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For offshore structural design, the load due to wind-generated random waves is usually the most 

important source of loading. A nonlinear wave analysis is recommended to represent a realistic 

ocean wave for an accurate prediction of extreme offshore structural response. Nevertheless, the 

contribution of nonlinearity especially due to the wave-wave interaction leads to a complex 

solution. In fact, the random wave load itself experienced a nonlinearity due to the drag component 

of Morison’s load, the effect of load intermittency around the member in the splash zone, and the 

presence of current; which result in a non-Gaussian offshore structural response. The most accurate 

and versatile method for predicting the statistical properties of extreme responses on a subjected 

load is the Monte Carlo time simulation method, which can account for all sorts of nonlinearities 

without introducing any approximations. However, it is computationally very demanding due to its 

complex procedure in simulating the structural response as reliable results require a very large 

number of simulations. Therefore, a simple method using finite-memory nonlinear system (FMNS) 

has been introduced by previous researchers and is proven to improve the efficiency of evaluating 

offshore structural responses without sacrificing its accuracy. The method is, however, only 

applicable based on the linear wave analysis. Hence, by taking advantage of the efficiency of FMNS 

method, a new model needs to be developed by integrating the FMNS method with a nonlinear 

wave analysis for a more reliable result. It is the derivation of non-Gaussian stochastic offshore 

structural response using finite-memory nonlinear system, known as FMNSNL (subscript NL 

indicates nonlinear). In the model development process, the surface elevation is generated first 

according to a nonlinear wave analysis with at least second-order wave. Then, two components of 

system are introduced, in which the first component enabled the transformation from a reference 

surface elevation to a second-order linearized quasi-static responses, while the second component 

involved the development of nonlinear function based on the relationship of second-order nonlinear 

and linearized quasi-static responses. Four models have been developed, in which the best model 

can produce an output of approximate values of second-order nonlinear quasi-static response that 

is very close to its corresponding values obtained using Monte Carlo time simulation method and 

will then be used for further examination. Based on the correlation coefficient between those two 

methods, the best relationship with value of 0.9783 was obtained by model 4 on the drag-induced 

quasi-static base shear for high significant wave height. The procedure of model development based 

on those two components is examined for all sea state conditions with Hs = 5, 10 and 15 m, and 

with the presence of current, 𝑈= 0 m/sec and ±0.90 m/sec. As a result, the relationship of model 4 

fits the data better for all cases. It should be noted that this investigation of in-service analysis is 

carried out only for quasi-static structure by neglecting the dynamic effect. Based on the result of 

the short-term analysis, FMNSNL method provided a good accuracy of prediction of 100-year 

responses compared with the corresponding prediction using Monte Carlo time simulation method 

for all cases. A comparison has been made according to the ratio of prediction between FMNSNL 

and Monte Carlo time simulation methods. Overall, the accuracy level achieved by FMNSNL 

method is in the range of 82% to 99.8%, in which the accuracy level improved with the presence 

of positive current and vice versa with negative current. The same conclusion is valid for long-term 

analysis since the accuracy performance of FMNSNL followed exactly as previous analysis for 

short-term distribution. Without the presence of current along the wave propagation, the accuracy 

level of FMNSNL method is in the range of 80% to 96%. If there exist a current with the same 

direction of the wave (positive current), the accuracy improved with an increment of 1% to 7%. 

