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A B S T R A C T

Explosive increase of dataset features may intensify the complexity of medical data analysis in deciding necessary treatment for the patient. In most cases, the
accuracy of diagnosis system is vitally impacted by the data dimensionality and classifier parameters. Since these two processes are dependent, conducting them
independently could deteriorate the accuracy performance. Filter algorithm is used to eliminate irrelevant features based on ranking. However, independent
filter still incapable to consider features dependency and resulting in imbalance selection of significant features which consequently degrade the classification
performance. In order to mitigate this problem, ensemble of multi filters algorithm such as Information Gain (IG), Gain Ratio (GR), Chi-squared (CS) and Relief-F
(RF) are utilized as it can considers the intercorrelation between features. The proper kernel parameters settings may also influence the classification performance.

ence, a harmonize classification technique using Particle Swarm Optimization (PSO) and Support Vector Machine (SVM) is employed to optimize the searching of
ptimal significant features and kernel parameters synchronously without degrading the accuracy. Therefore, an ensemble filter feature selection with harmonize
lassification of PSO and SVM (Ensemble-PSO-SVM) are proposed in this research. The effectiveness of the proposed method is examined on standard Breast
ancer and Lymphography datasets. Experimental results showed that the proposed method successfully signify the classifier accuracy performance with optimal
ignificant features compared to other existing methods such as PSO-SVM and classical SVM. Hence, the proposed method can be used as an alternative method
or determining the optimal solution in handling high dimensional data.
1. Introduction

In machine learning, redundant data are unfavourable as it consti-
utes numerous problems. Generally, redundant data occurs when an
nformation of the same entry being duplicated inconsistently on the
ame datasets and resulting wasteful data redundancies. Data redun-
ancy might also exist in the datasets due to coding inefficiency or
vercomplex data storing processes which may leads to many issues
aused by accessing the wrong redundant datasets. Consequently, the
xplosive increase of redundant data might consume the storage of
emory space over time and raise the dimensionality issues known

s the ‘‘curse of dimensionality’’ in handling high dimensional data
nalysis.

Several typical issues in data analysis raised by redundant data are
oss of accuracy due to explosive increase of irrelevant features and
ias due to ambiguity of the feature’s distribution. Some classifiers for
ecision making tools such as SVM and other classification techniques
ould not perform accurately when too many irrelevant features were
ncluded in the classification tasks. On the other hand, the issues of
ata redundancy in medical dataset raised when creating diagnosis
rom case files. Redundant data cause much greater affect as the
isease diagnosis will influence the proper treatment a patient should
eceive especially in cancer prediction, as it is crucial to discover the
ancer recurrence and the diagnosis involved in the treatment of a
articular patient. Consequently, the analysis of cancer prediction could
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be misclassified due to the biased of redundant features during the
classification process.

Accuracy is a major issue in handling high dimensional dataset
with redundant features as it may influence the reliability of the data
analysis results (Hamouda et al., 2017; Xue et al., 2021). The diagnosis
accuracy of breast cancer, heart disease, diabetes, and other diseases
are highly depending on the quality of input data used by medical
experts. Most medical datasets consist of numerous features related to
the patient’s medical information. The escalating number of features
has increased the computational complexity which tremendously de-
grade the accuracy of classification models. Besides, redundant features
may contain irrelevant information and less beneficial to be used in
disease prediction. Hence, feature selection is required for eliminating
redundancy and irrelevant features effectively to improve the accuracy
of classifier performance.

Feature selection refers to the process of selecting features from
a dataset to describe information of a particular data (Miao & Niu,
2016; Xue et al., 2021). Feature selection can be categorized into
filter, wrapper, and embedded techniques. In filter techniques, features
are evaluated using simple ranking criteria based on dependency,
distance measures, entropy value or feature score which ranked ac-
cording to the intrinsic values (Raj & Mohanasundaram, 2020). Filter
techniques are independent as it does not require any classification
algorithm employment which particularly efficient in dealing with the
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high dimensional data. In contrast, wrapper and embedded techniques
requires certain classification algorithm in evaluating the significance
of features to produce more accurate prediction (Zhang et al., 2019).
However, the involvement of classification algorithm in wrapper and
embedded techniques tend to provide fewer effective results due to high
consumption of storage space and computational time. Consequently,
filter techniques are much preferred due to the flexibility and simplicity
of ranking based evaluation.

In recent years, filter techniques such as Information Gain (IG), Gain
Ratio (GR), Chi-squared (CS) and Relief-F (RF) were recommended as
the most eminent and convenience filter algorithm for handling high
dimensional data due to its simplest ranking strategies and (Bommert
et al., 2020). IG, GR, CS, and RF produce better classification accuracy
when the irrelevant features are eliminated from the dataset using a sta-
tistical ranking score evaluation and a set of threshold values. Features
with the highest ranking score that exceed the threshold values are
selected as significant whereas features that does not exceed the thresh-
old values are not included into the classification tasks (Alirezanejad
et al., 2019). However, the accuracy of classifier performance such as
SVM still severely affected when the total number of selected features
from each filter algorithm are too large and too small. The cause of this
imbalance is because the independent filter algorithm only focuses on
evaluating features individually instead of considering the interactions
or dependencies between features which made them still unable to
produce the optimum number of features relevant for classification and
cause the classifier to perform poorly (Ali et al., 2019).

Consequently, ensemble feature selection using multi filters algo-
rithm were proposed to handle the imbalance selection of features in
datasets. Dongare et al. considered Correlation based Feature Selection
(CFS) to derive the initial subset of features and then further analysed
the best selected features using filter ranking such as IG, CS, RF and
Symmetrical Uncertainty (SU). The ensemble feature selection shows
an improvement of classification in terms of dimensionality reduction
by reducing the irrelevant and redundant features while obtaining
the topmost significant features using multi filters algorithm ranking
approaches (Dongare et al., 2018). Singh et al. considered CFS and SU
to identify the significant features by partitioning the ranked features
and evaluate the symmetrical uncertainties and correlation of each fea-
ture in the ranked list simultaneously (Singh et al., 2014). The results
produce a scalable and effective performance as it synchronized tuples
of feature simultaneously which allow more evaluation of potential
features in high dimensional dataset. This proved that assemble of multi
filters algorithm highly improves classification accuracy performance
such that the advantage of ranking based techniques allows redundant
features can be eliminated, features with highest correlation can be
determined, and the independently weak but strong in group features
can be identified (Canedo et al., 2012). Therefore, in this study, an
ensemble based multi filters feature selection will be utilized before
the classification process.

One of the most reliable classification algorithms that widely
adopted for various range of problems is SVM. As this study focuses
on medical data, SVM has shown to provide satisfying performance in
classifying various types of diseases especially in cancer data (Huang
et al., 2018; Lee, 2019). An optimal SVM classifier performance can
be distinguished dynamically even when handling lower dimensional
data. Although SVM provide a reliable classification performance, it
is quite sensitive towards the kernel parameter settings. For instance,
Radial Basis Function (RBF) is the common kernel of SVM that consists
of cost function parameter (C) and kernel function parameter (y). An
improper selection of C and y parameters could consequently influence
the selection of optimal features and negatively affect the accuracy
performance. The sensitivity of kernel parameters settings can be
reduced by employing a search technique that capable to optimize the
optimum values of C and y. Since the values of classification parameters
could also influence the selection of features, a separate optimization
process among these two aspects could restrain the aim of achieving
2

the optimal solution of datasets (Rani & Ramyachitra, 2018; Xue et al.,
2019). Hence, a harmonize optimization process is essential to optimize
the searching of C and y parameters while determining the optimal
number of significant features synchronously without degrading the
accuracy performance.

PSO is an outperformed search algorithm which known to pro-
duce an efficient optimization using less parameters and faster rate
of convergence in the searching process (Huang & Dun, 2008; Xue
et al., 2019). This has been proven in several studies that have applied
PSO technique in various classifier including SVM. Improvement of
PSO and SVM synchronization is due to the reason that PSO is easily
employed for parallel processing where the searching of optimal signif-
icant features and SVM parameters values can be tuned synchronously
to determine the set of optimal features with highest accuracy per-
formance. The less parameters usage in PSO algorithm provide less
sensitive impact towards SVM solutions compared to other heuristic
algorithms (Xue et al., 2016). Besides, PSO is capable to generate
robust solutions towards SVM classification with a lot faster training
time and stable convergence rates than classical SVM. Based on the
aforementioned advantages, PSO and SVM is employed synchronously
for harmonize classification in this study.

