDPE) ketumpatan tinggi, penebat haba atas siling, dan cara penyejukan aktif dengan kipas 
siling telah digunakan untuk mengkaji bagaimana setiap kaedah gabungan dapat memperbaiki 
prestasi haba dalam bilik. Dapatan kajian daripada peringkat pertama menunjukkan purata 
suhu dalam bilik di bawah kaedah pengudaraan semula jadi adalah kira-kira 27–37 °C, dan 
FV dan DV menunjukkan korelasi yang lebih baik antara suhu dalaman dengan luaran 
dibandingkan dengan WV dan NV. Sungguhpun pengudaraan semula jadi boleh memperbaiki 
keadaan haba dalam bilik, namun tidak mencukupi untuk mencapai keperluan keadaan haba 
dalaman di bawah piawaian antarabangsa berkenaan. Penggunaan penutup bumbung pada 
peringkat kedua dapat mengurangkan fluks haba konveksi sebanyak 70–80% di dalam loteng 
dan 88% di dalam bilik. Pada masa yang sama, purata suhu udara dalam bilik pada waktu siang 
telah dikurangkan kira-kira 1°C. Penambahan lapisan penebat haba di atas siling bukan sahaja 
tidak dapat menyumbang kepada pembaikan keadaan haba dalam bilik pada waktu siang, 
bahkan keadaan haba dalam bilik menjadi lebih teruk pada waktu malam disebabkan oleh 
pemerangkapan haba oleh lapisan penebatan haba ini. Apabila keputusan penyelidikan 
dibandingkan dengan penutup bumbung dengan jaring HDPE dapat memperbaiki pematuhan 
kepada ACE iklim panas dan lembab, daripada 38% dengan pengudaraan semula jadi sahaja 
kepada 48% selepas penutup bumbung ditambah di atas bumbung. Disebabkan kecekapan 
peningkatan keselesaan haba dalam rumah, dan kaedah yang senang untuk membina penutup 
bumbung dengan jaring HDPE, kaedah penyejukan pasif ini mempunyai potensi untuk 
penyelidikan masa depan dan dibangunkan sebagai kaedah pengubahsuaian pasif untuk rumah 
kos rendah dengan atap bumbung di Asia Tenggara, seperti di Indonesia dan Thailand. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Global warming is always a main environmental issue since the 

industrialization era [1]. It has caused the global air temperature increased 0.85 °C 

from 1880 to 2012 [2]. Increase of global temperature has a serious impact to the urban 

area with heat wave during summer in temperate climate region and all year long in 

tropical region [3]. Heat wave has caused a lot of people died due to heat stroke [4], 

especially in urban area with high population density and limited outdoor green open 

space to reduce the impact of heat wave.  

In hot and humid regions, such as Malaysia, the average daily air temperature 

is between 21 °C and 32 °C [5].  According to Malaysian Metrological Department 

[6], in 2019, the average temperature was 27.63 °C, and was 0.69 °C above normal 

temperature of 26.94 °C. Furthermore, Malaysia was hit twice by heat wave in 2019 

with a recorded maximum daily temperature between 37.1 °C to 38.0 °C. This has 

triggered the alert level (daily maximum temperature 35 °C to 37 °C) on the 

temperature in the country. However, as easy solution to the critical condition of the 

temperature, urban dwellers will choose to stay indoors and switch on the air-

conditioner (AC) system to remove heat and maintain indoor thermal environment as 

well as to fight the heat wave and avoid heat stroke [7, 8]. The adoption of active 

cooling system by using AC has caused the energy consumption increased rapidly in 

urban area [9]. Usage of AC is only solving the problem of heat wave, but the increase 

of electrical energy consumption has caused another environmental issue. Generation 

of electrical power will increase the emission of carbon-dioxide (CO2) into the 

environment and make the global warming issue become worse [3]. This cycle of 

environmental problem will continue growing like a snowball and need immediate 

intervention to stop the cycle. A better approach to resolve the thermal issue is by using 
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passive cooling strategy that using minimum energy, such as natural ventilation to 

remove heat and heat preventive method using building retrofitting strategies to 

improve indoor thermal conditions and achieve thermal comfort, instead of using AC. 

