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ABSTRACT 

In the multi-purpose hall, variable acoustic elements are required to vary the 

acoustics of the space tailored to the intended use. The variable acoustics elements are 

normally achieved by the variable absorption, variable volume and active acoustic 

system and have been successfully implemented in many halls. However, there is a 

necessity to explore other innovative variable acoustic elements in order to improve 

knowledge in this field. In the engineering field, the origami-inspired structures that 

are made up by folding a flat sheet of material to three-dimensional structures have 

been an increasing topic of interest among researchers in various applications. The 

applications range from sandwich structures to mechanical metamaterials and the 

interest is due to the intriguing characteristics that possessed by the origami-inspired 

structures. For that reason, this research proposed deformable origami structure as an 

element that can vary the acoustic condition. To realize the research ideas, 

comprehensive experimental works were carried out to investigate the feasibility of 

origami structure as variable acoustic element. Two types of origami patterns namely 

Triangular and Miura origami fabricated using three different materials (i.e. 

paperboard, felt and ethylene-vinyl acetate foam material) were investigated in this 

study. The origami structures were characterized by the absorption coefficient through 

sound absorption tests in a 1:5 scaled reverberation chamber. The 1:5 scaled 

reverberation chamber is compiled to ISO 354 (2003) which qualified the chamber to 

conduct sound absorption measurement. The origami structures were tested in a 

reverberation chamber by varying the height of the structure to simulate origami 

deformation using the perimeter-to-area (P/A) ratio method. The result shows that the 

origami structure has the ability to change the sound absorption characteristic by 

changing the height of the structure. However, the choice of material used to construct 

the origami structure has a significant influence on the effectiveness and the frequency 

range in which the absorption coefficient is altered. The study also shows that the size 

of the sample plays a critical role in the determination of the absorption coefficient as 

it introduces the edge effect to the test result. A case study performed in this study also 

indicated that the utilization of deformable origami structure can vary the acoustics of 

a space. 
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ABSTRAK 

Di dalam dewan pelbagai guna, elemen akustik boleh ubah diperlukan untuk 

mengubah keadaan akustik yang bersesuaian dengan tujuan pengunaan. Elemen 

akustik boleh ubah kebiasaannya dapat dicapai melalui serapan boleh ubah, isipadu 

boleh ubah dan sistem akustik aktif dan telah berjaya dilaksanakan di dalam banyak 

dewan. Namun, terdapat keperluan bagi meneroka elemen akustik boleh ubah inovatif 

yang lain bagi menambahbaik pengetahuan dalam bidang ini. Di dalam bidang 

kejuruteraan, struktur berinspirasikan origami yang dibuat dengan melipat kepingan 

bahan rata kepada struktur tiga dimensi telah menjadi topik yang menarik minat yang 

semakin berkembang di kalangan pengkaji-pengkaji di dalam pelbagai bidang.  Bidang 

ini meliputi struktur lapisan sehingga ke bahan meta mekanikal dan minat dipengaruhi 

oleh ciri-ciri menarik yang dimiliki oleh struktur yang berinspirasikan origami. Oleh 

kerana itu, kajian ini mencadangkan struktur origami yang berubah bentuk sebagai 

elemen yang dapat mengubah keadaan akustik. Bagi merealisasikan idea kajian ini, 

ujikaji yang menyeluruh telah dijalankan bagi menyelidiki kebolehlaksanaan struktur 

origami sebagai elemen akustik boleh ubah. Dua jenis corak origami iaitu Segitiga dan 

Miura dibuat dengan menggunakan tiga jenis bahan yang berbeza (iaitu bahan papan 

kertas, laken dan busa etilena-vinil asetat) telah diselidiki dalam kajian ini. Struktur 

origami telah dicirikan oleh pekali serapan melalui ujian serapan bunyi di dalam ruang 

gema berskala 1:5. Ruang gema berskala 1:5 ini menepati keperluan ISO 354 (2003) 

yang melayakkan ruang tersebut digunakan bagi pengukuran serapan bunyi. Struktur 

origami telah diuji di dalam ruang gema dengan mengubah ketinggian struktur bagi 

mensimulasi perubahan bentuk origami dengan menggunakan cara nisbah perimeter 

kepada luas (P/A). Keputusan ujian menunjukkan struktur origami mempunyai 

kebolehan untuk mengubah ciri serapan bunyi dengan menukar ketinggian struktur. 

Namun, pemilihan bahan yang digunakan untuk membina struktur origami 

mempunyai pengaruh yang ketara ke atas keberkesanan dan julat frekuensi pekali 

serapan yang dapat diubah. Kajian juga menunjukkan saiz sampel memainkan peranan 

yang kritikal dalam penentuan pekali serapan sambil mengenengahkan kesan bucu 

terhadap keputusan ujian. Satu kajian kes yang dilaksanakan dalam kajian ini juga 

menunjukkan penggunaan struktur origami yang berubah bentuk dapat mengubah 

keadaan akustik sesuatu ruang. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

The use of a hall for more than one purpose is far from new but the conscious 

design to accommodate more than one acoustic type of performance is relatively 

recent. It has become increasingly apparent that for economic reasons, a hall 

dedicated to just one single use are often unrealistic especially in large cities where a 

degree of flexibility in use is now becoming the norm (Barron, 2009).  