In this study, we proposed an ensemble based multi filters feature
selection by IG, GR, CS and RF with harmonize classification by PSO
and SVM to improve the classification in high dimensional medical
data. It is believed that the acceptable results presented by the proposed
method can be used as a possible tool to assist the medical experts
for proper disease diagnosis and better decision making. Other main
contribution of this paper includes (1) an optimum top significant
feature to be used in determining the disease prediction can be iden-
tified based on ensemble filters feature selection, (2) an enhanced
SVM classifier that harmonized with PSO can significantly improve the
classification performance by optimizing feature selection with SVM
parameters synchronously, (3) the appropriate combination of C and
y can be determined using CCD method for optimal solution.

The rest of this paper is organized in the following manner. Sec-
tion 2 will describe the literature review and related works. Section 3
explains the implementation of the proposed method. Section 4 dis-
cusses the experimental data and presents the analysis results. Finally,
the summary and conclusions are provided in Section 5.

2. Related Works

In this section, discussions on the literature of IG, GR, CS and RF
and the implementation of ensemble IG, GR, CS and RF for ranking
and assemble of relevant features based on feature’s occurrence rate are
described. Next, SVM which applied as classifier are explained. Finally,
the harmonize classification of PSO and SVM which employed in this
study is also discussed.

2.1. IG, GR, CS, and RF as Ensemble Filters

IG determine the relevance of features by calculating the informa-
tion gain between the features and class labels to measure their level
of dependence (Fahrudin et al., 2016). To obtain the ranking score,
IG must evaluate the measure of entropy value in each attribute as
its relevance score. The highest information gain is equivalent to the
smallest entropy value in which a feature is considered relevant if
it obtains high information gain. This means the decrease of entropy
value indicates the information is gained based on the new added
information. However, IG is biased towards features with large number
of distinct values. This proved that IG may lead to overfitting issues
due to its inability to handle redundant features since the feature are
selected in univariate way.

GR is utilized to improve the biased of IG towards features with
large distinct values (Dai & Xu, 2013). GR determine the relevance of

features by adapting branch mechanism to evaluate the significance of
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information using the measure of entropy value. The size and number
of branches are considered in identifying the significant features. Based
on the branch mechanism, an evenly distributed information belongs
to multiple branches will produce higher gain ratio value whereas an
uneven information belongs to a single branch will produce smaller
gain ratio value.

CS is utilized to test the independence of data between two features
by measuring how these two features deviates each other (Lee et al.,
2011). The aims of CS are to identify features which are highly depen-
dent. This means when the two features are independent, smaller CS
value will be obtained whereas the higher CS value indicates that the
features are highly dependent which can be selected for training tasks.

RF calculates the relevance of features using continuous testing to
evaluate the difference of features weight in the similar class (nearest
Hit) and different class (nearest Miss). The significant feature is selected
based on its ability to separate instance from different classes. This
means that feature with higher score is indicated by the higher feature’s
weight in the similar class (high nearest Hit) and lower score feature
is indicates by the higher feature’s weight in the different class (high
nearest Miss). RF is highly capable in handling an incomplete and multi
class data (Urbanowicz, Meeker et al., 2018).

IG, GR, CS and RF are univariate filters algorithm which indepen-
dently calculates the rank of features without including any classifiers
where its corresponding scores are determined by the specific ranking
evaluation in each filter. Due to the computational efficiency and sim-
ple ranking interpretation, IG, GR, CS and RF are mostly recommended
for feature selection. However, these independent filter algorithms have
major disadvantage in which they do not considers the influence of the
selected features subset on the performance of training algorithm and
resulting an imbalance number of selected features. This may lead to
the problem of finding the optimal feature subset.

Therefore, combining multi filters algorithm is highly suggested as
it capable of handling redundant features and balance out the selection
of features before classification tasks (Hancer et al., 2018; Pardo et al.,
2019). This research utilizes multi filters algorithm feature selection to
rank the features according to its relevancy and combine the ranked
features output by considering the rate of features occurrence across
each filter, thus increasing the classification accuracy by identifying the
top significant features subset significant for classification.

2.2. Support Vector Machine (SVM)

SVM classification model is a supervised learning that can analyse
and recognize the patterns of data. The performance of SVM is highly
influenced by the values of kernel parameter and types of kernel
function that are selected in the training task. The purpose of kernel
function is to constructs a nonlinear hyperplane in an input space to
perform the classification (Huang et al., 2018).

In this study, RBF kernel function which consists of regularization
parameter (C) and kernel function parameter (y) is employed. C also
known as cost penalty parameter identifies the trade-off cost between
reducing the training error and complexity of the model, whereas y
determines the mapping of nonlinear hyperplane from the input space
into high dimensional feature space. The optimal parameter values of
these parameters are determined using cross-validation method.

2.3. Particle Swarm Optimization (PSO)

PSO is one of the most common metaheuristics searching algorithm
developed by Kennedy and Eberhart (Assarzadeh & Nilchi, 2015). PSO
algorithm emulates the interactions of swarm behaviour in nature such
as bird flocking, fish schooling and ant colony to share food informa-
tion. PSO has been applied to various research areas in optimization
and combination with other existing algorithms. PSO algorithm per-
forms the search of the optimal solution by agents known as particles,

which direction are adapted by two positive acceleration constants such p

3

as cognitive and social learning factor (C1 and C2) and two random
parameters (r1 and r2) which set within (0, 1), and inertia weight (w)
Harb & Desuky, 2014). In general, the particles are scattered randomly
o stimulate the search in all possible locations. An optimal position of
ach particle is influenced by its best individual position and the best
roup position but tends to move in random direction. Each particle
s defined by two vectors named position and velocity, where each
article changes its position corresponding to the new velocity.

The primary advantage of PSO is that it requires smaller number
f parameters to be tuned and constraints tolerance compared to other
ethods such as Genetic Algorithm (GA) and Ant Colony Optimization

ACO) (Assarzadeh & Nilchi, 2015; Xue et al., 2021). Previous studies
ave illustrated that PSO is much preferred for optimization due to its
trong exploration ability in searching the optimal solution using simple
athematical operators (Prasad et al., 2018; Zeng et al., 2018). Due to

he memory and knowledge of the solution reserved by all particles,
he strong exploration ability is produced and provide the exchange
f information behaviours between particles in solving optimization
roblems. In terms of memory space, the computational time of PSO
oes not easily influenced by the number of features, thus producing
ower computational cost (Sakri et al., 2018).

Meanwhile, the computational time for GA in searching the optimal
olution are highly influenced by the number of features in the search-
ng process which consequently reduce the computation efficiency
Moslehi & Haeri, 2019). Even though GA is quite effective for rapid
earching in less recognized spaces, the usage of complex operators
uch as crossover and mutation tends to produce poor optimal features
Dankolo et al., 2017). In addition, the absence of memory in GA may
ause the knowledge of particle to be easily destructed by the changes
n population. In comparison to GA, ACO also consumed higher search-
ng time in the optimization process which may increase high tendency
n arriving at local minima (Ghimatgar et al., 2018). Besides, as the
ptimization process of ACO can stop in single area, it is incapable to
chieve the optimal solution. Due to these reasons, PSO is proven to
e more reliable and qualified the requirements for optimum searching
olution based on its capability to perform synchronous optimization
rocess with any classifier particularly SVM using swarm intelligence.

.4. Synchronous Optimization of PSO and SVM

Based on literature studies, hybrid implementation of PSO have
een adapted to solve the problems of multi objective optimization in
arious studies. For examples, Xue et al. (2019) utilized PSO to tune
he SVM parameters (C, y) for gene selection in large microarray data.
imilarly, Zeng et al. (2018) employed PSO in determining C and y for
mproving the classification of high dimensional Alzheimer’s disease
ata. The proposed PSO-SVM approach outperform better accuracy
erformance in disease prediction compared to GA and standard SVM.
his is because a single PSO searching might be inefficient for large
cale problems due to time complexity and risk of falling to local
inima that might require multi objective optimization.

