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ABSTRACT 

Ship generated waves (SGW) can cause bank erosion as well as disturbance to 

moored boats especially in the river at estuary due to the restricted area, very high boat 

traffic and shallow water. In this river, the dominant environmental effect is tidal, but 

unfortunately in-depth investigation of this effect has not been conducted before. Tidal 

effect may present the critical issues that are closely related to the different water 

depth, as well as current speed and direction of tide flow due to the boats movement 

at flooding and ebbing condition of the river. The aim of this research was to determine 

characteristic of SGW in the river that have tidal condition, also to obtain allowable 

speed of fishing boat while sailing in the river. Results of a full-scale field experimental 

work during rising and ebbing tides in the Mersing river are presented. The 

displacement hull fishing boat has dimension 14.05  4.35  1 m (length  breadth  

draft) and the planing hull fishing boat has dimension 6.5  1.46  0.8 m (length  

breadth  draft) and both were run at 6, 9 and 12 knots. Wave heights and wave spectral 

energy from SGW of the two fishing boats were analysed and the energy obtained are 

compared to one of the accepted river criteria known as Brisbane River Criteria.  The 

effect of assessing the SGW beside the boats at different distances from the sailing line 

(SL) was also studied using Computational Fluid Dynamic (CFD) simulations. The 

results show that higher energy was created at the shallowest water depth (h=3.6 m). 

As SGW is propagated from 5 m to 13 m off SL with 12 knots, the wave energy density 

was reduced by 1687.6 kg/s2 (38 %) for the displacement hull fishing boat and 29.75 

kg/s2 (83 %) for the planing hull fishing boat. During the field experiment, it was 

found that the SGW has the highest energy when the boat and tide condition are in 

opposite directions. The findings also indicate that in order to minimize river bank 

damage, the displacement hull fishing boat should not exceed a limiting speed of 4.8 

knots during the flooding, slack and ebbing conditions. However, for planing hull 

fishing boat, the allowable speed is less than 9 knots. The findings can be useful for 

the fishing boats operators and local authorities to regulate fishing boat traffic in rivers. 
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ABSTRAK 

Gelombang yang dijana oleh bot (SGW) boleh menyebabkan hakisan tebing 

dan juga menyebabkan gangguan kepada bot-bot lain yang ditambat terutama pada 

sungai yang terletak dekat dengan muara kerana di kawasan ini memiliki kawasan 

terhad, trafik bot yang sangat tinggi dan air cetek. Di sungai ini, kesan alam sekitar 

yang dominan iaitu pasang surut, akan tetapi tiada penyelidikan mendalam dilakukan 

sebelum ini. Kesan pasang surut boleh mengemukakan isu - isu kritikal yang berkait 

rapat dengan kedalaman air yang berlainan, serta kelajuan dan arah arus pasang surut 

berkaitan dengan pergerakan bot semasa air pasang dan surut pada sungai ini. Tujuan 

penyelidikan ini adalah untuk menentukan ciri - ciri pada gelombang yang dijana oleh 

bot nelayan di sungai yang mempunyai air pasang dan surut, juga untuk mendapatkan 

kelajuan bot nelayan yang dibenarkan semasa berlayar di sungai. Hasil kerja ujikaji 

berskala sebenar semasa air pasang dan surut di sungai Mersing dibentangkan. Badan 

bot nelayan jenis displacement dengan saiz 14.05  4.35  1 m (panjang  lebar  draf) 

dan badan bot nelayan jenis planing dengan saiz 6.5  1.46  0.8 m (panjang  lebar  

draf), keduanya berlayar pada kelajuan 6, 9 dan 12 batu nautika sejam. Tinggi 

gelombang dan spektrum tenaga gelombang dari SGW untuk kedua-dua bot nelayan 

dianalisis dan tenaga yang terhasil dibandingkan dengan Kriteria Sungai Brisbane. 

Kesan SGW pada tepi bot berdasarkan jarak daripada garis layaran (SL) juga dikaji 

dengan menggunakan simulasi Pengkomputeran Dinamik Bendalir (CFD). Hasil 

ujikaji menunjukkan bahawa tenaga daripada SGW yang lebih tinggi dicipta pada 

kedalaman air yang tercetek (h=3.6 m). Ketika gelombang bergerak dari 5 m hingga 

13 m daripada SL dengan kelajuan bot 12 batu nautika sejam, ketumpatan tenaga 

gelombang berkurang sebanyak 1687.6 kg/s2 (38 %) untuk badan bot nelayan besar 

jenis displacement dan 29.75 kg/s2 (83 %) untuk badan bot nelayan jenis planing. 