Indoor thermal conditions of a building are affected by the air temperature, 

surrounding surface temperature, humidity and air movement. American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [10] defined 

thermal environment as the environment conditions that affect a person’s heat loss. 

For a person to feel thermally comfortable, where a person is satisfied with the ambient 

temperature, ASHRAE [10] defined this as the condition of the mind that expresses 

satisfaction with the thermal environment and is assessed by subjective evaluation. 

Comfortable thermal conditions can be achieved either by active or passive 

cooling [11]. Active cooling methods are defined as mechanical equipment to satisfy 

the needs of cooling within a building that not provided by nature. Active methods use 

electricity and heat as power source. The most used equipment in the residential 

buildings are fans, evaporative coolers and heat pumps [11]. Meanwhile, passive 

cooling in building design is an approach that managing heat gain and heat dissipation 

in a building in order to improve indoor thermal environment and achieve thermal 

comfort with low or no energy consumption [12]. They work either by removing heat 

from the building to a natural heat sink (sky, earth, air and water) using natural 

ventilation or by preventing heat from entering the building (thermal insulation and 

shading) from external heat sources. 

Natural ventilation defined as natural forces (winds and thermal buoyancy 

force) due to the difference of outdoor and indoor air pressure that drive outdoor air 

through openings on building envelope. The openings include doors, windows, wind 

towers, solar chimneys and ventilators [13]. Natural ventilation utilizes onsite energy 

from the natural environment, combined with the passive cooling features of building 

components on the building envelope to remove heat from the building [13, 14].  

Heat preventive methods in building design is focuses on heat gain control in 

a building in order to improve the indoor thermal comfort with low or no energy 

https://en.wikipedia.org/wiki/Thermal_comfort
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consumption. Prevention of heat gains encompasses all the design techniques and 

building retrofitting techniques that minimizes the impact of solar heat gains through 

the building's envelope by installation of heat insulation layer or shading devices [12].  

In comparison between active and passive cooling methods on factors of 

energy consumption, maintenance, retrofitting and required space, passive cooling is 

found to be the most suitable method for residential buildings [11]. The recommended 

passive cooling methods are night ventilation, controlled ventilation, shading system, 

roof coating, building colour and eco-evaporative cooling. 

In the previous study on passive cooling [15–19], most of the studies are 

concentrated in temperate climate regions with moderate annual temperatures, with 

average monthly temperatures above 10 °C in their warmest months and above -3 °C 

in their colder months. However, in hot and humid climate regions with a high average 

daily temperature up to 21 °C to 32 °C and facing serious impact of heat wave issue, 

very limited studies on how passive cooling can assist in improving indoor thermal 

conditions can be found [7, 20]. The existing studies in hot and humid climate regions 

are generally on natural ventilation [7] to remove heat from the building and not on 

building retrofitting methods that preventing heat from entering the building. 

In addition to the passive cooling methods, building types and building forms 

is also an important factor affecting the thermal performance of the building [21].  

Terrace house formed 36.4% of total living quarters in Malaysia (Population and 

Housing Census of Malaysia 2010), and 47.8% of new launches in Malaysia 

(Residential, Commercial and Industrial properties Status report 2018). The impact 

of solar heat gains through building’s envelope is high on terrace house with high ratio 

of exposure on external wall and roof to the sunlight [22]. In addition, terrace house 

also facing  a low air velocity of 04-0.6 m/s as reported by Kubota and Ahmad [23]. 

Although terrace houses are one of the common residential building in Malaysia, 

however, the study is still very limited and required further exploration.  

A further investigation on the effectiveness of passive cooling using different 

building retrofitting methods and natural ventilation strategies to the thermal 
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conditions of terrace houses under hot and humid climate is required. The effectiveness 

of each passive cooling method was measured by comparing the percentage of 

compliance of the calculated indoor operative temperature (Top) to the predicted Top 

under the relevant international adaptive comfort standards. The findings of this type 

of study will contributed to the improvement of terrace house design and invention of 

new approach to resolve thermal comfort in terrace house by using building retrofitting 

methods, instead of conventional passive cooling with natural ventilation approach. 