However, the opposite direction of current (negative current) provided a severe impact on its 

prediction with a reduction of 1% to 18% of accuracy. Hence, the method of FMNSNL can then be 

used with an excellent efficiency and accuracy to determine the extreme offshore structural 

response. With that, the offshore structure is towards optimization that leads to cost reduction and 

preservation of safety. 
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ABSTRAK 

 
Bagi reka bentuk struktur luar pesisir, beban akibat gelombang rawak yang dijana oleh 
angin biasanya merupakan beban yang paling utama. Analisis gelombang ketaklelurusan 
disyorkan untuk mewakili gelombang lautan yang sebenar untuk ramalan tepat mengenai 
tindak balas struktur luar pesisir yang paling tinggi. Namun begitu, analisis gelombang 
yang bersifat ketaklelurusan disebabkan oleh interaksi antara gelombang membawa 
kepada penyelesaian yang kompleks. Sebenarnya, beban gelombang rawak itu sendiri 
mengalami ketaklelurusan kerana komponen seretan di persamaan Morison, kesan beban 
terputus di zon permukaan air, dan kehadiran arus; yang menghasilkan tindak balas 
bersifat bukan Gaussian.  Teknik yang paling tepat dan serba boleh untuk meramalkan 
tindak balas statistik yang paling tinggi pada beban yang dikenakan adalah teknik simulasi 
masa Monte Carlo yang dapat menjelaskan segala macam beban yang bersifat tak lelurus 
tanpa memperkenalkan perkiraan. Walau bagaimanapun pengiraannya sangat rumit 
kerana prosedurnya yang kompleks dalam mensimulasikan tindak balas struktur 
disebabkan jumlah simulasi yang sangat besar diperlukan bagi mendapatkan keputusan 
yang tepat. Oleh itu, kaedah yang mudah dengan menggunakan sistem tak lelurus ingatan 
terhingga (FMNS) telah diperkenalkan oleh penyelidik terdahulu, dan terbukti dapat 
meningkatkan kecekapan menilai tindak balas struktur luar pesisir serta menjamin 
ketepatannya. Akan tetapi kaedah tersebut hanya diaplikasikan berdasarkan analisis 
gelombang lelurus. Oleh itu, dengan memanfaatkan kecekapan kaedah FMNS, model baru 
perlu dibentuk dengan mengintegrasikan kaedah FMNS dengan analisis gelombang 
bersifat ketaklelurusan untuk hasil yang lebih sahih. Ini adalah hasil tindak balas struktur 
luar pesisir bukan Gaussian menggunakan sistem tak lelurus ingatan terhingga yang 
dikenali sebagai FMNSNL  (simbol NL merujuk kepada ketaklelurusan). Dalam proses 
membentuk model, ketinggian permukaan air dijana terlebih dahulu mengikut analisis 
gelombang ketaklelurusan dengan sekurang-kurangnya gelombang tertib kedua. 
Kemudian, dua komponen sistem diperkenalkan di mana komponen pertama 
membolehkan transformasi dari ketinggian permukaan air ke tindak balas statik tertib 
kedua yang lelurus, manakala komponen kedua melibatkan pembentukan fungsi tak 
lelurus berdasarkan hubung kait tindak balas statik tertib kedua yang tak lelurus dengan 
yang lelurus. Empat model telah dibentuk, di mana model terbaik dapat menghasilkan 
hasil dari tindak balas statik tertib kedua tak lelurus yang paling hampir dengan nilai yang 
diperoleh menggunakan kaedah simulasi Monte Carlo dan seterusnya akan digunakan 
untuk uji kaji selanjutnya. Berdasarkan pekali korelasi antara kedua-dua kaedah tersebut, 
nilai 0.9783 diperoleh oleh model 4 pada tindak balas statik daya ricih yang disebabkan 
oleh seretan untuk gelombang signifikan yang tinggi. Prosedur pembentukan model 
FMNSNL berdasarkan kedua-dua komponen tersebut telah dijalankan untuk semua 
keadaan laut dengan Hs = 5, 10 dan 15 m, dan dengan kehadiran arus, 𝑈= 0 m/saat dan ± 
0.90 m/saat. Hasilnya, korelasi model 4 lebih sesuai dengan data untuk semua keadaan. 
Perlu diingat bahawa penyelidikan analisis dalam perkhidmatan ini hanya dilakukan untuk 
struktur statik dengan mengabaikan kesan dinamik. Berdasarkan hasil analisis jangka 
pendek, kaedah FMNSNL memberikan ketepatan ramalan yang baik untuk tindak balas 100 
tahun berbanding dengan ramalan yang sama menggunakan kaedah simulasi Monte Carlo 
untuk semua keadaan. Perbandingan telah dibuat mengikut nisbah ramalan antara kaedah 
simulasi FMNSNL dengan Monte Carlo. Secara keseluruhannya, tahap ketepatan yang 
dicapai dengan kaedah FMNSNL berada dalam lingkungan 82% hingga 99.8%, di mana 
tahap ketepatan bertambah baik dengan kehadiran arus positif dan sebaliknya dengan arus 
negatif. Kesimpulan yang sama dapat dibuat untuk analisis jangka panjang kerana tahap 
ketepatan kaedah  adalah sama seperti analisis sebelumnya untuk pengagihan 
jangka pendek. Tanpa kehadiran arus sepanjang penyebaran gelombang, tahap ketepatan 
kaedah FMNSNL berada dalam lingkungan 80% hingga 96%. Sekiranya wujud arus dengan 
arah gelombang yang sama (arus positif), ketepatannya bertambah dengan kenaikan 1% 
hingga 7%. Walau bagaimanapun, arah arus yang berlawanan (arus negatif) memberi 
impak yang teruk terhadap ramalannya dengan pengurangan ketepatan 1% hingga 18%. 
Oleh itu, kaedah FMNSNL boleh digunakan dengan kecekapan dan ketepatan yang sangat 
baik untuk menentukan tindak balas struktur luar pesisir yang ekstrem. Dengan itu, 
struktur luar pesisir menuju ke arah pengoptimuman yang membawa kepada pengurangan 
kos dan pemeliharaan keselamatan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction  

