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ABSTRACT 

Hydroxyapatite polymer nanofibers composites offer many advantages such as 

good osteoconductivity, bone bonding ability, and also mimicking the bone 

extracellular matrix (ECM). In particular, strontium-hydroxyapatite (Sr-HA) has the 

ability to enhance osteogenesis as compare to neat hydroxyapatite (HA). Therefore, 

the Sr-HA has been incorporated within polymer nanofiber scaffolds to develop 

composite materials for bone tissue application.  In this study, biodegradable 

composites scaffolds were fabricated by electrospinning technique. It was composed 

of poly (lactic-co-glycolic acid) (PLGA) and poly (hydroxybutyrate-co-

hydroxyvalerate) (PHBV), optimized at 50:50 weight ratio with a solution 

concentration of 26 % (w/v). The physicochemical properties of the HA and Sr-HA 

nanoparticles were then characterized by field emission scanning electron microscopy 

(FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron 

microscopy (TEM), selected area electron diffraction analysis (SAED), surface area 

analysis, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-

FTIR) and  X-ray diffraction (XRD). Meanwhile, the physicochemical properties of 

the scaffolds, known as PHBV/PLGA, PHBV/PLGA/HA and PHBV/PLGA/Sr-HA 

were characterized by scanning electron microscopy (SEM), EDX, pore size, porosity, 

atomic force microscopy (AFM), water contact angle, ATR-FTIR, and 

thermogravimetric (TGA) analyses. Mechanical properties were quantified by tensile 

test. Other characterizations include bioactivity and biodegradation test were also 

performed. According to the results, optimization of electrospinning parameters had 

produce homogenous and smooth nanofibers with an average diameter of 600 - 700 

nm and porosity of ~78 %. The addition of either HA or Sr-HA nanoparticles has 

improved the surface roughness, bioactivity, and tensile strength of the composites as 

compare to PHBV/PLGA scaffold. The nanofiber scaffolds have suitable mechanical 

properties for bone tissue application with a tensile strength up to ~1.3 MPa and a 

Young’s Modulus of ~ 45 MPa. The scaffolds have slow degradation rate with less 

than 10 % weight loss that is suitable for bone regeneration. Finally, the 

biocompatibility of the scaffolds was evaluated through in vitro cell culture with 

human skin fibroblast cells (HSF 1184) and human fetal osteoblast cells (hFOB 1.19). 

Cellular activities such as morphology, attachment and proliferation, were analyzed 

by SEM, cytoskeletal staining, MTT, and live/dead assay. The results showed that the 

scaffolds have promoted cellular adhesion and proliferation due to their nanoscale 

topography similar to the ECM, in addition to porous and high surface roughness. The 

biocompatibility and cell viability of osteoblast were enhanced with a demonstration 

of greater alkaline phosphatase activity by the PHBV/PLGA/Sr-HA scaffold. In 

conclusion, we proposed that PHBV/PLGA/Sr-HA nanofiber scaffold can be a 

potential material for bone tissue application.    
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ABSTRAK 

Hydroksiapatit-polimer serat-nano komposit menawarkan banyak kelebihan 

seperti keupayaan osteokonduktiviti yang baik, kebolehan ikatan tulang dan juga 

menyerupai matriks ekstraselular tulang (ECM). Khususnya, strontium-hidroksiapatit 

(Sr-HA) mempunyai keupayaan untuk meningkatkan osteogenesis berbanding dengan 

hidroksiapatit (HA). Oleh itu, Sr-HA telah dimasukkan ke dalam perancah serat-nano 

untuk membangunkan bahan komposit untuk aplikasi tisu tulang. Dalam kajian ini, 

perancah komposit bolehurai telah difabrikasi melalui teknik putaran elektro. Ianya 

diperbuat daripada polimer poli(asid laktik-ko-glikolik) (PLGA) dan 

poli(hidroksibutirat-ko-hidroksivalerat) (PHBV), dioptimumkan pada nisbah berat 

50:50 dengan kepekatan larutan 26 % (w/v). Sifat fizikokimia nanopartikel HA dan 

Sr-HA telah dikaji menggunakan mikroskopi pelepasan medan pengimbasan elektron 

(FESEM), spektroskopi penyebaran tenaga sinar-X (EDX), mikroskopi penghantaran 

elektron (TEM), analisis kawasan terpilih difraksi elektron (SAED), analisis kawasan 