1.2 Problem Statement 

As reported by Malaysian Metrological Department annual report, in 2019, the 

average temperature in Malaysia was 27.63 °C, it was 0.69 °C higher than the normal 

temperature of 26.94 °C recorded in previous years. In addition to the rise of 

temperature, Malaysia was hit twice by heat wave in 2019 with a recorded maximum 

daily temperature between 37.1 °C to 38.0 °C. The recorded extremely high 

temperature has triggered the alert on the high temperature in the country. The alert 

level on daily maximum temperature set in Malaysia is 35 °C to 37 °C. 

Further to that, the report by United Nations on world energy consumption, 

electricity contributed 19% of total world energy consumption, and 27% of it was used 

by households.  Space cooling is the fastest growing use of energy in buildings. 

Another report by International Energy Agency on world energy consumption reported 

the share of cooling in total energy use in buildings rose from about 2.5% to 6% from 

1990 to 2016. In case of a tropical country such as Malaysia, in year 2016, 11% of 

electricity consumed in residential sector is for space cooling purpose.  

This fraction is expected to increase due to the increase of dependency of air-

conditioners to achieve thermal comfort accompanied by the economic growth as well 

as future climate change. The high cost on installation of AC and high energy 

consumption of this active cooling system is not an environmentally friendly system 

and not an affordable system to low-income people. On the other hand, considering 

the persistent gap between rich and poor in developing countries, it is highly likely that 
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low-income people will remain to be exposed to the heat risk elevated by global 

climate change. 

Under these circumstances, to resolve this problem, simple effective and low-

cost cooling strategies for residential buildings located in tropical developing countries 

are strongly needed. Passive cooling strategy without using much energy was the 

common approach as solution to resolve the high cost and high energy consumption 

due to active cooling in buildings. Passive cooling strategies that commonly used are 

provision of cross natural ventilation through the building as cooling agent to remove 

trapped heat in the building, installation of cool roof to reduce transmission of heat 

from roof to the building, and provision of shading device on the wall and windows to 

avoid direct heat transmission from the sunlight to the building.  

In recent years, smart-house technologies, which consist of various energy-

efficient appliances, roof-top photovoltaic (PV) solar panels, and home energy 

management systems, have attracted social attention to achieve the energy saving, low 

carbon, and comfort indoor environment. However, such cutting-edge technologies are 

still not affordable for most developing countries due to the financial conditions. 

Although it is already widely known that solar heat gain through the roof is major in 

low-rise terrace house, and solar shielding of roof should contribute to the reduction 

of primary heat gain in low-rise buildings, but this common knowledge has not been 

implemented as affordable design for houses in many developing countries. It is the 

gap between knowledge in academic community and the construction industry and 

policy makers.  

Therefore, in this research, the main objective is to develop a low-cost passive 

cooling method that easy to apply to residential buildings in tropical developing 

countries. The study was conducted through field measurement to collect real data on 

how the indoor thermal conditions was changed upon application of different natural 

ventilation strategies and simple building retrofitting methods to the building. The 

results were compared to the relevant international adaptive comfort standards by 

comparing the Top in the building. The effectiveness of each passive cooling method 

was measured by comparing the percentage of compliance of the calculated indoor Top 
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to the predicted Top under the relevant international standards. ASHRAE defined Top 

as the uniform temperature of an imaginary black enclosure and air within in which an 

occupant would exchange same amount of heat by radiation and convection as in the 

actual non-uniform environment. In building design, Top can be defined as the average 

of the mean radiant and ambient air temperatures, weighted by their respective heat 

transfer coefficients. The best performance method with higher compliance with the 

standards was concluded at the end of this study to introduce a low-cost and easy 

passive cooling method for residential building in hot and humid climate countries. 

1.3 Research Questions 

Based on the problems identified in problem statement, the research questions 

of this study were established as follows:  

(a) How different natural ventilation strategies by opening window at daytime and 

night time affected the operative temperature in terrace house under hot and 

humid climate? 

(b) Will a natural ventilated terrace house required additional building retrofitting 

method to compliment the thermal conditions? 

(c) What is the level of compliance of these passive cooling strategies, when 

comparing with the relevant international standards on thermal comfort?  

1.4 Research Objectives 

After summarized the background of the problem and to answer the research 

questions, three objectives in this research are: 

(a) To evaluate the performance on thermal conditions (air temperature, relative 

humidity, air velocity) of passive cooling with different natural ventilation 

strategies for terrace house under hot and humid climate.  