The oil and gas industry is the engine of the world economy. Its production, 

especially in the energy sector, contributes about 4.6% - 6.5% to the global economy, 

with gross domestic product (GDP) ranging from $77 trillion to $107 trillion as of 

2014 (Deloitte, 2014).  Currently, with the rising global demand for energy resources, 

the oil and gas industry is facing a massive challenge as its resources are 

declining.(Deloitte, 2015; Veolia, 2016).  All major oil and gas operators (i.e. 

PETRONAS, SHELL, ARAMCO, etc.) are focusing on minimizing the operational 

cost of oil and gas platforms and enhancing their performance (Stacey et al., 2008; 

Ayob et al., 2014; Deloitte, 2014; Fayazi and Aghakouchak, 2015). 

As an alternative to high development costs, oil and gas operators are looking 

forward to improving their recovery of oil and gas resources from developed fields, 

and to develop discovery reserves from existing oil and gas platforms, which will result 

in good project economics and would allow recovery of more oil and gas resources. 

Globally, there are 497 operational offshore platforms, with 184 located around the 

North Sea region (Statista, 2018).  However, as reported by John & John (2008), there 

exist around 110 fixed platforms which are older than 20 years, in the Norwegian and 

UK sectors. Stephen (2014) claimed that at the Southern North Sea, 70 installations 

are older than expected.  In Malaysia, 42.5% of 360 platforms have operated for more 

than 30 years, as recorded in 2017, and the percentage is expected to steadily increase 

with time (Health and Safety Executive, 2017; Mat Soom, 2019; Zawawi, 2020). 

In general, a platform is classified as an ageing structure when it has operated 

beyond its initial design life of 20 to 25 years. Although it is not merely about the 
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physical age, the risk of ageing begins once the platform enters the sea. Thus, aging is 

measured according to the platform’s condition and its structural integrity. Based on 

regular inspection, a platform with ageing symptoms requires a decision on whether 

to decommission or extend its service life (Palkar & Markeset, 2012).  Referring to the 

current record, the decommissioning in the North Sea was estimated at £24 billion 

between 2018 and 2022, while in the Asia-Pacific region, the potential cost for this 

could rise above £78 billion (Rowe, 2019).  Therefore, life extension is more 

economical and productive than decommissioning platform (Clyde & Co, 2016).  