Semasa ujikaji lapangan, didapati SGW mempunyai tenaga yang lebih tinggi apabila 

keadaan bot dan arus bergerak pada arah yang berlawanan. Penemuan juga 

menunjukkan bahawa untuk memastikan kerosakan tebing sungai yang minimum, 

badan bot nelayan jenis displacement tidak boleh melebihi kelajuan 4.8 batu nautika 

sejam semasa keadaan air pasang, tenang dan surut. Manakala, bagi badan bot nelayan 

jenis planing, maksimum kelajuannya adalah 9 batu nautika sejam. Penemuan ini juga 

berguna bagi nelayan dan pihak penguatkuasa tempatan untuk mengawal trafik bot 

nelayan di sungai. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

In recent decades, researches on Ship Generated Waves (SGW) have focused 

on the study of wake wash.  It has become one of the important design criteria in 

addition to the particular dimensions of speed, dead weight capacity, number of 

passenger and manoeuvrability of the ship. Naval architects and shipbuilders also 

consider that the wake wash is an important issue especially to make environmental-

friendly design. 

Macfarlane (2012) reported that SGW or wake wash is influential for the user 

of the waterways and the surrounding environment due to the following: 

i.  Cause shoreline or bank erosion;  

ii.  Make nuisance to moored vessels;  

iii.  Damage jetties and other marine structures;  

iv. Endanger people working or enjoying activities in small craft or close to the 

shore;  

v.  Destroy fragile water plants and disturb the silt;  

vi.  Damage the ecology of intertidal and shallow sub-tidal habitat. 

 

Soomere et al. (2011) also described that SGW would contribute to damage in 

wide archipelago area, narrow straits and inland waterway. Parnell et al. (2015) 

reported that SGW had an effect on shallow water lagoons. Didenkulova and Rodin 

(2013) reported that high amplitude water waves in Tallinn Bay, Baltic Sea induced 

by the regular passing of high speed vessels could cause intense beach erosion and 

disturb marine habitats in coastal zones. Moreover, Kandasamy et al. (2011b) revealed 
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that the wake of high speed passenger ferries caused beach erosion and damage to the 

habitat in Rich Passage between Seattle and Bremerton. 

Recently, research activities were also focused on the phenomenon in rivers. 

The study of ship-generated waves in this area is important because of its shallow and 

very narrow water. The characteristic of river leads to consideration of restricted area.  

Stumbo et al.  (2000) found that the energy of ship’s wake wash in shallow water is 

higher than deep water. Therefore, the river can acquire higher energy from ship waves 

than open sea, which later makes it more vulnerable to erosion than coastal area. 

Some countries have already had detailed discussion about this issue. In 

Australia, many rivers have been explored regarding this phenomenon. Bradbury 

(2005b) revealed that the management in Gordon River tried to monitor wave wake 

from cruise vessel which had maximum wave height criterion. Macfarlane and Cox 

(2004) also studied the phenomenon in Brisbane River and eventually proposed some 

vessel operating criteria based on known erosion indicators such as wave energy and 

period from simple vessel. They also gave recommendation to regulatory authorities 

about the means to control boats in traffic and its associated environmental impact. 

Watterson et al. (2012) assessed that vessel wake resulting from towing activities in 

Tweed River had potential to cause and increase the bank erosion. They concluded 

that this wave has become the dominant erosion mechanism. 

In Europe, a study of SGW in river area has been done by Göransson et al. 

(2014). This research investigated the SGW in the Gota Alv River from the cargo or 

commercial ships that have low speed condition. They found that the generated waves 

triggered sediment transport and erosion along the river bed and banks.  

The ship waves in the USA rivers have also been observed in Severn River. 

Tan (2012) made updated equation model of predicting boat-generated wave heights 

given a set of basic vessel parameters, i.e. vessel lengths, speed and the distance of 

sailing line from the shore. 
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In Malaysia, several experiments and simulations have been performed to 

understand the SGW. The field measurements in Kemaman River and Kilim River 

Geoforest have been conducted by some researchers. Ahmad et al. (2011) explained 

that wave energy was produced by boat generating wave in Kemaman River and 

described that riverbank erosion occurred when the boats navigate the estuary. 