In terms of computational complexity, incorporating PSO may also
onsists of several limitations regarding the particle’s velocities dimen-
ion that determine how large the search space is permitted for each
article can take (Raj et al., 2016). According to previous studies,
hey found that the particles may not explore further than local op-
imum areas appropriately when the velocity is too small, whereas
f the velocity is too high, the particles could pass a higher optimal
olution (Xue et al., 2019). However, since PSO can be implemented
asily for parallel processing with any classifier particularly SVM, the
earching of optimal SVM parameters and significant features can be
onducted simultaneously without degrading the accuracy using swarm
ntelligence.

Generally, the harmonize classification of PSO and SVM works
y initializing the position and velocity of the particles. Then, the

arameters C and y were entered, and the fitness of each particle was
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assessed using the fitness function. The optimum significant feature in
the data is determined by evaluating the fitness of training accuracy of
the particles. The best individual and global positions with the highest
fitness values were updated. Next, the new position and velocity of each
particle were updated. The searching process stops when the maximum
number of iterations (100) is achieved or when the improvement of
fitness function between two consecutive iterations is lower than the
specified minimum amount of improvement even though as slightest
as 0.0001.

Based on the related works, several research gaps were highlighted.
Firstly, it is observed that most independent filter algorithm only
focused on evaluating the intrinsic characteristics of features and ig-
noring the features interactions which indicates that an independent
filter algorithm still lacks considering features dependencies (Ali et al.,
2019). Consequently, imbalance number of irrelevant features that may
contribute to poor classification accuracy were produced and resulting
in difficulty to identify features that accurately significant for classifi-
cation. Secondly, the tuning of parameters C and y using grid search
method are computationally prohibitive due to the requirements of
high parameters range which could led to impossibility in achieving the
optimal accuracy when the optimization and classification processes
are conducted separately (Wang & Chen, 2020). Therefore, the main
advantage of proposed ensemble multi filters feature selection based on
the benefit of IG, GR, CS and RF is to effectively eliminate irrelevant
features prior to classification with the consideration of features oc-
currence. Then, the implementation of harmonize classification method
based on the reliability of PSO and SVM using CCD search method were
conducted synchronously to attain the optimal solution.

3. Proposed Method

The proposed method consists of Phase 1, the ensemble multi filters
feature selection process and Phase 2, the harmonize classification pro-
cess. In the first phase, four filters algorithm are utilized for ensemble
feature selection through combination of IG, GR, CS, RF algorithms
using occurrence rate evaluation and SVM classification. In the second
phase, the harmonize classification of PSO and SVM were carried out
on Phase 1 output for synchronous optimization. Fig. 1 shows the
workflow of the proposed method.

3.1. Phase 1: Ensemble Multi Filters Feature Selection

In Phase 1, there are 3 stages involved to develop the ensemble
multi filters feature selection process. Firstly, Stage 1 describes the
utilization of multi filters algorithm ranking where IG, GR, CS and
RF perform features ranking to identify the initial top ranked features
from the dataset based on each entropy value, gain ratio value, feature
score and feature weight, respectively. Secondly, Stage 2 describes the
assemble of ranking outputs and occurrence rate evaluation to obtain
a set of ensemble features with highest occurrence. Stage 3 describes
the assemble selection process and SVM classification to evaluate the
improvement of ensemble features towards the accuracy performance.

3.1.1. Stage 1: Multi (N) Filters Algorithm Ranking
In the first stage, the ranking scores of IG, GR, CS and RF are utilized

on each feature to identify their significance level based on their scores
in entropy value, gain ratio value, feature score and feature weight,
respectively. The higher the ranking score, the higher the significance
level. In contrast, lower ranking scores signify lower significance level.
The most relevant feature is indicated at the top of the rank, while the
least relevant feature is indicated at the bottom of the rank. Following
the suggestions in Hamid, Sallehuddin and Yunos (2019), threshold
value of 0.05 are used in each filter to select the ranked features. The
ranking score that achieved higher than threshold value will be selected
whereas, the ranking score that obtained lower than the threshold value
will be eliminated from the dataset. The process involved in Stage 1 is

shown in Fig. 2.

4

3.1.2. Stage 2: Ensemble Ranking Outputs and Occurrence Rate
In the second stage, the feature outputs that has been ranked by IG,

GR, CS and RF are assembled and the occurrence rate of each ranked
feature across the four filters algorithm are computed. The purpose of
this process is to determine the optimum number of top ranked features
that are significant to be included in classification tasks. Fig. 3 shows
the process involved in Stage 2.

3.1.3. Stage 3: Assemble Selection and SVM Classification
In the third stage, the assemble selection process is performed by

evaluating the rate of features occurrence across each filter algorithm.
Fig. 4 shows the process involved in Stage 3. The highest occurring
features signify its high significance as the features are frequently
selected among all filters. In contrast, the less occurring features indi-
cates its low significance. The maximum occurrence rate to assemble
features is set according to the number of filters algorithm utilized
(Hamid, Sallehuddin, Yunos and Ali, 2019). Since four filter algorithms
are utilized in this study, the maximum occurrence rate is set to 4.
The ensemble process continues until the maximum occurrence rate is
obtained. Then, a set of optimum top ranked features is obtained and
used as input for classification task.

In order to evaluate the performance of selected features towards
classification accuracy, SVM is employed as the classifier. Via 10-fold
cross validation, the datasets are divided into ten partitions where in
each partition, nine subsets are used for training task and one subset
is used for testing task to avoid overfitting of data that may influence
the training performance. The output from SVM is used as input for
harmonize classification by PSO and SVM which will be optimized
synchronously in the next phase.

3.2. Phase 2: Harmonize PSO and SVM Classification

In Phase 2, the reduced dataset with ensemble features is used as
input for harmonize classification by PSO and SVM to determine the
optimal SVM parameters and optimal features synchronously. The pro-
cess involved in harmonize classification phase is shown in Fig. 5. All
required parameters to perform PSO and SVM were initialized across
all experimental datasets based on the values presented in Table 1.

For PSO parameters, two main learning factors such as social learn-
ing factor (C1) and cognitive learning factor (C2) are set based on a
published paper by Brezočnik (2017) and Rahman et al. (2009) which
suggested that the best value for C1 and C2 is 2, such that (C1, C2) =
(2, 2). The value of C1 and C2 can be range between 1 to any numbers
as long as the total of C1 and C2 must not exceed more than 4 (Harb &
Desuky, 2014). The maximum iteration and the fitness function of PSO
are set to 100 and 0.95 respectively to avoid overtraining (Brezočnik,
2017). Meanwhile, the number of population size are set using different
values from 10, 25, 40, 55, 70, 85 and 100, so that the robustness of
the proposed method as the population size increases can be observed.

For SVM parameters, C and y are two main parameters in RBF
kernel function that need to be properly selected. These parameters
play a big role where C sets the trade-off cost between the reduction
of training error and model complexity while y controls the mapping
of nonlinear hyperplane in high dimensional feature space of SVM.
Since there are no specific values for C and y, these parameters were
initialized using Centre Composite Design (CCD) method as suggested
by Srisukkham et al. (2017) that requires less parameter combinations
compared to grid search method. Following the CCD method, nine
parameters combination based on three-level full factorial design (3𝑘

factorial) are employed to evaluate the optimum values of C and y
in each population size. The nine parameters combination are (2, 2),
(2, 4), (2, 8), (4, 2), (4, 4), (4, 8), (8, 2), (8, 4) and (8, 8). These
parameters are evaluated through trial and error for optimal searching
process. SVM via 10-fold cross validation is applied in order to validate

the accuracy of harmonize classification method.
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n

r

Fig. 1. Flowchart of proposed method (Ensemble-PSO-SVM).
Fig. 2. Utilization of multi (N) filters algorithm ranking in Stage 1.
p
During harmonize searching process, the CCD method utilizes all

ine parameter combinations of C and y to evaluate each particle. Pa-

ameter combinations that achieve the best global position for specific
5

article is used to generate the fitness value of that particle. The best

pair of parameter settings identified for the final optimal solution is

used to train the SVM using the whole training set. In order to ensure
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Table 1
Settings of PSO and SVM parameters on all experimental datasets.