7 

(b) To assess the performance on thermal conditions (air temperature, relative 

humidity, air velocity) of passive cooling with different building retrofitting 

methods for terrace house under hot and humid climate. 

(c) To analyse the indoor thermal comfort level of the proposed passive cooling 

strategies based on international adaptive comfort standards. 

1.5 Research Scope 

Literature reviews on previous research on passive cooling and building retrofit 

for residential buildings was performed. Field measurement was conducted in a two-

storey terrace house in Kuala Lumpur, Malaysia in tropical region with hot and humid 

climate. The measurement was conducted in two stages. In the first stage, four natural 

ventilation strategies: without ventilation, full ventilation, day ventilation and night 

ventilation were studied to evaluate the thermal performance of the house based on the 

operative temperature. First stage was conducted for four weeks from February to 

March 2018 to measure air temperature, globe temperature, relative humidity, air 

velocity in the house; besides surface temperature of ceiling, roof and external wall 

were measured. Simultaneously, outdoor air temperature, relative humidity and wind 

speed were measured. Operative temperature was calculated based on the measured 

data to check on the compliance to the international adaptive comfort standards.  In 

later stage with building retrofitting methods, four cases with different combination of 

building retrofitting strategies were studied. The same parameters of measurement 

were carried out for 14 weeks from September to December 2018 and followed by the 

same study on compliance of operative temperature to international adaptive comfort 

standards.  

1.6 Significance of Research 

The findings of this study provide data towards future house design with 

passive cooling strategies by adopting different ventilation modes and building 

retrofitting. The findings can be applied to a terrace house design, and particularly to 
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window design, to control natural ventilation in residential buildings. Furthermore, a 

low cost and low technology passive cooling method using building retrofitting was 

proposed. This method of passive cooling will benefit landed low cost houses in hot-

humid regions, especially from developing countries, such as Malaysia, Indonesia and 

Thailand. Besides that, at remote area without electricity to use fan or air-conditioner, 

roof cover is an effective passive cooling method to be applied.  

1.7 Organization of Thesis 

This thesis was compiled in seven chapters.  

Chapter 1 introduces the thesis with an overview to the thesis, problem 

background, problem statement, research questions, research objectives, research 

scope, significance of research, and organization of the thesis.  

In Chapter 2, a review on the literature related to this research topic. 

particularly on passive cooling on residential buildings, various types of air ventilation, 

and building retrofitting method. At the end of this chapter, research gap was 

identified. 

Chapter 3 describes the research methods applied in this research. The location, 

details and climatic description of the investigated house were mentioned. Field 

measurement process including preparation of equipment, setup of equipment, stages 

of data collection, and method of data analysis were comprehensively explained.  

Chapter 4 presents the results from stage 1 measurement on natural ventilation 

strategies and follows by discussion on findings from the analysis of the data. The 

indoor and outdoor thermal conditions of the investigated house under different natural 

ventilation strategies were analysed, compared and discussed. Furthermore, vertical 

profile of indoor air temperature under natural ventilation and mixed-mode ventilation 

were compared. Influence of surface temperature on indoor air temperature was 

analysed. Stage 1 was summarised based the first objective of this research. 
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Chapter 5 presents the results from stage 2 measurement on four cases with 

different combination of natural ventilation, building retrofitting methods, and active 

cooling method. The indoor and outdoor thermal conditions of the investigated master 

bedroom under different cases were analysed, compared, and discussed. Relationship 

between indoor and outdoor air temperature, comparison between indoor and outdoor 

thermal conditions, comparison on vertical temperature profile under different 

building retrofitting methods, and effect of roof cover on indoor thermal environments 

were analysed and discussed. Based on the summary, this chapter summarised the 

achievement of second objective of this research. 

Chapter 6 presented the analysis and discussion of this research on different 

natural ventilation strategies and building retrofitting methods in comparison to 

relevant international standards using adaptive comfort standards. The percentage of 

compliance from each strategy and method was discussed. The achievement on the 

third objective of this research was discussed at the end of this chapter. 

Chapter 7 summarise the research outcomes and conclusions drawn.  The 

significance contribution and application of the findings are discussed. Finally, future 

works from this research were proposed. 
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