Moreover, Diyana (2017) described the effect of boat speed, the number of passengers 

and boat trim on SGW. Diyana also investigated the speed limit for tourist boats when 

passing through restricted areas. 

Gourlay (2011) explained that the boat generated waves are the major 

contributing factor for shoreline erosion. However, the erosion in the river banks have 

been largely caused by SGW especially at narrows area. Tan (2012) also described 

that wave of passing vessel could create damages to shoreline and disturb aquatic 

habitat. Tan also explained that SGW need to be considered by the Navy during 

clandestine infiltration operation. For that purpose, the boat should be small with low 

wake wash, thus the wave can disappear before shoreline and minimize water noise 

and movement on the river. 

The other recent research on SGW in the river are provided by Yaakob et al. 

(2015), Mao et al. (2016), Thuy et al. (2017) and Saha et al. (2017). Yaakob et al. 

(2015) studied tourism boat at Kilim River using field experiment and CFD simulation. 

Yaakob investigated the draft effect in the boat that simulates the number of 

passengers. Mao observed SGW with field experiment in Xin Xiagang River (a part 

of Yangtse River in China). Mao et al. (2016) developed the numerical model for SGW 

based on depth averaged Non-Linear Shallow Water (NLSW) equations. Thuy et al. 

(2017) have investigated the effects of river vegetation and timber piling on the 

attenuation of SGW that cause erosion at river bank. A numerical model was generated 

based on two dimensional Boussinesq-type equations to predict the ship wave 

prorogation through river vegetation and timber piling. 

Saha et al. (2017) carried out a case study of SGW in Buriganga River, 

Bangladesh using CFD simulation to get the maximum wave height and made the 
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comparison of water based on Kriebel et al. (2003). The speed limitation was also 

proposed to obtain the acceptable wave energy of SGW.  

One source of SGW in river is fishing boats. If the river area is close to sea, 

this area usually has high traffic. When fishing boat passes the river, the boat wake 

wash can cause disturbance on moored boats and loading-unloading activities. In the 

actual problem, when any boat passes on the river, the wave will propagate to moored 

boats and eventually cause motion. As a result, this may cause the moored boats to 

collide or rub against each other. 

Different size and type of boats have been found to produce different effects 

on the wake wash characteristics. The comparison of several SGW researches are 

summarized in Table 1.1. The table shows the research based on year, type of ship, 

research/activity method, Froude Number as well as location of research. Therefore, 

this table provides the information of previous studies of SGW, and will be discussed 

in the next section.  

1.2 SGW of Fishing Boats  

Most studies of SGW were carried out on fast ferry, high speed craft (as of 

patrol boat), as well as cargo ship. As shown in Table 1.1, Stumbo (2000), Belibassakis 

(2003), Osborne et al. (2007), Velegrakis et al. (2007), Dam et al. (2008), Soomere et 

al. (2009), Soomere et al. (2011), Tan (2012), Kandasamy et al. (2011a), Didenkulova 

and Rodin (2013), Kimura et al. (2014), Parnell et al. (2015) and Thuy et al. (2017) 

conducted their respective studies with fast ferry (high speed ship). Ghani and Rahim 

(2008) did the research on a patrol boat, while Göransson et al. (2013) used cargo ship 

in their study. 

In terms of hull type, researchers investigated the catamaran as well as 

monohull. Whittaker et al. (2000a), Osborne et al. (2007), Kandasamy et al. (2011a), 

Macfarlane (2012) used catamaran hull for the study. Yaakob et al. (2012) investigated 

the configuration of asymmetric catamaran hull form. Table 1.1 shows that most 

researchers conducted experiment using monohull. Regarding the Depth Froude 
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Number (Fnd), most researchers applied subcritical, critical and supercritical speed 

regimes.  

There are not many studies on SGW for fishing boats in river area, as observed 

in Table 1.1. However, the investigation of fishing boats SGW is needed because the 

wave instigates erosion easier in the river than in sea shore area, as the river is narrower 

with restricted area characteristics. Most SGW studies in river areas showed that SGW 

increase erosion potential in rivers (Bradbury (2005a); Dam et al. (2008); Ahmad et 

al. (2011); Macfarlane (2012); Goranson et al. (2014); Thuy et al. (2017)). 