permukaan, jumlah refleksi dilemahkan - spektroskopi pengubah inframerah Fourier 

(ATR-FTIR) dan difraksi X-ray (XRD). Manakala, sifat fizikokimia perancah, 

dikenali sebagai PHBV/PLGA, PHBV/PLGA/HA dan PHBV/PLGA/Sr-HA telah 

dikaji menggunakan analisis mikroskopi pengimbasan elektron (SEM), EDX, saiz 

liang, keliangan, mikroskopi kuasa atom (AFM), sudut sentuhan air, ATR-FTIR dan 

termogravimetrik (TGA). Sifat mekanikal perancah telah dikira menggunakan ujian 

tegangan. Ujikaji lain termasuk ujian bioaktiviti dan biodegradasi juga telah 

dijalankan. Mengikut keputusan kajian, pengoptimuman parameter putaran elektro 

telah menghasilkan serat-nano yang licin dan sekata dengan diameter purata 600 - 700 

nm dan keliangan ~78 %. Penambahan nanopartikel samada HA atau Sr-HA telah 

menambah baik kekasaran permukaan, bioaktiviti dan kekuatan tegangan komposit 

berbanding perancah PHBV/PLGA. Perancah serat-nano mempunyai sifat mekanikal 

yang sesuai untuk aplikasi tisu tulang dengan kekuatan tegangan sehingga ~1.3 MPa 

dan Modulus Young ~ 45 MPa. Perancah mempunyai kadar degradasi perlahan dengan 

kehilangan berat kurang daripada 10 % yang sesuai untuk pertumbuhan semula tulang. 

Akhirnya, biokeserasian perancah telah dinilai melalui in vitro kultur sel dengan sel 

kulit manusia (HSF 1184) dan sel tulang manusia (hFOB 1.19). Aktiviti selular seperti 

morfologi, lekatan dan percambahan sel telah dianalisis oleh SEM, pewarnaan 

sitoskeletal, ujian MTT dan hidup/mati. Keputusan menunjukkan perancah 

menggalakkan lekatan dan percambahan selular kerana topografi skala nano perancah 

yang mirip dengan ECM, sebagai tambahan kepada kekasaran permukaan dan 

keliangan yang tinggi. Keupayaan bioserasi dan daya maju sel tulang dipertingkatkan 

dengan aktiviti fosfatase alkali yang lebih besar oleh perancah PHBV/PLGA/Sr-HA. 

Kesimpulannya, kami mencadangkan perancah serat-nano PHBV/PLGA/Sr-HA boleh 

menjadi bahan yang berpotensi untuk aplikasi kejuruteraan tisu tulang.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Research 

Bone defects because of the consequences from injury, infection, disease, 

trauma and degenerative bone loss remain a challenge in global healthcare. Bone 

tissue, when injured, leads to dramatic changes in the quality of patient’s life. It can 

limit the ability to perform basic tasks, such as walking and frequently causes social 

and psychological problems. There have also been deaths from insufficient amounts 

of ideal bone grafts and implanted system failure for bone regeneration (Giannoudis 

et al. 2005). More than 2.2 million bone graft surgery take place worldwide and the 

case of bone injuries could be increased in the future which leads to high demand for 

bone replacement (Murugan et al. 2009).  

Currently, clinical interventions available for the bone defects and diseases 

treatment are relying on bone grafting which involves harvesting replacement tissue 

own by the patient, known as autograft, or transplantation of tissue from a donor 

known as allograft. However, the scarcity of suitable donor organs, particularly due to 

aging population is depending on immunosuppression drugs and the risk of disease 

transmission poses serious health problems that need to be addressed. Further, surgical 

complication rates are high and patients suffer from severe pain, hematoma, non-

union, infections, nerve damage, hernias and fractures at the donor site, in addition to 

the original defect (Babensee et al. 1998, Murugan and Ramakrishna 2005, William et 

al. 2007). Thus, alternative treatments for critical bone defects are urgently needed in 

the current clinical setting. 