PSO Population Size (S) 10 25 40 55 70 85 100

SVM Parameters (C, y)

(2, 2)
(2, 4)
(2, 8)
(4, 2)
(4, 4)
(4, 8)
(8, 2)
(8, 4)
(8, 8)

PSO Learning Factors (C1, C2) (2, 2)

PSO Maximum Iteration 100

the optimum accuracy of harmonize classification has been obtained,
measurement of performance validation is conducted. The result is
then validated via 10-fold cross validation to calculate the average
erformance. The final output from harmonize classification of PSO and
VM will be a reduced dataset with optimal significant features and
lassification parameters with highest accuracy performance.

. Results and Discussions

In this section, discussion on the result is divided into three sections.
he first section will discuss the result obtained from filter ranking
y IG, GR, CS and RF, while the second section will discuss on the
nsemble of filters ranking outputs and the classification result of the
elected features using SVM classifier. The third section will discuss on
he harmonize classification phase. This section begins with description
f the experimental dataset used and performance evaluation employed
n this study.
 b

6

.1. Experimental Dataset and Performance Evaluation

The effectiveness of the proposed model is verified using two pub-
icly available dataset such as Breast Cancer dataset and Lymphogra-
hy dataset obtained from UCI Machine Learning Repository, which
an be retrieved from https://archive.ics.uci.edu/ml/datasets.php. All
xperimental dataset features are shown in Table 2.

The first dataset, UCI Breast Cancer dataset contains 286 instances
epresented by nine attributes and two predictive classes which are
lass recurrence event and class no-recurrence event. Class recurrence
vent represents malignant cases of breast cancer while class no-
ecurrence event represents benign cases of breast cancer. Out of 286
nstances, 85 instances are in class recurrence event and 201 instances
re in class no-recurrence event. The second dataset, UCI Lymphogra-
hy dataset contains 148 instances represented by eighteen attributes
nd four predictive classes such as normal, metastases, malignant and
ibrosis. Out of 148 instances, 2 instances are in class normal, 81
nstances are in class metastases, 61 instances are in class malignant
nd 4 instances are in class fibrosis.

In order to validate these datasets, the performance evaluations
ere separated into two categories which are the ensemble filters

eature selection phase and harmonize classification phase. The per-
ormance measures that are used in evaluating the performance of
nsemble filters feature selection phase are accuracy, sensitivity, and
pecificity. On the other hand, the fitness values evaluation is used to
easure the performance of harmonize classification phase. To further

alidate the significance of the proposed method, SVM classification via
0-fold cross validation and comparisons study with previous research
re conducted. Finally, the best result obtained from each dataset are
ighlighted.

.2. Results on UCI Breast Cancer Dataset

In this section, all experimental results of proposed method obtained

y UCI Breast Cancer dataset is presented and discussed.

https://archive.ics.uci.edu/ml/datasets.php
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Fig. 5. Harmonize classification process by PSO and SVM.

.2.1. Filters Ranking by IG, GR, CS and RF
The ranking score based on the entropy value, gain ratio value,

eature score and feature weight given for the experimental dataset
s utilized independently in order to demonstrate the differences in
eatures ranking order and number of features when ranking score
re considered. The higher the value of ranking scores, the higher
he significance of the feature compared to the other features. The
anked features are sorted in descending order where the top ranked
eature indicate the most significant feature, while the last ranked
eature indicated the least significant feature. The bold features indicate
ignificant feature that achieved the threshold value, whereas the red
 F

7

able 2
ttributes of features in experimental datasets.
Datasets Features Name

UCI Breast Cancer

Age A1
Menopause A2
Tumour Size A3
INV-nodes A4
Node Capsule A5
Degree of Malignancy A6
Breast A7
Breast Quadrant A8
Irradiation A9

UCI Lymphography

Lymphatics C1
Block of Afferent C2
Block of Lymph Capsule C3
Block of Lymph Subcapsular C4
Bypass C5
Extravasates C6
Regeneration C7
Early Uptake C8
Diminish of Lymph Nodes C9
Enlargement of Lymph Nodes C10
Changes in Lymph Nodes C11
Defect in Nodes C12
Changes in Nodes C13
Changes in Structure C14
Special Forms C15
Dislocation of Nodes C16
Exclusion of Nodes C17
Number of Nodes C18

Table 3
Features ranking and ranking scores for UCI Breast Cancer dataset.

Filter Algorithms IG (𝑡 = 0.05) GR (𝑡 = 0.05) CS (𝑡 = 0.05) RF (𝑡 = 0.05)

Ranking Score

A6 0.078 A5 0.071 A6 28.875 A6 0.093
A4 0.071 A4 0.054 A4 26.594 A8 0.062
A3 0.061 A6 0.051 A5 19.731 A2 0.057
A5 0.051 A9 0.033 A3 17.039 A1 0.051
A9 0.026 A3 0.02 A9 9.792 A7a 0.048
A1 0.012 A1 0.006 A1 3.956 A3 0.05
A8 0.01 A8 0.005 A8 3.462 A9 0.033
A7a 0.003 A7a 0.002 A7a 0.887 A5 0.026
A2 0.003 A2 0.003 A2 0.94 A4 0.018

Total Selected Features 4 3 6 4

aEliminated features.

ighlighted features indicate irrelevant feature that achieved below the
threshold value which can be eliminated from the dataset.

Each feature is ranked by IG, GR, CS, and RF individually and the
esults of filters ranking are shown in Table 3. Based on the table,
everal similar features are selected by IG, GR, CS and RF despite the
ifferent ranking strategy in each filter. For UCI Breast Cancer dataset,
G, CS and RF identifies A6 as the top dominant ranked features, while
he top dominant ranked features identified by GR is A5. In contrast,
7 can be ignored and eliminated since it does not achieve the required

hreshold value in each filter. In terms of total selected features, both
G and RF selected 4 features, GR selected 3 features and CS selected 6
eatures out of nine dataset features.

.2.2. Ensemble Ranking Outputs and Assemble Selection
Next, the ensemble of filters ranking outputs based on occurrence

rate evaluation is performed. The occurrence rate of each selected fea-
ures in IG, GR, CS and RF are computed to demonstrate the difference
n number of features being selected across each filter. The intercept
oint is evaluated until the maximum occurrence rate is achieved. Since
our filters are utilized in this study, the maximum occurrence rate of
elected features is counted from 1 until 4 rates of occurrence. The
ighest number of tick mark indicates the frequent occurring features
hile the less occurring features have fewer number of tick mark.
or assemble selection process, the measure of accuracy is used. The
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Table 4
Occurrence rate of selected features for UCI Breast Cancer dataset.

Ranks Selected Features Top Dominant
Features

Rate of Occurrence

IG GR CS RF 1 2 3 4

1 A6 A5 A6 A6 A6 ✓ ✓ ✓ ✓

2 A4 A4 A4 A8 A5 ✓ ✓ ✓ –
3 A3 A6 A5 A2 A4 ✓ ✓ ✓ –
4 A5 A9 A3 A1 A8 ✓ – – –
5 A9 A3 A9 A7 A3 ✓ ✓ – –
6 A1 A1 A1 A3 A2 ✓ – – –
7 A8 A8 A8 A9 A1 ✓ ✓ – –
8 A7 A7 A7 A5 A9 ✓ – – –
9 A2 A2 A2 A4 A7 – – – –

Table 5
Optimum ensemble features for UCI Breast Cancer dataset.

Rate of Occurrence 1 2 3 4

Optimum Ensemble Features

1. A6 1. A6 1. A6 1. A6
2. A5 2. A5 2. A5
3. A4 3. A4 3. A4
4. A8 4. A3
5. A3 5. A1
6. A2
7. A1
8. A9

Total Selected Features 8 5 3 1

SVM Accuracy (%) 70.63 72.91 69.58 69.93

higher the accuracy of occurrence rate, the higher the significance of
the ensemble features.