In the case of multi-purpose hall, variable acoustics elements are normally 

included in order to vary the acoustic of the space tailored to the intended use so that 

the acoustic quality for each use can be maximized. The most common variable 

acoustics approaches are variable volume and variable absorption (Barron, 2009; 

Poletti, 2010; Newell, 2012; Long, 2014). Through the variable volume, the acoustic 

of space is commonly varied by the moveable ceilings and coupled spaces. 

Meanwhile, the variable absorption is commonly realized by the adjustable curtains, 

adjustable draperies and moveable panels. Among these two variables acoustics, 

variable absorption approach is simpler compared to the variable volume which in 

practice is difficult to be accommodated. The change of acoustic by the variable 

volume approach has the advantage that it does not affect the sound level compared 

to the variable absorption which reduces the sound level.  

Alternatively, the acoustic of space also can be varied by the active acoustics 

system (Barron, 2009; Poletti, 2010). Through the active system, a wider range of 

acoustic variation can be achieved in medium and large halls which is difficult to be 

achieved by the passive variable acoustics (i.e. variable volume and variable 

absorption). However, the acoustic enhancement by the active system has an issue 

regarding the unnatural sound (Barron, 2009; Poletti, 2010). Due to that, the physical 
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variable acoustics elements are more advantageous and preferable since the change 

of acoustic is realized in a natural way. 

As a conclusion, even though there are some limitations and drawbacks, the 

existing variable acoustics methods are well known and have shown to successfully 

vary the acoustic in many halls. However, this research study purposely not to solve 

the existing limitations and drawbacks but to explore other variable acoustics 

elements in order to acquire knowledge in this area. For this reason, this study 

proposes deformable origami structure as a candidate that could be used as potential 

variable absorption element. 

1.2 Application of Origami Structure 

Origami is the ancient art of Japanese paper folding that can transform a flat 

sheet of paper into a three-dimensional structure. The most common origami fold 

pattern that has gained much attention in the literature is Miura-ori. Miura-ori is 

named after Koryo Miura, a Japanese Engineer who first introduced this type of fold 

pattern to engineering applications. Koryo Miura studied the folding mechanism of 

Miura-ori and applied it in the design of solar panels for use in space (Miura, 1985; 

Nishiyama, 2012). As a result, the solar panels designed by Koryo Miura can be 

folded in a compact form during rocket launch and deploys to a large size once it 

reaches into space. The solar panels successfully flew in 1995. 

To date, Miura-ori has remained the most commonly studied fold pattern and 

has inspired in various engineering applications. For example, Miura-ori has inspired 

in the development of sandwich core structures in aircraft design (Heimbs, 2009; 

Fischer et al, 2009; Heimbs et al, 2010; Hähnel et al, 2011; Heimbs, 2013). The core 

structures based on Miura-ori have shown to provide higher weight-specific bending 

stiffness compared to the conventional honeycomb core. Besides, the ability of 

Miura-ori structure to absorb energy during deformation and distribute the impact 

forces throughout the structure has inspired in the design of energy absorption 

(Tolman et al, 2014; Ma et al, 2018) as well as the design of sound barrier (Yu et al, 
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2019). Furthermore, the auxetic behaviour possesses by Miura-ori structure when 

undergoing deformation also has attracted many studies in the design of mechanical 

metamaterial (Schenk and Guest, 2013; Lv et al, 2014; Eidini and Paulino, 2015; 

Zhou et al, 2016; Kamrava et al, 2017).  

From above, it can be seen that origami has given sources of inspirations and 

the research related to origami has become diverse with time. Therefore, it would be 

very interesting if the origami structure could be studied and explored in other areas 

such as variable acoustics for hall. 

1.3 Deformable Origami Structure 

Figure 1.1 shows an example of Miura-ori folded from standard printing 

paper. The fold pattern of Miura-ori allows the structure to expand and contract in all 

directions. Interestingly, the in-plane deformation behaviour of Miura-ori structure is 

auxetic meaning it exhibits negative Poisson’s ratio, as demonstrated in Figure 1.2 

(Schenk and Guest, 2010). From the figure, when the Miura-ori structure is stretched 

in one direction, the structure also expands in the orthogonal in-plane direction. As a 

result, the geometrical characteristics of the Miura-ori also changing along with the 

deformation of the structure. The geometry of Miura-ori is well defined and 

presented in Schenk and Guest (2013). 

 

Figure 1.1 Example of Miura-ori structure adapted from Schenk and Guest 

(2010) 
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Figure 1.2 Example of in-plane deformation of Miura-ori structure demonstrated 

by Schenk and Guest (2010) 

The ability of Miura-ori to deform and its attractive feature has inspired the 

author to study its absorption characteristics. This is because, if such origami 

structure could provide variable absorption characteristics by deforming its structure 

to the desired configuration, then the findings from this study could assist in the 

design of variable absorption element in the future.  

