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ABSTRACT 

Monitoring and diagnosis of machinery in maintenance are often undertaken 
using vibration analysis. The machine vibration signal is invariably complex and 
diverse, and thus useful information and features are difficult to extract. Variational 
mode decomposition (VMD) is a recent signal processing method that able to extract 
some of important features from machine vibration signal. The performance of the 
VMD method depends on the selection of its input parameters, especially the mode 
number and balancing parameter (also known as quadratic penalty term). However, 
the current VMD method is still using a manual effort to extract the input parameters 
where it subjects to interpretation of experienced experts. Hence, machine diagnosis 
becomes time consuming and prone to error. The aim of this research was to propose 
an automated parameter selection method for selecting the VMD input parameters. 
The proposed method consisted of two-stage selections where the first stage selection 
was used to select the initial mode number and the second stage selection was used to 
select the optimized mode number and balancing parameter. A new machine diagnosis 
approach was developed, named as VMD Differential Evolution Algorithm 
(VMDEA)-Extreme Learning Machine (ELM). Vibration signal datasets were then 
reconstructed using VMDEA and the multi-domain features consisted of time-domain, 
frequency-domain and multi-scale fuzzy entropy were extracted. It was demonstrated 
that the VMDEA method was able to reduce the computational time about 14% to 53% 
as compared to VMD-Genetic Algorithm (GA), VMD-Particle Swarm Optimization 
(PSO) and VMD-Differential Evolution (DE) approaches for bearing, shaft and gear. 
It also exhibited a better convergence with about two to nine less iterations as 
compared to VMD-GA, VMD-PSO and VMD-DE for bearing, shaft and gear. The 
VMDEA-ELM was able to illustrate higher classification accuracy about 11% to 20% 
than Empirical Mode Decomposition (EMD)-ELM, Ensemble EMD (EEMD)-ELM 
and Complimentary EEMD (CEEMD)-ELM for bearing shaft and gear. The bearing 
datasets from Case Western Reserve University were tested with VMDEA-ELM 
model and compared with Support Vector Machine (SVM)-Dempster-Shafer (DS), 
EEMD Optimal Mode Multi-scale Fuzzy Entropy Fault Diagnosis (EOMSMFD), 
Wavelet Packet Transform (WPT)-Local Characteristic-scale Decomposition (LCD)-
ELM, and Arctangent S-shaped PSO least square support vector machine 
(ATSWPLM) models in term of its classification accuracy. The VMDEA-ELM model 
demonstrates better diagnosis accuracy with small differences between 2% to 4% as 
compared to EOMSMFD and WPT-LCD-ELM but less diagnosis accuracy in the 
range of 4% to 5% as compared to SVM-DS and ATSWPLM. The diagnosis approach 
VMDEA-ELM was also able to provide faster classification performance about 6  40 
times faster than Back Propagation Neural Network (BPNN) and Support Vector 
Machine (SVM). This study provides an improved solution in determining an 
optimized VMD parameters by using VMDEA. It also demonstrates a more accurate 
and effective diagnostic approach for machine maintenance using VMDEA-ELM.  
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ABSTRAK 