The computed occurrence rate for each of the ranked features in
each IG, GR, CS and RF for UCI Breast Cancer dataset are shown in
Table 4. From the table, A6 is identified as the frequent occurring
features across each filter and achieved the intercept level. This means
A6 is the most frequently selected by IG, GR, CS and RF which then
followed by A5, A4, A3 and A1. This indicates A6, A5, A4, A3 and
A1 are the optimum selected features compared to A8, A2 and A9
that only selected once among each filter. Based on the result of
assemble selection in Table 5, it is observed that 5 features successfully
signify the highest classification accuracy by 72.91% through second
rate of occurrence which are A6, A5, A4, A3, and A1, compared to
other features in different rate of occurrence with lower accuracy.
Even though A6 is the highest occurring features across each filter,
the classification accuracy is still unable to increase using this single
information. This indicates that A6, A5, A4, A3, and A1 are optimum
ensemble features relevant for the next harmonize classification as they
have the ability to improve the accuracy of classifier with variety of
significant information.

4.2.3. Classification Performance of Ensemble Features
In this section, the classification performance of independent IG-

SVM, GR-SVM, CS-SVM, RF-SVM, Ensemble-SVM and SVM is presented.
The classification performance of the original dataset by SVM is also
highlighted to benchmark the SVM performance with the existence
of irrelevant features. Classification accuracy is used to measure the
performance of the selected features from each method.

The accuracy performance of independent IG-SVM, GR-SVM, CS-
SVM, RF-SVM, Ensemble-SVM and SVM for UCI Breast Cancer dataset
for are shown in Table 6. From the results, the classification accuracy
increases by reducing the data dimensionality using Ensemble-SVM in
comparison with the classification using independent IG-SVM, GR-SVM,
CS-SVM, RF-SVM and SVM. Ensemble-SVM achieved the highest clas-
sification accuracy by 72.91% using five optimum top ranked features
compared to using full dataset features. It is a noticeable increase in
the classification accuracy by the Ensemble-SVM when the rates of
features occurrence are considered compared to independent IG-SVM,
GR-SVM, CS-SVM, RF-SVM and SVM. This increment is due to ability
8

Table 6
Accuracy improvement in Ensemble-SVM, IG-SVM, GR-SVM, CS-SVM, RF-SVM and SVM
for UCI Breast Cancer dataset.

Method Accuracy (%) Selected Features

Breast Cancer SVM 56.69 All
Breast Cancer IG-SVM 66.20 A6>A4>A3>A5
Breast Cancer GR-SVM 69.10 A5>A4>A6
Breast Cancer CS-SVM 67.60 A6>A4>A5>A3>A9>A1
Breast Cancer RF-SVM 68.90 A6>A8>A2>A1
Breast Cancer 𝐄𝐍𝐒𝐄𝐌𝐁𝐋𝐄-𝐒𝐕𝐌 72.91 A6>A5>A4>A3>A1

Table 7
Fitness values based on different (C, y) for UCI Breast Cancer dataset.

Population size y C Best pair (C, y)

2 4 8

10–25
2 0.7413 0.7413 0.9541

(8, 2)4 0.7832 0.7657 0.9511
8 0.8636 0.8636 0.9231

40–70
2 0.7587 0.8322 0.9601

(8, 2)4 0.7832 0.8532 0.9511
8 0.8147 0.8951 0.8986

85–100
2 0.7692 0.8077 0.9615

(8, 2)4 0.7867 0.8217 0.9511
8 0.7902 0.8427 0.8951

of Ensemble-SVM to eliminate irrelevant features that are plagued with
redundancy which may reduce the classifier performance.

In contrast, independent IG-SVM, GR-SVM, CS-SVM, RF-SVM and
SVM obtain lower classification accuracy. This is probably due to the
difference in ranking of A2, A8 and A9 obtained by the occurrence
rate evaluation where Ensemble-SVM identified A2, A8 and A9 as the
least significant features, while other independent filter such as RF-SVM
identifies these features as significant. This shows that Ensemble-SVM
have the ability to improve the accuracy using appropriate number of
significant features which relevant to be included for training task.

4.2.4. Optimum Parameters (𝐶, 𝑦) for UCI Breast Cancer Dataset
In this section, the effects of different 𝐶 and 𝑦 parameters towards

the fitness performance of harmonize PSO and SVM classification for
UCI Breast Cancer dataset are determined. As shown in Table 7, the
highest fitness value of ensemble features is obtained by parameters
𝐶 = 8 and 𝑦 = 2 at every population size in comparison with
ther parameter combinations. As the size of population increases,
he higher training accuracy of fitness value is achieved. For instance,
he fitness value increase and decrease inconsistently from population
0 until population 40 when 𝐶 = 8 and 𝑦 = 2 (population 10 =
.9541, population 25 = 0.8986, population 40 = 0.9601). However,
he fitness value has become constant starting from population 55 until
opulation 100 by achieving the optimum training accuracy of 0.9615.
his indicates that the optimum parameters (C, y) which successfully
ignify the classification performance of UCI Breast Cancer dataset is
8, 2). For this case, lower kernel function y has the ability to improve
he inconsistency of training accuracy by increasing the significance of
lassifying each training samples correctly using larger value of C.

.2.5. Optimum Features for UCI Breast Cancer Dataset
In this section, the effects of different C and y parameters to-

ards number of selected features from harmonize PSO and SVM
lassification for UCI Breast Cancer Dataset are determined. As shown
n Table 8, a consistent accuracy performance is produced despite
ifferent population size of harmonize classification. The increase in
opulation size may cause the selection of optimum features to vary.
n searching for optimal solution, combination of SVM parameters and
ifferent population size influence the selection of optimum features by
astening or delaying the searching process. For example, the optimal
olution of UCI Breast Cancer dataset identified four optimum features
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Table 8
Optimum features based on different (C, y) for UCI Breast Cancer dataset.

Population Size (C, y) Fitness Value Optimum Features

10–25

(2, 2) 0.7413 A4, A6
(2, 4) 0.7832 A4, A3, A6
(2, 8) 0.8636 A4, A3, A5
(4, 2) 0.7413 A4, A6
(4, 4) 0.7657 A3, A4, A1
(4, 8) 0.8636 A4, A3, A5, A6, A1
(8, 2) 0.9541 A1, A3, A4, A6, A5
(8, 4) 0.9511 A1, A3, A6, A5, A4
(8, 8) 0.9231 A1, A3, A5, A6, A4

40–70

(2, 2) 0.7587 A1, A3, A6
(2, 4) 0.7832 A1, A3, A5, A6
(2, 8) 0.8147 A1, A3, A4, A5, A6
(4, 2) 0.8322 A1, A3, A4, A5
(4, 4) 0.8532 A1, A4, A5, A6, A3
(4, 8) 0.8951 A1, A3, A4, A5, A6
(8, 2) 0.9601 A1, A3, A4, A6, A5
(8, 4) 0.9511 A1, A3, A6, A4, A5
(8, 8) 0.8986 A1, A3, A4, A6, A5

85–100

(2, 2) 0.7692 A1, A5, A6
(2, 4) 0.7867 A1, A4, A6
(2, 8) 0.7902 A1, A3, A6, A5
(4, 2) 0.8077 A1, A3, A5
(4, 4) 0.8217 A1, A4, A5, A6
(4, 8) 0.8427 A1, A4, A5, A6, A3
(8, 2) 0.9615 A1, A3, A4, A6, A5
(8, 4) 0.9511 A1, A3, A6, A4, A5
(8, 8) 0.8951 A1, A3, A4, A5, A6

with 0.7832 fitness value at 100 population using 𝐶 = 2 and 𝑦 = 2,
hile the optimal solution at 100 population using 𝐶 = 8 and 𝑦 = 2

dentified five optimum features with 0.9615 higher fitness value. This
roved that the searching of optimal features is highly influenced by
roper parameters settings of C and y. As the optimal solution for UCI
reast Cancer dataset, (8, 2) is the appropriate SVM parameters (C,
) to trade off a correct classification of the training samples without
ffecting the classification accuracy and A1, A3, A4, A6, and A5 are the
ost optimum significant features of the dataset.

.3. Results on UCI Lymphography Dataset

In this section, all experimental results of proposed method obtained
y UCI Lymphography dataset is presented and discussed.