Tissue engineering seeks to create an alternative treatment to minimize these 

complications and provides improved patient outcomes. Interdisciplinary field tissue 

engineering involves the utilization of engineering and biological sciences to develop 
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biological replacement material that can restore, preserve or enhance tissue or organ 

function. Bone tissue engineering has become viable approach for the replacement of 

damaged bone tissue through the development of biomaterial substitute or tissue 

engineered scaffold that can completely restore the bone tissue original condition and 

function. The key factors for the success of bone tissue engineering involves the 

fabrication of three-dimensional scaffold that have multiple properties such as 

biocompatible, bio-resorbable, optimum degradation rate, highly porous and 

interconnected pores porosity, good mechanical strength similar to bone, and non-

immunogenic. Furthermore, scaffolds must be osteoconductive that helps bone 

formation by enhancing cell adhesion, proliferation and regulating osteogenic 

differentiation of bone cells (Amini et al. 2012, Henkel et al. 2013). 

Nanofibers, from submicron to a few nanometers in diameter, have recently 

become center of attention in medical and tissue engineering due to their properties 

such as optimum porosity, variable of pore size, high surface area-to-volume ratio and 

can imitate extracellular matrix (ECM) structure of human. Electrospinning uses an 

electric field to convert a polymer solution into continuous polymer fibers and had 

been applied to fabricate fibrous scaffolds that mimic the structure of natural ECM. 

The resulting fibers with continuous morphology and ultrafine structure which 

mimicking ECM structure is an effective method to the development of suitable 

scaffolds for bone tissue engineering (Xie et al. 2008, Agarwal et al. 2009). Selection 

of materials to produce a scaffold for bone tissue engineering application plays a 

pivotal role. The natural bone matrix component is comprising of organic/inorganic, 

collagen, proteins and bone mineral apatite.  To fulfil the needs, the potential of 

biopolymers and their composites materials has been studied by many researches that 

is appropriate for bone tissue regeneration (Murugan and Ramakrishna 2005).  

Of the various synthetic polymers studied as scaffold material, one of the most 

popular biodegradable polymers, poly(lactic-co-glycolic acid) (PLGA), have been 

approved by the U.S. Food and Drug Administration as well as biocompatibility and 

biodegradability. PLGA has been widely utilized as drug carriers, implant, surgical 

sutures, and scaffolds (Haider et al. 2014). On the other hand, biodegradable polyester 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) can be produced by 
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microorganisms via fermentation. Natural origin PHBV polymer has received much 

attention for various applications in medicine due to its favorable properties such as 

thermoplasticity, piezoelectricity, non-toxicity, and biocompatibility. The degradation  

of PHBV is longer than other biodegradable and biocompatible polymers, that results 

in good mechanical integrity of tissue or scaffold (Bai et al. 2015). For these reasons, 

blending these two materials may control and alter the degradation properties of the 

scaffold that suit better for long duration treatment strategies of tissues like bone. 

Hydroxyapatite (HA) is one of the bioactive ceramics which has a structural 

and compositional resemblance to the main component of bone matrix. 

Hydroxyapatite has good compatibility with bone tissue and has osteoconductivity 

property for bone tissue engineering application. The mechanical properties of 

composites can be improved by HA nanoparticles addition and also provide a good 

environment for protein adhesion, osteoconduction and osteoblast proliferation 

(Webster et al. 2001). The biological performance of HA also can be improved by the 

incorporation of bioactive ions such as strontium (Sr2+), magnesium (Mg2+),  and 

carbonate (CO3
2−).  

Among various substitute ions, Sr2+ is producing beneficial effects on bone and 

has been widely explored as bone regeneration materials, because due to its ability to 

increase new bone formation and inhibit bone resorption. Several studies have proved 

that Sr-containing calcium phosphate ceramics enhanced the proliferation and 

differentiation of osteoblast cells. Through in vitro and in vivo studies, strontium-

containing HA promotes attachment and mineralization of osteoblast, osseointegration 

and bone formation (Gopi et al. 2014, Hao et al. 2015). Nevertheless, the studies were 

limited to the synthesis of strontium substituted or modified for bone cement, calcium 

phosphate and bioactive glass (Tan et al. 2014).   