Pemantauan dan diagnosis dalam penyelenggaraan mesin sering dijalankan 
dengan menggunakan analisis getaran. Isyarat getaran mesin sentiasa kompleks dan 
pelbagai, dan oleh itu, maklumat dan ciri berguna sukar diperoleh. Variational Mode 
Decomposition (VMD) adalah kaedah pemprosesan isyarat terkini yang dapat 
mengekstrak beberapa ciri penting dari isyarat getaran mesin. Prestasi kaedah VMD 
bergantung pada pemilihan parameter awalnya, terutamanya nombor mod dan parameter 
pengimbangan (dikenali sebagai istilah penalti kuadrat). Walau bagaimanapun, kaedah 
VMD semasa masih menggunakan usaha manual untuk mengekstrak parameter awal yang 
mana ia tertakluk kepada tafsiran pakar yang berpengalaman. Oleh itu, diagnosis mesin 
memerlukan masa yang lama dan terdedah kepada kesilapan. Tujuan penyelidikan ini 
adalah untuk mencadangkan kaedah pemilihan parameter automatik untuk memilih 
parameter awal VMD. Kaedah yang dicadangkan terdiri daripada dua peringkat yang 
mana pemilihan tahap pertama untuk memilih nombor mod awal dan pemilihan tahap 
kedua untuk memilih nombor mod dan parameter pengimbangan yang optimum. Satu 
pendekatan diagnosis mesin baru telah dibangunkan, dinamakan VMD Differential 
Evolution Algorithm (VMDEA)-Extreme Learning Machine (ELM). Set data isyarat 
getaran kemudiannya dibina semula menggunakan VMDEA dan ciri-ciri pelbagai domain 
yang terdiri daripada domain masa, domain frekuensi dan multi-fuzzy entropy domain 
telah diekstrak. Didapati bahawa kaedah VMDEA dapat mengurangkan masa pengiraan 
sekitar 14% hingga 53% berbanding dengan VMD-Genetic Algorithm (GA), VMD-
Particle Swarm Optimization (PSO) dan VMD-Differential Evolution (DE) untuk galas, 
aci dan gear. Ia juga mempamerkan konvergensi yang lebih baik kira-kira dua hingga 
sembilan kali kurang lelaran berbanding dengan VMD-GA, VMD-PSO dan VMD-DE 
untuk galas, aci dan gear. VMDEA-ELM dapat menunjukkan ketepatan klasifikasi yang 
lebih tinggi sekitar 11% hingga 20% berbanding Empirical Mode Decomposition (EMD)-
ELM, Ensemble EMD (EEMD)-ELM dan Complimentary EEMD (CEEMD)-ELM untuk 
galas, aci dan gear. Dataset galas dari Case Western Reserve University telah diuji dengan 
model VMDEA-ELM dan dibandingkan dengan model Support Vector Machine (SVM)-
Dempster Shafer (DS), EEMD Optimal Mode Multi-scale Fuzzy Entropy Fault Diagnosis 
(EOMSMFD), Wavelet Packet Transform (WPT)-Local Characteristic-scale 
Decomposition (LCD)-ELM, and Arctangent S-shaped PSO least square support vector 
machine (ATSWPLM) dari segi ketepatan klasifikasinya. Model VMDEA-ELM 
menunjukkan ketepatan diagnosis yang lebih baik dengan perbezaan kecil antara 2% 
hingga 4% berbanding dengan EOMSMFD dan WPT-LCD-ELM tetapi ketepatan 
diagnosis berkurang dalam julat 4% hingga 5% berbanding dengan SVM-DS dan 
ATSWPLM. Pendekatan diagnosis VMDEA-ELM juga dapat memberikan prestasi 
klasifikasi sekitar 6 - 40 kali lebih cepat berbanding dengan Back Propagation Neural 
Network (BPNN) dan Support Vector Machine (SVM). Kajian ini memberikan 
penyelesaian yang lebih baik dalam menentukan parameter VMD yang optima dengan 
menggunakan VMDEA. Ia juga menunjukkan pendekatan diagnostik yang lebih tepat dan 
berkesan untuk penyelenggaraan mesin menggunakan VMDEA-ELM. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview and Research Background 

Condition monitoring and fault diagnosis (CMFD) are widely used in 

maintaining engineering facilities and assets. CMFD helps to improve machine 

reliability and avoid catastrophic failures. Advancement of technology has led to an 

automated or autonomous diagnosis approach, also known as intelligent diagnosis 

integrating artificial intelligence (AI) in CMFD. The intelligent diagnosis approach 

mainly consists of vibration-based analysis (1), oil-based analysis (2), acoustic 

emission-based analysis (3,4), temperature-based analysis (5), ultrasonic-based 

analysis (6), etc. Among these analyses, vibration-based analysis is the most popular 

and commonly used in most intelligent diagnosis analysis. This is due to its simplicity, 

being more sensitive, with low implementation cost and able to provide the most 

intrinsic information of the equipment or machine (7 9). In general, the monitoring 

and diagnosis identifies an abnormal condition and to access the fault type, location, 

and severity of the equipment or machine. In current literature, numerous intelligent 

diagnosis methodologies have been proposed for rotating machinery applications (10

14). The basic vibration-based intelligent diagnosis consists of five main tasks as 

illustrated in Figure 1.1.  