.3.1. Filters Ranking by IG, GR, CS and RF
The same process of features ranking is performed on UCI Lymphog-

aphy dataset based on entropy value, gain ratio value, CS statistical
alue and feature score and the results are presented in Table 9. From
he table, C13 (‘‘Changes in Nodes’’) is identified as the most significant
eature by IG and RF, while GR and CS identifies C13 as the third
ignificant feature. IG, GR and CS identifies C6 (‘‘Extravasates’’) as
he least significant feature, while RF identifies C6 as the third least
ignificant feature. In simple terms, only IG and RF identifies ‘‘Changes
n Nodes’’ as top dominant ranked features and ‘‘Extravasates’’ as least
ominant ranked features. Thus, C6 can be ignored and eliminated from
he dataset. In terms of total selected features, IG selected 15 features,
R selected 17 features, CS selected 16 features and RF selected 13

eatures out of nineteen dataset features.

.3.2. Ensemble Ranking Outputs and Assemble Selection
Next, the ensemble of filters ranking outputs based on occurrence

ate evaluation for UCI Lymphography dataset is performed and the
esults is discussed. From Table 10, 13 features were identified as
he highest occurring features across IG, GR, CS and RF which are
13, C9, C18, C7, C2, C10, C15, C12, C8, C11, C17, C5 and C16. In
ontrast, 4 features that are less selected by each filter are C1, C14,
4 and C3 which can be considered as less significance. Based on
9

able 9
eatures ranking and ranking scores for UCI Lymphography dataset.

Filter Algorithms IG (𝑡 = 0.05) GR (𝑡 = 0.05) CS (𝑡 = 0.05) RF (𝑡 = 0.05)

Ranking Score

C13 0.406 C9 0.578 C1 143.019 C13 0.286
C18 0.328 C7 0.383 C9 111.175 C2 0.241
C10 0.212 C13 0.249 C13 103.866 C15 0.182
C14 0.188 C2 0.177 C12 98.492 C10 0.139
C15 0.186 C8 0.156 C18 66.609 C18 0.135
C2 0.175 C4 0.153 C11 64.56 C7 0.086
C9 0.161 C18 0.136 C14 64.336 C8 0.088
C1 0.158 C15 0.128 C7 53.466 C5 0.076
C11 0.149 C11 0.125 C10 49.094 C17 0.075
C12 0.151 C10 0.123 C15 34.183 C11 0.067
C8 0.137 C1 0.098 C2 30.616 C9 0.063
C7 0.137 C5 0.092 C8 22.803 C12 0.055
C5 0.074 C17 0.091 C4 18.365 C16 0.057
C17 0.067 C12 0.089 C5 14.085 C14 0.039
C16 0.066 C14 0.074 C17 12.842 C3 0.027
C4 0.042 C16 0.071 C16 11.327 C6a 0.026
C3 0.035 C3 0.053 C3 6.694 C1 0.016
C6a 0.031 C6a 0.031 C6a 4.267 C4 0.009

Total Selected Features 15 17 16 13

aEliminated features.

Table 10
Occurrence rate of selected features for UCI Lymphography dataset.

Ranks Selected Features Top Dominant
Features

Rate of Occurrence

IG GR CS RF 1 2 3 4

1 C13 C9 C1 C13 C13 ✓ ✓ ✓ ✓

2 C18 C7 C9 C2 C9 ✓ ✓ ✓ ✓

3 C10 C13 C13 C15 C1 ✓ ✓ ✓ –
4 C14 C2 C12 C10 C18 ✓ ✓ ✓ ✓

5 C15 C8 C18 C18 C7 ✓ ✓ ✓ ✓

6 C2 C4 C11 C7 C2 ✓ ✓ ✓ ✓

7 C9 C18 C14 C8 C10 ✓ ✓ ✓ ✓

8 C1 C15 C7 C5 C15 ✓ ✓ ✓ ✓

9 C11 C11 C10 C17 C14 ✓ ✓ ✓ –
10 C12 C10 C15 C11 C12 ✓ ✓ ✓ ✓

11 C8 C1 C2 C9 C8 ✓ ✓ ✓ ✓

12 C7 C5 C8 C12 C11 ✓ ✓ ✓ ✓

13 C5 C17 C4 C16 C4 ✓ ✓ – –
14 C17 C12 C5 C14 C17 ✓ ✓ ✓ ✓

15 C16 C14 C17 C3 C5 ✓ ✓ ✓ ✓

16 C4 C16 C16 C6 C16 ✓ ✓ ✓ ✓

17 C3 C3 C3 C1 C3 ✓ – – –
18 C6 C6 C6 C4 C6 – – – –

assemble selection in Table 11, C13, C9, C18, C7, C2, C10, C15, C12,
C8, C11, C17, C5 and C16 obtained the highest classification accuracy
by 85.31%. Even though the difference between the number of features
is small in each rate occurrence, the highest accuracy is achieved by the
smallest number of features compared to the larger number of features.
This shows that C13, C9, C18, C7, C2, C10, C15, C12, C8, C11, C17,
C5 and C16 are the optimum ensemble features for the next harmonize
classification phase.

.

4.3.3. Classification Performance of Ensemble Features
In this section, the accuracy performance between independent IG-

SVM, GR-SVM, CS-SVM, RF-SVM, Ensemble-SVM and SVM for UCI
Lymphography dataset is presented. As shown in Table 12, the dataset
achieved the highest classification accuracy at 10 cross-validations
with 85.31%. The result shows that the classification accuracy of IG-
SVM, GR-SVM, CS-SVM and RF-SVM are higher than SVM. However,
there is an increased in the accuracy when ensemble of IG, GR, CS
and RF is processed. The improvement in accuracy performance is
because Ensemble-SVM identifies an optimum number of top ranked
features relevant for classification. Out of 19 features, IG-SVM selects
15 features, GR-SVM selects 17 features, CS-SVM selects 16 features
and RF-SVM selects 13 features as significant features. Similar with
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Table 11
Optimum ensemble features for UCI Lymphography dataset.

Rate of Occurrence 1 2 3 4

Optimum Ensemble Features

1. C13 1. C13 1. C13 1. C13
2. C9 2. C9 2. C9 2. C9
3. C1 3. C1 3. C1 3. C18
4. C18 4. C18 4. C18 4. C7
5. C7 5. C7 5. C7 5. C2
6. C2 6. C2 6. C2 6. C10
7. C10 7. C10 7. C10 7. C15
8. C15 8. C15 8. C15 8. C12
9. C14 9. C14 9. C14 9. C8
10. C12 10. C12 10. C12 10. C11
11. C8 11. C8 11. C8 11. C17
12. C11 12. C11 12. C11 12. C5
13. C4 13. C4 13. C17 13. C16
14. C17 14. C17 14. C5
15. C5 15. C5 15. C16
16. C16 16. C16
17. C3

Total Selected Features 17 16 15 13

SVM Accuracy (%) 81.76 81.96 83.42 85.31

Table 12
Accuracy improvement between Ensemble-SVM, IG-SVM, GR-SVM, CS-SVM, RF-SVM
and SVM in UCI Lymphography dataset.

Method Accuracy (%) Selected Features

Lymphoma SVM 73.80 All

Lymphoma IG-SVM 82.43 C13>C18>C10>C14>C15>C2>C9>
C1>C11>C12>C8>C7>C5>C17>C16

Lymphoma GR-SVM 81.76 C9>C7>C13>C2>C8>C4>C18>C15>C11
>1>C5>C17>C12>C14>C16>C3

Lymphoma CS-SVM 82.43 C1>C9>C13>C12>C18>C11>C14>C7>
C10>C15>C2>C8>C4>C5>C17>C16

Lymphoma RF-SVM 84.45 C13>C2>C15>C10>C18>C7>C8>
C5>C17>C11>C9>C12>C16

𝐋𝐲𝐦𝐩𝐡𝐨𝐦𝐚𝐄𝐍𝐒𝐄𝐌𝐁𝐋𝐄-𝐒𝐕𝐌 85.31 C13>C9>C18>C7>C2>C10>C15>
C12>C8>C11>C17>C5>C16

Table 13
Fitness values based on different (C, y) for UCI Lymphography dataset.