In Southeast Asia, many fishing boats are operated in the sea. Based on data 

from Southeast Asian Fisheries Development Centre (SEAFDEC, 2012), the number 

of fishing boats is divided into two length categories: less than 24 meters and 24 meters 

and over.  Table 1.2 shows the number of fishing boats in ASEAN (Association of 

Southeast Asia Nations) countries. The table revealed that the majority of fishing boats 

have length less than 24 meters. The top five countries in terms of number of fishing 

boats is Indonesia, Philippines, Vietnam, Malaysia and Thailand. In particular, 

Indonesia and Philippines have more than 400,000 boats each, due to their nature of 

archipelago islands. 

Most of the fishing boats park in the river nearby estuarine without proper boat 

parking area, which makes the river very restricted. Meanwhile, unsafe traditional 

berths are common. This is the general condition of fishing boat area. Figure 1.1 shows 

an example of the crowded situation in rivers. The impact of SGW in the river can 

result in clashing among boats as well as vibration on traditional berth. In terms of 

erosion, many banks in the river do not have bank protection such as concrete slab, 

therefore they eventually erode when hit by SGW. 
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Table 1.1 Comparison of research work in ship generated wave studies  

No Author (year) Type of ship Method Research Location Depth water condition 

1 Macfarlane,Renilson (1999).  Catamaran Exp. (Model scale, wave probe); Fnd = NA Australia Maritime College Deep water 

2 Whittaker et al. (2000a). 
Catamaran, monohull fast 

ferries 

Exp. (field exp, wave buoy & model scale); Fnd= 0.8 – 

1.1 

Loch Ryan, Belfast Lough Shallow water 

3 Stumbo (2000).  Fast ferries (catamaran) Exp. (field exp, wave buoy); Fnd = 0.7 – 1.2 Rich Passage, Puget Sound Shallow and deep water 

4 Fox Associates (2002). MV Condor Express (ferry) Exp. (field exp, wave buoy); Fnd = NA (Vs=39 kn) Rich Passage, Puget Sound Deep water  

5 Belibassakis (2003).  Fast ferry (small ferry 38 m) CFD ;Fnd=0.5 – 1.25 No info Deep water 

6 Macfarlane and Cox (2004). Patrol boat Exp. (field exp); Fnd = NA (Vs= 5 - 27 kn) Nossa & Brisbane River, AUS Deep water 

7 Bradbury (2005b). Recreational cruise Exp. (field exp); Fnd = 0.5 (Vs= 5 - 6 kn) Gordon River, AUS NA 

8 Osborne et al. (2007). High speed ferry (catamaran) Exp. (field exp, wave gauge); Fnd = 0.91 (Vs= 10 - 45 kn) Rich Passage, Puget Sound Deep water 

9 Velegrakis et al. (2007). Conventional,high speed ferries Exp. (field exp, video rec. ); Fnd = NA (Vs= 17 & 26.5 kn) Cape Lena Beach, Mytilene Deep water 

10 Kumar et al. (2007). Ferry  CFD (Shipflow); Fnd = 0.5-2.6 (Vs= 5 - 30 kn) San Francisco Bay, USA Shallow and deep water 

11 Ghani et al. (2008). Harbour patrol boat (monohull) Exp. (Model scale, wave probe); Fnd = 0.6-1.4 UTM laboratory Shallow and deep water 

12 Dam et al. (2008). Water buses Exp. (field exp., wave gauge); Fnd = 0.45-0.95 Shingashi River, Tokyo, Japan Shallow water 

13 Soomere et al. (2011). Fast ferry (high speed craft) Exp. (field exp, echosounder); Fnd = NA (Vs= 30-35 kn) Tallinn Bay, Baltic Sea Shallow water 

14 Ahmad et al. (2011). Fishing boat  Exp. (field exp, wave gauge); Fnd = NA (Vs= 6 - 16 kn) Kemaman River, Malaysia NA 

15 Kandasamy et al. (2011a). HSC ferry (catamaran)  CFD; Fnd = NA (Vs= 17 & 26.5 kn) Rich Passage, Seattle to Bremerton  Deep water 

16 Yaakob et al. (2012). Asym. catamaran, leisure boat Exp. (Model scale), CFD ; Fnd = 0.1-0.3 UTM laboratory Deep water 

17 Macfarlane (2012). Monohull, catamaran Exp. (Model scale); Fnd = 0.2-2.2 Australia Maritime College Shallow and deep water 

18 Tan (2012). Unified Cruiser (monohull)  Exp. (field exp., video recording ) and  Wave gauge Severn River, Annapolis, USA Shallow water 