Signal processing is one of the most important tasks in the intelligent diagnosis 

approach. Signal processing can be defined as an analysis and modifying process of a 

signal in order to enhance its efficiency, quality and physical meaning which involve 

mathematical and computational algorithms. For instance, windowing, filtering, 

enveloping, converting the time-domain signal to frequency-domain, frequency-

domain to time-domain and decomposing a signal into its sub-signals. An efficient and 

accurate signal processing method enabled an optimum information to be extracted 

from the raw signals. Hence, it is important in order to produce a robust diagnosis 
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model. The vibration signals of rotating machinery applications are mainly subjected 

to non-linearity, non-stationary, and multi-frequency characteristic which required 

good signal processing methods in order to enhance its physical meaning and quality 

(15,16).       

 

 

 

 

 

 
 

Figure 1.1 Basic intelligent diagnosis methodology 

The capability and superiority of signal processing are crucial in order to 

extract the most important information from the raw vibration signal. There are 

numerous signal processing methods that have been developed such as Fast Fourier 

Transform (FFT), Short-time Fourier Transform (STFT), Wigner-Ville distribution 

(WVD), wavelet analysis, etc. Recent research showed that most researchers have 

moved to a more complex signal characteristic approach in their studies which renders 

the extraction of useful information from the raw vibration signals becoming more 

challenging. These signals require more advanced signal processing methods such as 

empirical mode decomposition (EMD), local mean decomposition (LMD), intrinsic 

time-scale decomposition (ITD), variational mode decomposition (VMD), etc.  

Variational mode decomposition (VMD) is a recent signal processing method 

developed in 2014 which decomposed raw vibration signals into sets of sub-signals 

called variational mode functions (VMFs). The VMD method has been used in many 
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areas of studies such as machine diagnosis (17,18), speech recognition (19), image 

processing (20), air quality indexing (21), oil price forecasting (22), pipeline 

monitoring (23), and financial and economic forecasting (24). This method has the 

ability to provide more accurate and superior diagnosis results, especially in fault 

visualization. It also has been used in some rotating machinery diagnosis studies. 

Figure 1.2 shows the recent publication number of the VMD method for rotating 

machinery studies based on three different literature database. The VMD method has 

the capability to solve the mode mixing problem in many signal processing method. It 

also provide an excellent result in filtering the noise from the input signals. The 

performance of the VMD method is totally depends on the accuracy of its input 

parameters value. Developing a robust selection method to select accurate input 

parameters value for the VMD method is therefore important.  

Figure 1.2 VMD publications per year from a different database 

This research study was intended to develop an automated and robust method 

for selecting the optimized input parameters for the VMD method using a meta-

heuristic algorithm known as differential evolution algorithm (DEA). An effective 

minimization fitness function also need to be developed in this study to enhance DEA 

optimization result and applicable to be used for all rotating machinery vibration 

signals. A new machine learning algorithm called as extreme learning machine (ELM) 

was used for fault classification in this research based on multi-scale domain features 

consists of time-domain statistical features, frequency-domain statistical features, and 

multi-scale fuzzy entropy features. 
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1.2 Problem Statement 

Numerous signal processing methods have been used for rotating machinery 

diagnosis to provide more efficient and effective intelligent diagnosis. In recent years, 

a signal processing method by decomposition has been widely used in fault diagnosis 

due to its capabilities to deal with complex, non-stationary and non-linear signals. 

EMD is one of the most popular decomposition methods that has been used in many 

rotating machinery diagnoses. The EMD method however has an inherent mode 

mixing problem and it is sensitive to noise (25). This therefore led to the improvised 

versions of EMD being proposed to solve the EMD problem. The VMD method is one 

of the methods which can address this major problem in the signal processing method 

by decomposition (17,25).  

The VMD method has merits over other signal processing methods due to its 

capability to provide more accurate and efficient decomposition results (25). It is also 

capable to decompose a non-stationary, non-linear and multi-component signals into 

sets of VMFs which make this method is suitable to deal with the complex raw 

vibration signals (25). The major issues of the VMD method requiring attention relates 

to the selection method of its input parameters in particular the number of mode,  and 

the balancing parameter, . The accuracy of selecting these parameters for the VMD 

method is important in order to have a good decomposition result and also to provide 

a better physical meaning of a signal. Inaccurate sets of these input parameters may 

lead to an under-decomposed problem, over-decomposed problem and signal 

information losses. Developing a technique to select the optimized input parameters 

value for the VMD method is therefore an important research direction which has been 

considered as an open research problem by researchers (17,25). The technique is 

basically a selection technique to select an optimized the input parameters value for 

the VMD method which are  and . This selection technique would provide an 

accurate number of sub-signals from the VMD method.    