However, the reassessment of structural integrity is required to verify whether the 

requirements of serviceability and global safety (unity check) are fulfilled based on the 

structural reliability analysis (Khan et al., 2019).  

Structural reliability analysis (SRA) methods are used to comprehensively 

assess the effects of uncertainties in the load actions, resistances and modelling of 

certain parts of a structure and its performance. SRA offers assessments at the 

structural components level as well as the entire structural system. Additionally, SRA 

may be useful in the (re) calibration of partial action and resistance factors for 

exceptional or unusual circumstances, decision analysis to support the inspection and 

monitoring programs, and situations where the structural assessment of existing 

structures is needed. Hence, accurate information on the design level, and ultimate 

strength of the platform under normal (operation) and extreme loading conditions are 

essential to support the details of reassessment (Stacey et al., 2008; Fayazi and 

Aghakouchak, 2015).  

An offshore structure is subjected to several categories of loads; accidental, 

permanent, deformation, live, and environmental loads (Chakrabarti, 2005). However, 

according to the API standard design code (2014) for fixed offshore platforms, an 

extreme environmental condition is the main parameter in formulating the platform 

design load according to its service life.  Wind generated random wave loads are the 

major consideration in the design stage, while wind load itself only contributes less 

than 5% of total environmental loading (Hagen, 1996, Varma, 2014).  Thus, an 

iterative method with an accurate wave load model is necessary (Zhang, 2015). 
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The reliability analysis of fixed offshore structures can be measured either 

through deterministic or probabilistic methods.  While these structures can be designed 

by exposing them to extreme regular waves for a 100-year return period ( Holmager, 

2010; Hafez et. al., 2012; Mallahzadeh et al., 2014; Mat Soom et al., 2015; Abu 

Husain, 2015), it is much more satisfactory to use the probabilistic approach to account 

for the inherent randomness of the wave loading.  The evaluation of extreme offshore 

structural responses can be carried out using a linear or nonlinear analysis based on the 

selected wave theory ( Teng & Ning, 2009; Isobe, 2013; Varma, 2014).  

Linear wave theory is the most frequently used as it is the most straightforward 

wave theory that allows the boundary condition to be linearized (Chakrabarti, 2005).  

However, it is well known that there exists a nonlinearity of the wave loading due to 

the drag component which gives a significant effect on both the frequency spectrum 

and probability distribution of extreme response values (Zheng, 2013; Abdel Raheem, 

2014).  Furthermore, structural dynamics effects, the presence of current and load 

intermittency in the splash zone also increase the complexity of the problem.  This 

provides limitations on the applications of linear wave theory since some of the 

nonlinearities cannot be explained when higher order terms are excluded (Chen, 2014).  

As a solution, the nonlinear wave approach is more applicable.  In line with the 

development of scientific knowledge on the nonlinear wave, several researchers have 

come out with various methods to perform a reliability analysis of offshore platforms, 

which will be discussed in detail in Chapter 2. 

1.2 Problem Statement 

  

Structural integrity assessment is essential to ensure that the operation of an 

offshore platform has fully satisfied the requirement of serviceability according to its 

lifespan.  The evaluation needs to be carried out for an all limit state, and according to 

the framework (Aeran et al., 2017), one of the critical processes is in the evaluation of 

loading and structural analysis.  These include operational loads that are recommended 

based on the design standards, and environmental loads which contribute mainly by 
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wind-generated random waves.  Here, the 100-year return period of extreme offshore 

structural responses is applied for ultimate limit state assessment based on the 

requirement by code of practice. 