Natural bone is a hierarchically nanostructured composites with the dispersion 

of apatite nanocrystals along collagen fibers (Olszta et al. 2007). The chemical 

compositions and porous structures of natural bones inspire us to design novel organic-

inorganic bone scaffolds (Zhang et al. 2007, Tampieri et al. 2011). Herein, 

electrospinning method was applied to fabricate nanofiber scaffolds to imitate the 



4 

architecture of the natural bone matrix. The use of the electrospinning process has 

shown to be a good method to fabricate polymeric nanofibrous scaffolds with structure 

that could closely mimic the ECM (Zhang et al. 2007).   

The novelty of the current work reside in the combinational use of materials of 

the electrospun composite nanofiber which mimic ECM as scaffold for bone tissue 

engineering application. The PHBV/PLGA polymer provide as temporary 

biodegradable template that could mimic the degradation rate of bone tissue. 

Subsequently, Sr-HA nanoparticles was incorporated into the scaffolds with random 

nano-morphology and high bonding strength, which allows osteoblast cells to live 

directly on the scaffolds, and further proliferate and also differentiate.  As reported in 

literature, strontium-containing hydroxyapatite (Sr-HA) appears to be an interesting 

bone substitute material for its ability for improving bone regeneration (Šupová 2015). 

The advantageous combination of each component may produce synergistic effect on 

tissue regeneration for bone tissue engineering. The scaffold can be preferred for tissue 

engineering of non-load bearing bone defects such as small bone defects, where it 

originally act as supporting and guiding factor that promotes the growth of bone tissue, 

and lastly gradually absorbed in the body. 

 

1.2 Problem Statement 

The development of scaffolds for bone regeneration is becoming essential in 

bone and tissue engineering field. Methods to treat bone defects resulting from trauma, 

tumor resection, developmental anomalies or fracture non-unions include autografts, 

allografts, synthetics or natural material scaffolds. Autografts are considered as the 

gold standard; however, they have several drawbacks of donor site morbidity, increase 

risk of infection and geometry mismatch. There is a need to tissue engineer a patient-

specific bone graft that is autologous in nature to reduce the drawbacks associated with 

autografts and alternative bone grafts (Young and Chapman 1989, Arrington et al. 

1996, Webster and Ahn 2007). 
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Biodegradable polymer nanofibers formation from electrospinning have been 

widely investigated for tissue engineering application. Nanofiber scaffolds made from 

biodegradable polymer has desirable properties such as nanostrucutre, 

biodegradability, optimum porosity, high surface area to volume ratio, support cells 

attachment, migration and proliferation, as well as differentiation linked to nano-

morhology. However most of the biopolymers still lack of bioactivity sites (Frenot and 

Chronakis 2003). On the other hand, stronger bioceramics compared to polymers 

provide a mechanical stability to material scaffold prior to the new bone matrix 

formation by cells. However, ceramics are poor in mechanical properties due to its 

brittleness and fragility. To overcome the shortcomings, ceramic can be combined with 

biodegradable polymers to construct biomaterial composite (Murugan and 

Ramakrishna 2005).  

In conclusion, the possible way to overcome those shortcoming is to develop a 

composite tissue substitute or scaffold that is able to provide a functional repair 

effective in directing cell growth, migration and differentiation in vitro and thereby 

may improve bone regeneration in vivo. 

 

1.3 Objectives 

The overall aim of the work presented in this thesis was to investigate the 

feasibility of the production of bone nanofiber scaffold, through the addition of Sr-

HA, which capable to enhance bone tissue regeneration. The study can be divided into 

several objectives as follows: 

 

1) To synthesize HA and Sr-HA nanoparticles and characterize their 

morphological and physicochemical properties for bone tissue engineering 

application. 

2) To fabricate and optimize composite nanofiber scaffold consisted of PHBV, 

PLGA and Sr-HA using an electrospinning technique. 
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3) To characterize morphological, physicochemical and mechanical properties of 

PHBV/PLGA, PHBV/PLGA/HA, and PHBV/PLGA/Sr-HA scaffolds for bone 

tissue engineering application. 

