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Abstract 
 
Membrane technology is important in industrial wastewater and water treatment. Recently, the 
polymeric membrane technology is widely chosen in these applications. However, they are low-
temperature ranges, low corrosion resistance, and low lifespan. Thus, researchers are actively trying 
to develop a better membrane technology such as natural clay ceramic membrane due to their 
excellent in chemical, mechanical and thermal resistance, high-pressure application and long 
lifespan. This detailed review compiles through the literature of current scientific research over the 
last ten years. Its highlights the key findings of factors in the fabrication of natural clay ceramic 
membrane that contributed to its properties. This review article presented an outline of the 
advantages, disadvantages, and how to overcome the disadvantages, structure, and preparation of 
ceramic membrane, including method, raw materials, drying and sintering temperature. The review 
confirmed that the sintering temperature, the composition of raw materials and pore-forming agent 
are significantly enhanced the mechanical strength and porosity of the natural clay ceramic 
membrane. However, further development and modification of the natural clay ceramic membrane 
technology and their applications to treat different environmental pollutants is still necessary. 
 
Keywords: ceramic membrane, membrane technology, natural clay, water and wastewater 
treatment 
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INTRODUCTION 
 

Nowadays, membrane technology has been widely employed in 
water and wastewater treatment process due to water scarcity, high 
water costs and stricter regulations that required more advanced water 
treatment technology. Most of the available membrane in the market 
is polymeric based membrane, and it has been widely used in 
membrane process industry. Polymeric membrane has a lower capital 
cost, scalability and good separation characteristics. However, they 
are low fouling resistance, low lifespan, low-temperature ranges and 
low corrosion resistance (Kaniganti et al., 2015). Opposite to ceramic 
membrane, can be applied in the extreme environments due to their 
main advantages, in excellent high chemical stability, thermal and 
mechanical resistance. The ceramic membrane also famous for having 
a longer lifespan, ease of cleaning, low dielectric constant and a low 
thermal conductivity (Ha et al., 2013; Han et al., 2013; Ghouil et al., 
2015). 

Ceramic membrane consisting of metal oxides such as alumina, 
titania, zirconia and others are most commonly applied, especially 
manufactured from alumina (Li, 2007; Wei et al., 2016). Alumina 
ceramic membrane is famous in its outstanding thermal, chemical and 
structural stability. However, it shows a drawback of high sintering 
temperature (a large amount of heat is required) which is above to 
1500 °C to achieve good agreement between mechanical strength and 
porosity (Li et al., 2016). Besides, alumina itself is regarded as a high 

cost material, hence extremely expensive ceramic membrane 
production (Hubadillah et al., 2018). On the other hand, the 
investment cost of ceramic membrane much costs compared to the 
polymeric membrane. Thus, the fabrication of low cost ceramic 
membrane based on the natural clay (e.g. kaolino-illitic clay, 
smectetic clay, Moroccan pozzolan clay) was studied by several 
researchers due to their abundance in nature (Ali et al., 2018; Misrar 
et al., 2017; Achiou et al., 2016; Baraka et al., 2014). New flat 
ceramic microfiltration membranes were recently developed from 
abundant, natural materials such as natural Moroccan bentonite for 
industrial wastewater treatment (Bouazizi et al., 2016). In general, 
clays from bentonite materials have been applied in various industrial 
fields such as acts as catalysts, adsorbents and ion exchangers due to 
its chemical and physical properties. Bentonite materials have broad 
specific surface area, organic and inorganic ion adsorptive affinity, 
and cation exchange capability as well (Bouazizi et al., 2016, Roulia 
et al., 2008, Zhou et al., 2007; Chakir et al., 2002).  

Focused on the water and wastewater treatment in large volume 
applications, the development of ceramic membrane with excellent 
properties and low cost are the challenging task. Thus, the main 
criteria to produce a high performance of ceramic membrane depends 
on its morphology and mechanical strength (Manohar, 2012). The 
properties of membrane morphologies including, pore size 
distribution, porosity and mechanical properties such as compressive 
strength and flexural strength are the main parameters that should 
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have been considered during ceramic membrane fabrication. All these 
parameters depend on the type and amount of starting raw materials, 
additives agent, pore forming agent, sintering temperature, type of 
fabrication method and binder content (Bose and Das, 2014; Zheng et 
al., 2013; Sarbatly, 2011). An excellent ceramic membrane should 
have a good mechanical resistance to withstand high trans-membrane 
pressure, a high porosity to minimize the resistance to permeation 
which depends primarily on the sintering temperature and the raw 
materials used (Elomari et al., 2017). The first part of this article 
focuses on the benefits of ceramic membrane instead of a polymeric 
membrane. In the meantime, the disadvantages of the ceramic 
membrane also discovered and followed by how to overcome their 
disadvantages. In the second part of this reviews, the structure of 
single layer and multilayer ceramic membrane including their 
fabrication in terms of low-cost material, shaping method used, drying 
temperature and sintering temperature and applied to the water and 
wastewater treatment were described. This paper aims to provide 
informative and useful knowledge on the properties of natural ceramic 
membrane depend on their parameter elaboration for the future 
development of ceramic membrane. 