19 Marrone et al. (2012). Alliance Vessel – Exp., CFD Exp. (model scale) and CFD;  Italian Ship Model Basin, Rome Deep water 

20 Didenkulova, Rodin (2013). High Speed Ferries (monohull)  Exp. (field exp., video recording ) Tallin Bay, Baltic Sea Shallow and deep water 

21 Göransson et al. (2013). Cargo ship (monohull)  Exp. (field exp., video recording ) Gota Alv River, Sweden Shallow water 

22 Gomit et al. (2014). Exp. in deep water (monohull)  Exp. (model scale) and CFD Universite de Poitiers, France Deep water 

23 Kimura et al. (2014). Sakujima Ferry (monohull)  Exp. (Model scale) by wave gauge Kagoshima Bay, Japan  Deep water 

24 Caplier et al. (2015). monohull  Exp. (model scale) and CFD University of Poitiers, France Shallow and deep water 

25 Yaakob et al. (2015) CFD for wigley hull (monohull)  CFD UTM laboratory Deep water 

26 Benassai et al. (2015). HSC (monohull, catamarans) Exp. (field exp., wave gauge ); Fnd= NA (Vs= 20 - 30 kn) Gulf of Naples, Italy Deep water 

27 Noblesse et al. (2016) Monohull, catamaran CFD; Fnd= 0.58, 0.68, 0.86, 1.58 (monohull), ); Fnd= 1, 2.5 Shanghai Jiao Tong Univ., China NA 

28 Mao et al. (2016) Monohull Exp. (field exp., wave gauge ) and CFD; Fnd = 0.52-1.15 Yangtze River, China Shallow water 

29 Saha et al. (2017) Waterbuses (catamaran) CFD and theoretical; Fnd = 0.6 – 1.07 Buriganga River, Bangladesh Shallow water 

30 Thuy et al. (2017) High-speed ship (monohull) Exp. (field exp., video rec);Fnd= 0.45 – 2.67 Kinh Sang River, Vietnam Shallow water 
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Table 1.2 The number of fishing boats in Southeast Asia (SEAFDEC, 2012) 

No Country 

Number of Fishing Boat 

Less than 24 meters 
24 meters and 

over 
Total 

1 Brunei Darussalam 2,476 4 2,480 

2 Cambodia 7,034 0 7,034 

3 Indonesia 569,105 1,722 570,827 

4 Laos 1,615 0 1,615 

5 Malaysia 49,673 83 49,756 

6 Myanmar 27,000 1,357 28,357 

7 Philippines 472,804 594 473,398 

8 Thailand 33,050 865 33,915 

9 Vietnam 127,700 300 128,000 

 

 

 

 

 

 

 

(a)                                                                     (b) 

 

 

 

 

 

 

   (c) 

Figure 1.1 Fishing boats in the river, (a) Malaysian river (Joysan, 2013), (b) 

Indonesian river (Adi, 2017), (c) Vietnamese river (Lopez, 2015) 

 

1.3 Wave energy of SGW 

There are several known methods to measure the total wave energy of SGW in 

field measurement. In the field study at Kemaman River estuary, the energy generated 

by boat at mangrove area was observed and calculated by Ahmad et al. (2011) using 
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the formula that correlates the energy of maximum wave. In this experiment, the 

researchers showed the calculation of energy of maximum wave (Emax) and energy of 

entire wave train (Etotal). The energy of maximum wave was obtained by using peak 

period at maximum wave height. The formula is valid only at Kemaman River for 

water depth of 0.1 meter to 1.8 meter and the boat speed is around 5 – 30 knots for 

fishing boat and passenger boat. The method to measure maximum wave energy has 

also been used by Stumbo et al. (2000), Macfarlane and Cox (2004). 

Another method to indicate the energy uses wave spectral analysis that can 

represent the total wave energy, not only the energy of maximum wave height. It is 

useful to estimate and filter the wave component. In field measurement of SGW, this 

method is developed by Osborne (2007), Velegrakis et al. (2007), Gourlay (2011) and 

Benassai et al. (2015). Velegrakis et al. (2007) also applied this technique to get the 

significant frequency / period of the wave. Gourlay (2011) showed that this method 

gives a direct energy measure based on the integrated wave elevation time trace. 