It is advisable to analyze the structure based on linear wave analysis as a 

preliminary analysis to ascertain the overall integrity of the structure.  Based on a 

probabilistic approach, the structural analysis can be evaluated using time, frequency 

or probability domain (Najafian et al., 1995; Cheng, 2002; Najafian, 2007c; Zheng, 

2013; Abu Husain, 2015). Referring to the design standard code of practices API-

RP2A (2014)  and ISO19902 (2010), frequency domain analysis is commonly applied 

in offshore oil and gas industries to analyze extreme wave responses as it is 

computationally more efficient (Zhang, 2015; Rahmati, 2016; DNV.GL, 2018).   

In cases where the preliminary analysis results are found to be severe with 

plenty of critical conditions (i.e., overstressed member), performing a nonlinear wave 

is recommended for more detailed structural analysis.  In fact, simulations based on 

linear wave theory give significant underprediction compared to nonlinear analysis 

(Agarwal & Manuel, 2011; Zheng, 2013; Natarajan, 2014).  However, it becomes 

complicated when dealing with the nonlinear wave simulations, in which the wave 

profile is generated based on the combination of first and second order wave 

components, where the second wave experiences twice the wave frequency.  The 

solution becomes cumbersome when a large number of elements are used to obtain a 

reliable higher-order wave force and its structural response (Deo, 2013).  However, it 

provides an accurate prediction in the simulation of extreme response values 

(Alberello et al., 2014; Chen, 2014; Saeedfar & Abd Wahab, 2015; Adcock, 2015). 

Recently, researchers have shown an increased interest in the prediction of 

statistical properties of offshore structures according to nonlinear wave in a stochastic 

nature.  Ersdal (2005) and Puskar et al. (2006) first examined a primary concern on 

loading assessment which led to structural failure using nonlinear analysis with the aid 

of Ultimate Strength for Framed Offshore Structures (USFOS) to enhance its 

efficiency. Later, Ebrahimian et al. (2014) provided a more detailed study of 

contributing factors that influence uncertainty in the evaluation process.  However, the 
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weakness in the frequency domain technique is due to its reduced accuracy when 

dealing with a complex nonlinear mechanism such as more extreme met-ocean 

conditions (Armstrong et al., 2017).  In such situations, time domain analysis such as 

the Monte Carlo time simulation will be chosen due to their level of accuracy (Swain 

& Schmeiser, 1987; Norouzi, 2012; Catelani et al., 2014).  

However, time domain techniques are not efficient as tens of thousands of 

realizations need to be committed to remove the sampling variability (Abu Husain et 

al., 2016).  This leads to computational demand and consequently, a huge investment 

cost.  Most researchers focus on improving the efficiency of the time domain technique 

by integrating the Monte Carlo procedure with other methods such as Latin Hypercube 

Sampling (LHS) and Simulated Annealing (SA) approaches that aim to optimize the 

sample size (Helton et al., 2006; Vořechovský & Novák, 2009; Ebrahimian et al., 

2014).  Later in this research, an advanced method has been developed for better 

accuracy and efficiency on the prediction of probabilistic responses based on time 

domain technique such as new wave theory (Tromans et al., 1991; Cassidy, 1999; 

Cassidy et al., 2001), efficient time simulation (ETS) (Abu Husain, 20013; Lambert et 

al., 2013; Mallahzadeh et al., 2014) and finite-memory nonlinear system (FMNS) 

(Najafian, 2007a, 2007b; Najafian & Mohd Zaki, 2008; Mohd Zaki et al., 2013; 

Mukhlas et al., 2016), with its corresponding development.  However, most of the 

methods had been developed based on linear wave theory. 