1.4 Problem statement  

The passive variable acoustics methods such as the variable volume and 

variable absorption methods have successfully been implemented in many halls and 

can provide significant variation of acoustic change. The active system on the other 

hand can provide a wider range of acoustic change compared to passive variable 

acoustics but the use of active system is less preferred to be used in the halls due to 

factor of unnatural sound. Due to that, passive variable acoustics methods are 

commonly found in most halls (Barron, 2009; Poletti, 2010). However, the 

adjustment of the physical variable absorption element (i.e. adjustable curtains or 

adjustable panels) is not conducted in a controllable way. This could be an advantage 

if the variable absorption element could be adjusted in a more controllable manner 

depending on the required acoustic performance of the hall. The idea of using 

deformable origami structure as variable absorption element could be potentially 

studied but to date, no one has tested and examined the potential application of the 

deformable origami structure in any depth. There is lack of literature and 

methodology related to the research of deformable origami structure as variable 
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sound absorber and this forms the basis of the research work. The deformable 

origami structure may become a potential candidate that could be designed as one of 

the variable sound absorption elements but requires proper fundamental research 

studies in order to provide a comprehensive understanding on the acoustic 

characteristics of the origami structure and its relationship with the deformation of 

the origami structure. The identification of suitable origami structure to be used in 

the study is necessary since origami comes in various patterns. Meticulous 

methodology to confidently characterize the acoustic characteristics of the origami 

structure is vital in order to ensure the results obtained in this study are reliable. The 

study of the effect of different pattern and different material on acoustic 

characteristics will enlighten the fundamental understanding that would assist in 

designing origami structure as a viable variable absorption element. 

1.5 Research Objective 

The aim of this research is to investigate the feasibility of the deformable 

origami structure whether it can provide variable acoustic characteristics through the 

deformation of its structure. 

To achieve the above aim, the following objectives have been identified: 

(1) To establish a meticulous methodology for assessing the acoustic 

characteristics of the deformable origami structure. 

(2) To characterize the acoustic characteristics of the deformable origami 

structure based on the experiment in a scale model reverberation chamber. 

(3) To evaluate and present the relationship between the acoustic characteristics 

and origami deformation. 
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1.6 Research Scopes  

The scopes of this study can be summarized as 

(1) The origami structure shall has folding pattern that can be practically 

implemented, able to provide in-plane deformation and possible to be folded 

from different material into a three-dimensional structure without the need of 

machining. 

(2) The adopted methodology shall be based on established International 

Standard guidelines and published works by other researchers. 

(3) Scaled test rig is used to conduct the experimental works. 

1.7 Significance of the Study 

To date, there is no research investigating the feasibility of deformable 

origami structures as the variable acoustic element. In order to utilize the features 

offered by the origami structure, the acoustic characteristics related to physical 

deformation of the origami structure has to be investigated. Therefore, a 

comprehensive study should be conducted to assess and compare the performance of 

origami structure as an acoustic element. Once the acoustics characteristic has been 

identified, this will enable ones to design a control strategy that can actively alter the 

sound behaviour in a room or space using the variation provided by the origami 

geometry. Hence, this research provides the foundation on the design, analysis and 

evaluation of the origami structure capability in acoustic field which  is significant in 

predicting the performance and efficacy when this structure is utilized in multi-

purpose hall. A structured study emphasizing the influence of origami mechanic to 

sound property is important to realize origami as an option to sound quality control 

method. 
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1.8 Thesis Outline 

This thesis contains six chapters including this chapter. In Chapter 2, there 

are two parts of literature reviews. The first part provides a literature review 

explaining the basic concept of acoustics in space and examples of the existing 

variable acoustics found in halls. Since deformable origami structures have not yet 

been studied as a variable acoustic element, the accurate measurement method for the 

acoustic characterization is crucial in this study. Therefore, the second part of the 

literature review focuses on the measurement method. In this part, the issues 

associated with the sound absorption measurement are discussed and the related 

research works are reviewed.  

Chapter 3 explains the methodology used to conduct the research. In this 

chapter, the research flowchart is explained at the beginning of the chapter followed 

by the introduction of two types of origami patterns used throughout the study. The 

characteristics of the deformation of each of the origami pattern along with the 

geometries are described in this chapter. Test configurations, acoustic 

characterization method, construction of origami sample and the measurement 

procedures are also described in this chapter. 

Chapter 4 describes the test facility developed for this study. This includes 

the explanations on the design and construction of a 1:5 scale reverberation chamber 

model as well as the measurement system developed using LabVIEW platform. The 

verification and validation on the developed software and the scaled reverberation 

chamber are also reported in this chapter. 

Chapter 5 presents the findings obtained in this study. In this chapter, the 

analysis procedure for the data obtained from the experiment is explained at the 

beginning of the chapter followed by the discussion on the results from the analyses. 

Chapter 6 is the last chapter that concludes the research findings. 

Recommendation and suggestion to advance the research work are stated in this 

chapter.   
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