Benassai et al. (2015) described new spectral energy analysis to filter the wind sea 

wave component from SGW of High Speed Craft (HSC). Benassai et al. (2015) 

proposed this technique to give more reliable operational strategies and mitigative 

measures of SGW. Besides that, the study shows a new spectral analysis procedure 

that allows the filtering of the wind sea component.Therefore, the SGW component 

can be evaluated separately and both the height and energy density of SGW can be 

estimated. 

1.4 Factors affecting SGW 

Many factors contribute to the SGW/wake wash pattern which is very complex. 

Macfarlane and Renilson (1999) described the factors as environmental factors, vessel 

parameters, and other factors. 

Referring to Table 1.1, all researchers considered the effect of the speed of the 

vessel. In an experiment, Stumbo et al. (1999) observed the SGW with speed and draft 

(vessel parameter). Whittaker et al. (2000) considered speed and water depth. Stumbo 

et al. (2000) added the factors of speed, trim, Depth Froude Number (Fnd) and Length 



 

9 

Froude Number (Fnl) parameters to consider. Macfarlane and Cox (2004) used 

variation of speed for demonstrating the wave height. Kumar et al. (2007) made the 

comparison between speed, water depth, and length Fn. Dam et al. (2008) investigated 

river current velocity, although it was not based on actual current velocity. Ahmad et 

al. (2011) observed the SGW at river with different speeds, water depths and tide 

conditions, but the information on the hull used was not provided. Moreover, they did 

not adequately discuss the SGW during ebbing, slack and flooding on the tide 

condition.  

Goransson et al. (2014) investigated the SGW on Gota Alv River, Sweden by 

using several cargo ships with speed between 5 and 10 knots. They also considered 

water depth and river speed as the environmental factors. On the other hand, Bennasai 

et al. (2015) observed the SGW of HSC at coastal environment. Bennasai ran field 

experiment by using pressure sensor wave instrument to measure wave height. This 

experiment had several factors to consider, e.g. speed and hullform (monohull and 

catamaran), but it lacks detailed information about the tidal condition or change in 

water depth. 

Mao et al. (2016) conducted the field measurement and numerical study for 

SGW of ship at Xicheng canal, China. Speed of ship was considered as a factor in the 

experiment, thus it had several Fnd. The measurement used two types of ship based on 

tonnage with different speeds. Meanwhile, Thuy et al. (2017) also investigated SGW 

of HSC at Ca Mau River, Vietnam. In this field experiment, the speed was the only 

factor considered for SGW. Lastly, Saha et al. (2017) observed the SGW of waterbuses 

at Buriganga River, Bangladesh. In this research, Saha considered factors of speed and 

water depth using monohull in the simulation and theoretical study. 

In terms of vessel parameters, the speed and hullform types were considered. 

Based on Table 1.1, all researchers only use one speed per ship or boat in field 

measurement. However, the wave height due to different speeds is important to 

understand. Therefore, the present study investigates several speeds for the boat with 

two different hullforms, so that the wave height with different speeds can be identified. 
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Tidal condition is an environmental factor which may affect SGW especially 

at the estuary area. Tidal rise and fall lead to different water depth and current velocity. 

The river can be considered a restricted area due to limited width and also heavy boat 

traffic, therefore the tidal will be significant factor affecting the wake wash of boat.  

1.5 Problem Statement 

Many researches on SGW have focused on HSC, e.g. ferries, patrol boat and 

cargo ship. Only two studies (Ahmad, 2011) and (Diyana, 2017) investigated the SGW 

with fishing boat, although the number of this boat is abundant, especially in ASEAN 

countries. Most of the boats are navigated in the river at estuary area during loading 

and unloading activity, parking, and sailing in/out, therefore the traffic is very high in 

this area, and will be very restricted. In estuary, the dominant environmental effect is 

tidal, but unfortunately in-depth investigation of this effect has not been conducted 

before. Tidal effect may present the critical issues that are closely related to the 

different water depth, as well as current speed and direction of tide flow due to the 

boats movement at flooding and ebbing condition of the river. As the width of the river 

is restricted, the energy of SGW beside the boat must also be known in order to get the 

safe distance between fishing boats and other boats. In addition, the speed of boats 

along river area are mainly based on the experience of fisherman, thus there is no 

standard of allowable speed during the navigation in the river. Therefore, it is 

important to indicate the allowable speed along the river. The tide effect can also affect 

the allowable speed of the boats, thus study of this effect is important especially at 

estuary area. If a boat sails in such river with relatively high speed, the SGW may 

cause serious destruction to the river banks and collision between the moored boats.. 