Hence, the existing research work can be grouped into two; the fundamentals 

of nonlinear wave theory that use frequency domain in the probabilistic analysis, and 

the development of the time domain method for better efficiency.  There is a lack of 

studies focusing on nonlinear wave modelling with an efficient method for full 

probabilistic analysis.  With the most attentive development of FMNS method, a new 

model needs to be developed to integrate the current development of FMNS (Mukhlas 

et al., 2018) with nonlinear wave model.  As mentioned before, there exists a 

nonlinearity of the wave loading due to the drag component, which has a significant 

effect on both, the frequency spectrum and probability distribution of extreme response 

values (Zheng, 2013; Abdel Raheem, 2014).  Furthermore, the structural dynamics 

effect, and the presence of current and load intermittency in the splash zone also 
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increases the complexity of the problem.  Yet, the contribution of nonlinearity due to 

the wave-wave interaction leads to a more cumbersome solution.  Hence, this research 

will take advantage of the efficiency of the finite-memory nonlinear system (FMNS) 

that is able to reduce the computational effort by using an appropriate model to 

transform the surface elevation into approximate responses without sacrificing its 

accuracy. Details of the development of the model will be discussed. The most 

appropriate model can then be used with excellent efficiency and accuracy to 

determine the extreme offshore structural response. With that, the structure is 

optimized, leading to cost reduction. 

1.3 Aim and Objectives of the Research 

This research attempts to develop an efficient model in the prediction of 100-

year responses for a non-Gaussian stochastic analysis of the offshore structure without 

sacrificing its accuracy. In particular, the objectives are as follows: 

1. To investigate the significant impact of considering all nonlinearities in the 

evaluation of a non-Gaussian stochastic offshore structure  

2. To develop a new model for the prediction of short-term 100-year responses 

for a non-Gaussian stochastic offshore structure  

3. To validate the accuracy and efficiency of the new model by comparing it with 

the corresponding result from Monte Carlo time simulation technique for both, 

short-term and long-term 100-year extreme responses 

1.4 Scope of the Research 

The selection of a suitable offshore platform was made based on the water 

depth.  A fixed offshore platform is fit for a depth of up to 400 m (also known as 

shallow water), and a floating offshore platform is used for deeper depths.  The 
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industry commonly uses fixed offshore platforms for oil and gas production (Edvard, 

2013; Technip, 2014).  Locating a fixed offshore platform in shallow sea waters is still 

feasible and as a result, this research focused mainly on simulating the short-term and 

long-term probability distribution of extreme response values of a quasi-static fixed 

offshore platform according to the nonlinear random wave theory (structural data 

obtained from Atkins Ltd).  It was also tested with and without the presence of a current 

(assuming �̅�= 0.0 m/s and �̅�= ±0.9 m/s as 1.0 m/s is the highest record of current at 

the north sea region (Moghimi et. al. 2005)).  The environmental data chosen in this 

research is based on the extreme environment experienced by the structure (for North 

Sea region provided by Safety and Health Executive, UK), while the probability 

distribution of extreme response values was analysed based on the first excursion of 

failure due to the first upcoming extreme response. 

This research focuses on the condition of North Sea due to available access 

data and its extreme condition that fits with the aim of research.  However, the structure 

will be tested for various conditions of sea state (low, moderate, and high significant 

wave height with 𝐻𝑠 = 5 m, 10 m, 15 m, respectively).  This is important to measure 

the workability of the model development to the local offshore platform that is located 

at the South China Sea region.  There are three operating regions located in Malaysian 

waters, which are Peninsular Malaysia Operation (PMO), Sarawak Operation (SKO) 

and Sabah Operation (SBO).  The hydro-meteorological environment represent by the 

NALL spectrum has classified South China Sea as a partially developed sea with a 

highest significant wave height of 5 m (Chu et. al.,2003; Khaidzi, 2016).  
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1.5 Significance of the Research 

This research could be of benefit to academics as well as the industry. 

Regarding academic, the findings from this research could enable the development of 

a new procedure for an accurate and efficient technique in the derivation of extreme 

non-Gaussian stochastic offshore structural response for further study.  From the 

industry perspective, in general, the new methods can be used as an aid in the design 

and analysis of real offshore structures with high efficiency without sacrificing 

accuracy.  