4) To evaluate bioactivity, biodegradation and biocompatibility of PHBV/PLGA, 

PHBV/PLGA/HA and PHBV/PLGA/Sr-HA scaffolds for bone tissue 

engineering application. 

 

 

1.4 Scope of the Research 

The scope of this research is based on the fabrication of Sr-HA incorporated 

PHBV/PLGA nanofiber scaffold using an electrospinning technique. The scaffold was 

composed of a biocompatible PHBV/PLGA mixture to achieve appropriate 

biodegradation at a slow rate suitable for bone tissue application. The incorporation of 

Sr-HA nanoparticles into the scaffold for osteoconductive and bioactive properties is 

beneficial for bone regeneration to reinforce and enhance biological interaction for 

bone tissue engineering application. The successful formation of nanofibers similar to 

ECM was controlled by the optimization of electrospinning parameters such as 

solution concentratrion and blending ratio of blend polymers which were varied and 

also voltage, tip-collector distance and flow rate which were fixed. 

 

The physicochemical properties of the Sr-HA nanoparticles were characterized 

using field emission electron microscopy (FESEM), energy dispersive X-ray 

spectroscopy (EDX), transmission electron microscopy-selected area diffraction 

(TEM-SAED), surface area analyzer, attenuated total reflectance-Fourier transform 

infrared spectroscopy (ATR-FTIR) and X-ray diffractometer (XRD). Meanwhile, the 

physicochemical characteristic of the Sr-HA incorporated PHBV/PLGA scaffolds 

were characterized using several methods such as SEM, EDX, pore size, porosity, 

atomic force microscopy (AFM), water contact angle, ATR-FTIR and 

thermogravimetric (TGA) analyses.  

 

The mechanical properties of the scaffolds were characterized through a tensile 

test. Another analyses such as bioactivity was conducted by scaffold’s immersion in a 

simulated body fluid (SBF) and the biodegradation property was assessed by scaffold’s 
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immersion in a phosphate buffer saline (PBS). Finally, a biocompatibility 

characterization was carried out to determine the efficacy of resultant scaffolds for 

bone tissue engineering by culturing the scaffolds with human skin fibroblast and 

human fetal osteoblast. Cell viability, proliferation and differentiation were evaluated 

using multiple assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

Bromide (MTT), live/dead, immunofluorescence staining and alkaline phosphatase 

activity (ALP).  

 

 

1.5 Significance of the Research 

Bone tissue has an intrinsic ability to regenerate, repair and remodel. However, 

the increasing prevalence of trauma and diseases related to bones has led to an 

increased demand for bone graft replacement. Besides, with critical-sized bone 

defects, the bone tissue cannot heal over natural lifetime resulting in a permanent 

defect. In addition an autogenous bone graft is associated with donor site morbidity 

while an allograft is associated with infection and disease transmission. Therefore, an 

alternative solution such as tissue engineering which aims at replacing tissue damaged 

is needed to minimize the aforementioned complications. 

 

Bone tissue engineering provides an innovative platform in regenerative 

medicine by the development of novel biological scaffold. The production of nanofiber 

scaffold is seen as a way in providing this biological substitute. The scaffold is said to 

help scaffold materials delivery to the appropriate location in the human body, 

maintain its three-dimensional structure that aids growth of new tissue with suitable 

tissue function. Scaffolds with bioactive property provide better environment than 

current clinical treatments. Bioactive composite scaffolds as bone replacement can 

prevent problem such as donor site morbidity from autograft, comes from patient’s 

own tissue to repair bone site defect. Beside, sterility of bioactive composite scaffolds 

will efficiently reducing the infections risk from allograft, where donated tissue from 

another human donor to the patient to treat the defect. 
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The results of this study could help researchers to achieve more efficient bone 

regeneration and gain new knowledge on how cells behavior can be influenced with 

the development of biomaterials and the design of nanofiber scaffold, with the goal of 

creating new functional tissue and new treatment for patients with bone defect. The 

findings of this study will determine the suitability of the scaffold before being 

implanted into the bone loss. The improvement in bone regeneration also can reduce 

various costs associated with long-term rehabilitation after bone grafting surgery. In 

conclusion, this research is essential for patient with bone defect problem and may 

improve the quality lives of thousands people. 
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