1.6 Research Questions 

i. Does depth fluctuation of water due to tides have significant effect on 

the SGW? 

ii. How does the SGW’s energy beside the boat effect other boats? 
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iii. What is the effect of flooding and ebbing on the fishing boat 

movement against wave height and energy of SGW?  

iv. What is the effect of tide on the allowable speed of displacement and 

planing fishing boat in the river? 

 

1.7 Objective 

v. To determine the effect of water depth due to tidal rise and fall on 

SGW of displacement and planing hull fishing boat. 

vi. To assess the SGW at different width from sailing line.  

vii. To investigate the effect of tidal condition on ship wakes. 

viii. To obtain allowable speed of fishing boat while sailing in the river. 

 

1.8 Research Scope 

ix. The data of water depth and current speed are taken from actual 

condition measured from fishing boat’s sensor.  

x. The study uses field measurements and numerical study as CFD 

(Computational Fluid Dynamic) by using ANSYS CFX. 

xi. The methods to measure and characterize boat wake wash using visual 

observation with digital video are modified from other researchers. 

xii. The analysis uses spectral energy on field measurement. 

xiii. The reflection phenomena in the field experiment is not considered. 

The experiment The data of water depth and current speed are taken 

from actual condition measured from fishing boat’s sensor.  

xiv. The field experiment uses both displacement and planing fishing boats 

(commonly used by onshore fisherman). The experiment run at 



 

12 

Mersing River was considered restricted area due to limited width and 

heavy boat traffic, therefore the tidal will be significant factor 

affecting the wake wash of boat. 

 

1.9 Significance of the Research 

Ship Generated Waves (SGW) of fishing boat in the river is important because 

the river is a restricted area. The study determines the spectral energy analysis of the 

SGW. Besides that, the effect of environmental factors such as tidal effect and vessel 

parameters in speed and hull type are described in accordance with SGW. This 

research is among the first to investigate tidal effect of such phenomenon in the river 

particularly at estuary area in Malaysia, which is important for regulating the river 

traffic especially in crowded areas. The allowable speed is also provided for Mersing 

River considering the energy impact of the SGW on the bank. 

1.10 Organization of the Thesis 

The thesis is organized in five chapters. First chapter presents an overview of 

the current study and provides the objective, scope and the significance of the study. 

Chapter two describes the detailed review of the previous researches related to 

the current work. The chapter elaborates the wave pattern of SGW as per Depth Froude 

Number, the factors influencing in SGW, the present methods to investigate SGW, the 

criteria rules of SGW and the theoretical approach as well as statistical analysis of time 

histories of irregular waves, wave energy and spectrum. 

Chapter three presents the flowchart of research methodology that shows the 

sequence of phases to obtain the objective of the research. The method to obtain wave 

height for field measurement is explained in this chapter. The description of research 

area is also presented. This chapter discusses how the field measurement works from 

the set up to the imaging process to get the wave height Chapter three presents the 

flowchart of research methodology that shows the sequence of phases to obtain the 
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objective of the research. The method to obtain wave height for field measurement is 

explained in this chapter. The description of research area is also presented. This 

chapter discusses how the field measurement works from the set up to the imaging 

process to get the wave height to how to derive the wave spectral energy.  The method 

to get SGW by CFD simulation is also elaborated including the simulation set up, 

meshing process, as well as determining the case study with certain parametric study 

as speed.   

Chapter four shows the result of field measurement activity of displacement 

and planing fishing boat. The result presents the wave height characteristic obtained 

from image processing. Therefore, this chapter describes the wave height for 

displacement and displacement fishing boat. This chapter also discusses the wave 

spectra density for various scenario on displacement and planing fishing boat. The 

CFD result is also presented in this chapter. After that, the discussion the extent of 

results from field measurement experiment and CFD simulation will be provided. The 

explanation of results is divided into four parts with respect to each objective.   

Finally, chapter five describe the conclusion of the research. In addition, the 

recommendation for the future research is presented.  

1.11 Summary 

This chapter shows that SGW at river is very important to study, as waves have 

the potential to destroy the riverside in the long term. The effect is more prominent in 

estuary, which is a restricted area, creating additional exposure leading to greater 

impact. The tidal effect is studied in this reseach by using field experiment and CFD 

simulation. This effect can be influenced by different water depth, width of river and 

effect of the tidal. The factors that influence the wave pattern and methods to determine 

the SGW impact are elaborated further in the next chapter. 
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