As previously mentioned, the oil & gas industries are experiencing a rise in 

global demand.  As the cost of development is high, oil & gas operators are looking 

for ways to improve the recovery of resources from existing oil and gas platforms by 

extending their service life.  It is the more economical and productive option since 

decommissioning requires a significantly large cost.  However, structural integrity is 

a significant issue to ensure that the platform is operating well with a minimum chance 

of failure.   

The non-Gaussian stochastic model from this research offers a more efficient 

nonlinear analysis procedure based on time domain method that has a significant 

impact on the integrity of the offshore structure.  Since the technique provides a 

promising accuracy, the confidence level of analysis is dependently increased, which 

compensates for the low factor of safety during the assessment of structural analysis.  

With that, the structure is more optimized, leading to cost reduction.   

Moreover, the developed model is robust and generic, which is assessable 

generally for all kinds of offshore structures (i.e., oil & gas platform, wind turbine, 

renewable energy equipment, etc.).  In fact, it can also be applied for aerospace and 

other industries that are involved in the same concept of reliability required for 

optimization. 
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1.6 Thesis Outline 

This thesis comprises of five chapters, namely the introduction, literature 

review, evaluation of extreme offshore structural responses, analysis and discussion of 

100-year extreme offshore structural responses, and conclusion with recommendation.  

Chapter 1 outlines the aims and objectives of this research based on the problem 

encountered in the industry, then focuses into the specific scope of the study to ensure 

its completeness. 

Chapter 2 discusses in detail the fundamental theory throughout the process of 

design and analysis of offshore structures that allows for the preservation of its 

reliability over the design life.  Since the structure is subjected to the nonlinearities of 

random wave loading, accurate prediction of the statistical properties of its extreme 

response values is required.  Therefore, several techniques will be discussed here in 

developing the probability distribution of extreme response values.  

Chapter 3 is the simulation procedure part.  An overall research flowchart is 

presented.  According to the objectives of this research, a demonstration of the 

evaluation of extreme offshore structural responses based on linear and nonlinear wave 

theory using Monte Carlo time simulation method is done to investigate the importance 

of considering the nonlinearities in the analysis.  This is followed by the model 

development of new approach due to the computational effort of Monte Carlo, by 

taking advantage of the efficiency of the finite-memory nonlinear system.  Then, a full 

procedure based on the appropriate model in simulating a non-Gaussian stochastic 

offshore structural response is developed with a more efficient approach using a finite-

memory nonlinear system known as the FMNS𝑁𝐿 method, according to short-term and 

long-term probability distribution.     

Chapter 4 focuses on the analysis and discussion on the prediction of the 100-

year response based on the evaluation of short-term and long-term probability 

distribution.  The prediction has been examined using both Monte Carlo time 

simulation and  FMNS𝑁𝐿 methods.  The short-term distribution analysis is an initial 

indicator to observe the accuracy and efficiency performance of the FMNS𝑁𝐿 method 
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in predicting the 100-year extreme offshore structural responses, compared to the 

corresponding prediction using Monte Carlo time simulation method.  The 

examination has been done according to low, moderate and high sea state conditions.  

Since it has provided a promising result, the analysis is proceeded with the long-term 

distribution analysis that considers the whole sea state condition based on the Forties 

Fields of the North Sea due to its occurrences of extreme waves.  The analysis has also 

considered the contribution of current along the wave of propagation, either in the 

same or opposite direction.  Additionally, the performance of  FMNS𝑁𝐿 method has 

been evaluated based on its hydrodynamic components; inertia-induced, drag-induced 

and total responses.  To discover the importance of considering the nonlinearity in the 

FMNS𝑁𝐿 method, a comparison with FMNS method has also been examined. 

In the last chapter, which is Chapter 5, the conclusion and recommendations 

will be covered.  This thesis has been concluded according to the listed objectives, 

while recommendations are based on the promising results that can be done for future 

work.  In addition, the output of this research has also been summarized and 

categorised according to the publication of journals, conference proceedings, 

innovation for award and intellectual property.  
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