There are currently three different approaches to solve this problem, i.e. 

frequency spectrum approach, iteration approach, and optimization approach. The 

automatic selection method for the VMD input parameters using meta-heuristic or 
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optimization algorithm is one of the most recent approaches proposed and considered 

as the best solution to the problem. This is due to its capability to do a selection for  

and  simultaneously and automatically. There are however two limitations rise when 

using this optimization approach which is a long computational time and the suitability 

of fitness function. The implementation of a meta-heuristic algorithm will increase the 

computational time due to its process to find the global optimum solution that requires 

the VMD method to be decomposed repeatedly. Generally, the VMD decomposition 

would only run for 15 to 20 times in iterative approach whereas the VMD 

decomposition would run for more than 20 times and up to hundreds times which is 

based on the generation number of meta-heuristic algorithms in optimization approach 

(26). The suitability of fitness function would also become a problem as some fitness 

functions may work for some signals and it may not work for other signals (27). For 

example, a fitness function used in optimizing VMD input parameters for bearing 

vibration signals would not work for gear vibration signals or vice versa (27). This 

study therefore aims to address these issues and proposed a robust parameter selection 

method for the VMD method. 

1.3 Research objectives 

In this research, the main purpose was to formulate an intelligent diagnostic 

models based on VMD, DEA, and ELM using vibration signals. To achieve this target, 

the objectives of this research were: 

1. To establish an automated selection method for selecting the optimized 

input parameters value for the VMD method.   

2. To formulate an effective fitness function for the meta-heuristic algorithm 

for selecting the optimized VMD input parameters value for rotating 

machinery vibration signals.   

3. To establish an intelligent diagnosis approach for rotating machinery 

diagnosis based on VMD, DEA, and ELM.  
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1.4 Significance of the study 

The research contribution of this work was in the field of vibration signal 

processing and rotating machinery diagnosis as follows: 

1. Provide an improvement of the recent signal processing method which was 

the VMD method that would enhance its performance and capability to be 

used for rotating machinery signals in the diagnostic approach.  

2. Provide an effective fitness function to be used in the meta-heuristic 

algorithm for optimizing the VMD input parameters.  

3. The features extracted from the reconstructed signal of the proposed 

method was able to provide higher sensitivity and accuracy in fault 

classification with an improvement of about 10 % higher classification 

accuracy result.  

4. Provide an accurate and effective intelligent diagnosis approach for 

rotating machinery applications based on proposed method and ELM.  

1.5 Scope of the study 

This research study covered the intelligent diagnosis steps in data acquisition, 

signal processing, feature extraction, and fault classification, excluding the feature 

selection procedure, based on vibration signals. The signal processing methods used 

was VMD. EMD, EEMD, and CEEMD that compared the sensitivity of the feature in 

this study. Multi-domain features consist of time-domain features, frequency-domain 

features, and multi-scale fuzzy entropy features were used. The machine learning used 

here was the extreme learning machine (ELM). The backpropagation neural network 

(BPNN) and support vector machine (SVM) were used for comparison. For 

experimental work, a test rig with bearing and shaft applications were used. Bearing 
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consisted of healthy, inner race with 1.5mm defect, outer race with 1.5mm defect and 

ball with 1.5mm defect were used. Shaft with healthy, slit crack fault and v-notch fault 

were used. Datasets for gearbox consists of healthy and faulty data from the online 

database were also used for gearbox application in this study. A constant operation 

speed was used in all experiments. All experiments were conducted under controlled 

room condition. Signal samples were extracted from each shaft, bearing and gearbox 

datasets. VMDEA was applied to all signal samples to select optimized parameter for 

VMD decomposition and VMDEA-ELM applied for fault classification for each 

application.     

1.6 Thesis structure 

Chapter 1 presents the background of the study, objectives and significance of 

the research. Chapter 2 presents a literature review on the conventional and current 

signal processing methods, advantages and limitations of the VMD method, current 

solution to the VMD limitation, research progress on rotating machinery CMFD and 

research gap. Chapter 3 presents theoretical background for the VMD, DEA and ELM, 

construction of the objective function, proposed VMDEA method, proposed VMDEA-

ELM method and the experimental setup. Chapter 4 presents the VMDEA 

performance and its comparison with other methods. Chapter 5 presents the diagnosis 

performance of the VMDEA-ELM and its comparison with other methods. Finally, 

the research conclusion and the recommendations for future research work are 

summarized in Chapter 6. 
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