Population Size y C Best pair (C, y)

2 4 8

10–25
2 0.6014 0.8041 0.9189

(8, 8)4 0.6554 0.8378 0.9324
8 0.7838 0.8784 0.9662

40–70
2 0.7838 0.8378 0.9257

(8, 8)4 0.8041 0.8783 0.9527
8 0.8176 0.8987 0.9662

85–100
2 0.7432 0.8176 0.9324

(8, 8)4 0.7635 0.8716 0.9594
8 0.8041 0.8987 0.9662

RF-SVM, Ensemble-SVM also selects 13 features as the most optimum
informative features. However, the ranking of features is different
where RF-SVM unable to identify C9 as the top ranked features and
ranked it as lowest significance among other features which caused the
SVM accuracy to decrease. On the other hand, Ensemble-SVM identifies
C9 among the top significant features thus contributes to improving
the classification accuracy of the dataset. This shows that a proper
ranking of features highly influenced the improvement of classification
accuracy.

4.3.4. Optimum Parameters (𝐶, 𝑦) for UCI Lymphography Dataset
In this section, the effects of different 𝐶 and 𝑦 parameters towards

he fitness performance of harmonize PSO and SVM classification for
CI Lymphography dataset are determined. As shown in Table 13,
he highest fitness value is achieved by 0.9662 using 𝐶 = 8 and

10
Table 14
Optimum features based on different (C, y) for UCI Lymphography dataset.

Population Size (C, y) Fitness Value Optimum Features

10–25

(2, 2) 0.6014 C1, C9
(2, 4) 0.6554 C4, C12, C17
(2, 8) 0.7838 C10, C13
(4, 2) 0.8041 C7, C8, C13
(4, 4) 0.8378 C2, C4, C8, C11, C14
(4, 8) 0.8784 C2, C11, C12, C17, C18
(8, 2) 0.9189 C1, C2, C3, C4, C5, C7, C9, C10, C14
(8, 4) 0.9324 C2, C3, C8, C11, C13, C15
(8, 8) 0.9662 C2, C8, C10, C12, C13, C14, C17, C18

40–70

(2, 2) 0.7838 C10, C13
(2, 4) 0.8041 C7, C8, C13
(2, 8) 0.8176 C1, C3, C5, C8, C9, C15
(4, 2) 0.8378 C2, C4, C8, C11, C14
(4, 4) 0.8783 C2, C11, C12, C17, C18
(4, 8) 0.9054 C1, C2, C13, C14, 16
(8, 2) 0.9189 C1, C2, C3, C4, C5, C7, C9, C10, C14
(8, 4) 0.9594 C1, C2, C4, C7, C10, C12, C14
(8, 8) 0.9662 C2, C8, C10, C12, C13, C14, C17, C18

85–100

(2, 2) 0.7432 C8, C12, C14
(2, 4) 0.7635 C3, C4, C7, C18
(2, 8) 0.8041 C1, C2, C3, C4, C15
(4, 2) 0.8176 C3, C7, C9, C10, C15
(4, 4) 0.8716 C2, C3, C5, C7, C13, C16, C17
(4, 8) 0.8987 C2, C5, C10, C16, C17, C18
(8, 2) 0.9324 C2, C10, C12, C13, C18
(8, 4) 0.9594 C2, C13, C14, C17, C18
(8, 8) 0.9662 C2, C8, C10, C12, C13, C14, C17, C18

𝑦 = 8 compared to other parameter values. This fitness value is found
constant and maintains using 𝐶 = 8 and 𝑦 = 8 across all population
size even though other fitness value with the same C value (𝐶 = 8)
shows an improvement. This indicates that the optimum parameters (C,
y) which signify the classification performance with optimum training
accuracy of UCI Lymphography is (8, 8). For this case, high fitness
value is produced using equal value of C and y. This shows that
implementing a larger margin for regularization of parameters is not
essential as RBF kernel alone acts as a reliable regularization (Huang
et al., 2018). However, an optimum value of C is necessary to simplify
the decision function to determine the optimum number of significant
features without degrading the training accuracy.

4.3.5. Optimum Features for UCI Lymphography Dataset
In this section, the effects of different pairs of 𝐶 and 𝑦 parameters

towards the number of selected features from harmonize PSO and SVM
classification for UCI Lymphography dataset are listed. As shown in
Table 14, the optimal solution of UCI Lymphography dataset at 100
population using 𝐶 = 8 and 𝑦 = 8 identified eight optimum features
with highest fitness value of 0.9662. In contrast, the optimal solution
for 100 population using 𝐶 = 2 or 𝐶 = 4 produces smaller number
of features with lower fitness value. As the optimal solution for UCI
Lymphography dataset, (8, 8) is the proper SVM parameters (C, y) that
trades off a correct classification of the training samples and C2, C8,
C10, C12, C13, C14, C17, and C18 are the most optimum significant
features of the dataset.

4.4. Performance Evaluation and Validation

The overall performance of proposed method on all datasets were
evaluated using performance metrics such as accuracy, sensitivity,
specificity, and AUC. The average harmonize classification performance
were validated via 10-fold cross validation to obtain the comprehen-
sive result. Comparisons study between the proposed method with
independent IG-SVM, GR-SVM, CS-SVM, RF-SVM and Ensemble-SVM
was conducted to observe the effectiveness of harmonize classification

method towards the classification accuracy.
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Table 15
Summary of selected features by Ensemble-PSO-SVM and Ensemble-SVM for all datasets.

Datasets UCI Breast Cancer UCI Lymphography

Methods Ensemble-SVM Ensemble-PSO-SVM Ensemble-SVM Ensemble-PSO-SVM

Original features 9 9 18 18
Selected features 5 5 13 8
Features name A6, A5, A4, A3, A1 A1, A3, A4, A6, A5 C13, C9, C18, C7, C2, C10, C15, C12, C8, C11, C17, C5, C16 C2, C8, C10, C12, C13, C14, C17, C18

(C, y) (1, 0) (8, 2) (1, 0) (8, 8)
Accuracy (%) 72.91 96.15 85.31 96.62
Table 16
10-fold cross validation results of proposed Ensemble-PSO-SVM method on UCI Breast Cancer dataset.

Fold Benign Malignant Total Correctly Classified Total Incorrectly Classified Average Accuracy (%)

1 271 15 194 92 94.50
2 276 10 195 91 96.00
3 275 13 200 86 96.50
4 274 12 193 93 95.00
5 272 14 197 89 95.50
6 271 15 198 88 95.50
7 271 15 198 88 95.50
8 273 13 196 90 95.50
9 271 15 198 88 95.50
10 208 78 275 11 96.15
4.4.1. Overall Classification Performance of Proposed Method
In this section, the overall classification performance of proposed

method, Ensemble-PSO-SVM in comparisons with Ensemble-SVM, in-
dependent IG-SVM, GR-SVM, CS-SVM and RF-SVM on all experimental
datasets are presented.

As illustrated in Fig. 6, Ensemble-PSO-SVM produces higher accu-
racy performance in both experimental datasets compared to Ensemble-
SVM and independent IG-SVM, GR-SVM, CS-SVM and RF-SVM. The
implementation of harmonize classification proves the capability of
swarm intelligence to determine the optimum number of features by
evaluating the optimal position of features while synchronously con-
siders appropriate values of SVM parameters that are able to influence
the training accuracy of PSO. By using Ensemble-PSO-SVM, UCI Breast
Cancer dataset achieves 96.15% accuracy using 5 optimum features
compared to Ensemble-SVM which also selected 5 optimum features
but with only 72.91% accuracy. This is due to the selection of proper
kernel parameters that has caused the accuracy of Ensemble-PSO-
SVM to increase significantly. UCI Lymphography dataset also achieves
highest classification performance by Ensemble-PSO-SVM with 96.62%
accuracy using 8 optimum features compared to independent IG-SVM,
GR-SVM, CS-SVM, RF-SVM and Ensemble-SVM with lower accuracy
performance.

In terms of sensitivity, Ensemble-PSO-SVM produce higher sen-
sitivity performance for both experimental datasets. This shows the
capability of Ensemble-PSO-SVM in classifying true positive data cor-
rectly for each dataset. By the increasing accuracy performance of
Ensemble-PSO-SVM, both datasets produced highest sensitivity results
with 99.00% for UCI Breast Cancer dataset and 99.81% for UCI Lym-
phography dataset, respectively. This shows the essential of obtaining
slightest improvement in medical diagnosis in order to derive the
necessary treatment a patient should receive.

In terms of selected features, a higher classification accuracy does
not necessarily can be obtained using too small number of features,
while too large number of features does not guarantee a lower classifi-
cation accuracy. Table 15 shows the summary of total selected features
obtained by Ensemble-PSO-SVM for all datasets. For UCI Breast Cancer
dataset, an optimal solution is achieved by Ensemble-PSO-SVM when
appropriate value of C and y are considered. UCI Breast Cancer dataset
ignificantly achieves 96.15% classification accuracy using Ensemble-
SO-SVM using 5 optimum features. These features were also selected
y Ensemble-SVM but with different ranking by achieving only 72.91%
ccuracy performance. This shows that a proper selection of kernel
arameters values has caused the accuracy of Ensemble-PSO-SVM to

ncrease significantly compared to Ensemble-SVM. UCI Lymphography

11
dataset also achieves the highest classification performance by 96.62%
of accuracy compared to Ensemble-SVM with 85.31% of accuracy. 8 out
of 18 features are selected as the optimum significant features for pre-
dicting lymphoma cancer. Based on the results, the accuracy obtained
by Ensemble-PSO-SVM using optimal number of features is higher
compared to Ensemble-SVM. This means even though smaller number
of features may reduce the computational complexity of classification,
independent filter algorithms still unable to collect more information to
optimally evaluate the significance of features individually. Thus, this
indicates that Ensemble-PSO-SVM perceives the ability to determine an
optimum number of significant features and appropriate classification
parameters for SVM, where more information can be collected through
harmonize classification to produce an optimal solution.

4.4.2. Performance Validation on Proposed Method
For performance validation, the results obtained from Ensemble-

PSO-SVM is evaluated using 10-fold cross validation. The complete
dataset is randomly partitioned into 10 equal size subsets where one
part of the subsets is used as testing data and the remaining nine subsets
are used as training data (Huang et al., 2018). These training and test
sets are run 10 times to estimate the average highest classification per-
formance. The results of proposed method via 10-fold cross validation
for all experimental datasets is presented.

As shown in Table 16, Ensemble-PSO-SVM maintains high accuracy
value in majority number of folds which indicates the proposed method
have successfully provides a good and acceptable prediction. UCI Breast
Cancer dataset performs highest accuracy in 2-fold, 3-fold, and 10-fold
cross validation. Meanwhile in Table 17, UCI Lymphography dataset
performs highest accuracy value at 9-fold and 10-fold cross valida-
tion. The average of cross validation results shows that 10-fold cross
validation is effective since the independent test sets could validate
for performance evaluation. This signify the importance of ensemble
ilters feature selection and harmonize classification in increasing the
predictive performance of SVM.

4.5. Comparisons Study

In this section, the performance of Ensemble-PSO-SVM is further
validated based on the comparative analysis with several published
methods that used the similar UCI Breast Cancer dataset.

As shown in Table 18, Ensemble-PSO-SVM performs better than the
previous published method of PSO-CFS, PSO-RBF, PSO-KNN, PSO-NB,
PSO-DT and PSO-Bayes (Harb & Desuky, 2014). The higher the accu-

racy value, the better the performance of the methods. This indicates
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Fig. 6. Comparison of accuracy and sensitivity in IG-SVM, GR-SVM, CS-SVM, RF-SVM, Ensemble-SVM and Ensemble-PSO-SVM for all datasets.
Table 17
10-fold cross validation results of proposed Ensemble-PSO-SVM method on UCI Lymphography dataset.

Fold Malignant Lymph Metastases Fibrosis Normal Total Correctly Classified Total Incorrectly Classified Average Accuracy (%)

1 56 89 3 1 120 28 81.08
2 56 89 3 1 120 28 81.08
3 61 84 2 1 117 31 79.05
4 53 92 3 0 122 26 82.43
5 54 88 3 0 122 26 82.43
6 62 84 2 0 121 27 81.76
7 59 86 2 1 124 24 83.78
8 56 89 3 0 124 24 83.78
9 60 82 4 2 141 7 95.27
10 60 82 4 2 141 7 95.27
T
C
2

w
p
g
t
c

i
o

that utilizing ensemble multi filters feature selection with occurrence
ate evaluation can increase the accuracy of harmonize classification
ignificantly. Irrelevant and imbalance number of features may result in
ias thus degrading the accuracy of harmonize classification. By using
nsemble-PSO-SVM, the irrelevant features are eliminated, the opti-
um number of significant features and classification parameters that
rovides highest accuracy performance are maintained. From Table 18
nsemble-PSO-SVM achieved the highest accuracy performance com-
ared to other seven methods. This indicates that the feature selection
sing ensemble multi filters algorithm with harmonize classification of
SO and SVM successfully improves the accuracy performance while
roducing an optimum number of features. Ensemble-PSO-SVM has
roven that ‘‘Age’’, ‘‘Tumour Size’’, ‘‘INV-nodes’’, ‘‘Node Capsule’’ and

‘Degree of Malignancy ’’ are the most optimum features significant to
redict malignant cases from benign cases of UCI Breast Cancer dataset.
ence, these features should be given more attention in practical
edical diagnosis due to the primary information contained in these

eatures.

. Conclusion

In a nutshell, irrelevant or redundant data in medical dataset may
ncrease the dimensionality and accuracy issues when performing a
iagnosis or decision making from a case file. Thus, the requirement to
evelop a reliable classification method that can identify the relevant
ata with high accuracy is essential. However, the improper settings
 i

12
able 18
omparative analysis of the proposed method with previous methods (Harb & Desuky,
014).

Method Accuracy (%) Total Selected Features

Ensemble-PSO-SVM 96.15 5
PSO-CFS 72.03 5
PSO-RBF 76.22 4
PSO-KNN 76.22 5
PSO-NB 75.52 4
PSO-DT 74.13 5
PSO-Bayes 73.08 3
SVM 56.69 9

of classification parameters may also influence the effectiveness of
the classification method as improper selection of kernel parameter

ill degrade the accuracy of the relevant data. Improper classification
arameters can also influence the selection of features that may mis-
uide the classier due to overfitting of data. The common approaches
o eliminate irrelevant features while producing optimal solution of
lassification is by using feature selection and optimization techniques.

In this paper, an ensemble multi filter feature selection with har-
monize classification method, Ensemble-PSO-SVM has been proposed.
Here, the ensemble multi filters feature selection method utilized are
Information Gain, Gain Ratio, Chi-square, and Relief-F where they
dentify and combine relevant features in dataset with the consideration
f features occurrences across each algorithm. Support Vector Machine
s then used to evaluate the classification performance of the selected
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features. An advantage of ensemble IG, GR, CS and RF is that the
occurrence of the selected features subset on the training algorithm can
be considered, and the optimum number of significant features can be
obtained even after the data dimensionality is reduced. After the en-
semble features are obtained, it is then optimized with the classification
parameters synchronously by Particle Swarm Optimization and Support
Vector Machine.

Experimental results achieved by UCI Breast Cancer dataset shows
that Ensemble-SVM has produced considerable improvement in classifi-
cation performance of the dataset compared to independent IG, GR, CS,
RF and SVM in terms of accuracy. Consideration of features occurrence
in ensemble IG, GR, CS and RF has aided in increasing the capability
of IG, GR, CS and RF to determine the optimum number of significant
features accurately. This is due to the capability of Ensemble-SVM to
analyse attributes as irrelevant by evaluating the dependencies between
features in the feature space of each filter using different approach from
independent IG, GR, CS and RF. Therefore, Ensemble-SVM can con-
tribute better learning and generalization ability in SVM classifier. By
eliminating the irrelevant features and identifying the optimum number
of significant features, the harmonize classification performance of PSO
and SVM achieves well in terms of accuracy, sensitivity, and specificity
when compared to classical SVM. The increase in harmonize classifica-
tion of PSO-SVM is due to the appropriate values of kernel parameters
used and the optimal number of significant features included into
training task have significantly enhance the accuracy performance.

It is believed that the encouraging results signified by Ensemble-
PSO-SVM can be implemented to assist medical experts in the health-
care centre for more effective and accurate diagnosis. For future work,
this research will focus on analysing the proposed method on other
dataset of different domains. In addition, other searching methods for
optimizing the parameters of the classifier may also be analysed for
appropriate parameter settings.
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