  
CERAMIC MEMBRANE TECHNOLOGY 
 

 Membrane separation is a field that involves many processes. 
Temperature, pressure, concentration or electrical potential are the 
main driving forces available. Among them, pressure-driven 
membrane processes are most widely applied. Microfiltration (MF), 
ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) are 
mainly the type of pressure-driven membrane process, classified 
based on the pore size of the membrane (He et al., 2019). The 
schematic diagrams of separations and classification of ceramic 
membranes are shown in Table 1 and Fig. 1, respectively. 

Ceramic, nowadays, are most of the interested main materials in 
the fabrication of membrane instead of polymer. Ceramic based 
membranes, in basic, are porous and dense. The porous and dense  
ceramic membrane influenced by pore size, porosity of membrane and 
applications.  

Also, most of the ceramic membranes are asymmetric composites 
composed in one or more different layers. The ceramic membrane 

structure is illustrated in Fig. 2, in terms of cross-sectional scanning 
electron micrograph of a support layer, followed by an intermediate 
layer and the top layer with small pore sizes. The support layer or 
known as an inner layer commonly developed as a porous support 
layer and provides a high mechanical strength of the membrane 
manufactured. This support layer also known as a single layer ceramic 
membrane and called it as a microporous membrane. The intermediate 
layer acts as a bridge between the support layer and top layer due to 
the difference of pore size. The top layer or called an active layer, 
where the separation reaction is take placed (Amin et al., 2016; Peng, 
2008). In some cases, the improved top layer also introduced based on 
the applications (Gitis and Rothenberg, 2016). 

 
Table 1 Classification of ceramic membrane (Das and Bose, 2017; 
Gitis and Rothenberg, 2016) 

 
Separation 
process 
 

 
Category 

 
Number 
of layer 

 
Average 

pore 
size 

 

 
Species 

separation 

 
Microfiltration 

 
Macroporous 

 
1 

 
5 µm 

 
Bacteria, fine 

solids   2 0.25 µm 

Ultrafiltration Mesoporous 3 100 nm Viruses, total 
suspended 

solids, natural 
organic matter 

Nanofiltration Microporous 4 2 nm Inorganics, 
sugars, dyes, 
surfactants 

Reverse 
osmosis/gas 
separation 

Dense 5 10 Å Salts, metal 
ions, minerals 

 

Fig. 1 Schematic diagram of ceramic membrane separation (Czarny et al., 2017) 
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 Top layer 

 

 

 Intermediate layer 

 

 

 Support layer 

Fig. 2 Structure of a) single layer ceramic membrane (Ghouil et al., 2015) and b) multilayer ceramic membrane (Duscher, 2013) 

Ceramic membranes are sketching a lot of interest because of their 
advantages such as good corrosion resistance, high thermal stability, 
high-pressure applications and long service life (Jana et al., 2011). 
They can work well at temperature as high as 500 °C and also can be 
applied in the pH range of 1 to 14 (Kumar et al., 2015; Benfer et al., 
2001; Agana et al., 2013). The oil remaining on the ceramic 
membrane, for example, can be removed by thermal treatment and can 
withstand temperatures up to several hundred ºF (Khemakhem et al., 
2013; AMTA, 2014). Besides, the usage of more aggressive chemical 
cleaning procedure could be applied to the ceramic membrane due to 
the durable with high chemical concentrations and chemicals 
characteristics. The ceramic membrane is ideal for high-temperature 
treatment of substances using caustic, hydrogen peroxide, chlorine, 
ozone and solid inorganic acid. They additionally have a decent 
capacity for steam cleansing (Amin, 2016). High flux rates also can be 
reached since ceramic membrane can tolerate high operating 
pressures, and this allows for extended process runs. Porous ceramic 
membranes also contribute to the high membrane flux (Hubadillah et 
al., 2018). 

The ceramic membranes are also not degraded by the presence of 
bacteria or less of microbial attacks that cause degradation (Amin, 
2016; Laitinen, 2002). They can be retrieved for storage, and kept dry 
after use. In some cases, the used ceramic membranes can be recycled 
as raw ceramic material to develop new elements or other products 
such as wallboard due to the construction materials. Thus, the cost of 
disposal could be reduced and also landfills issues can be overcome 
(AMTA, 2014). 

Nowadays, the key drawbacks of ceramic membrane include a high 
cost of capital because of the economic aspects. These technologies 
are considered as economically competitive due to the availability of 
membranes with lower operating costs like polymeric membrane. 
However, ceramic membrane can overcome this problem based on the 
lifecycle costs such as low usage of chemicals, low backwash water 
frequency and high energy efficiency. For example, in the citrus 
industry, Sunkist Growers is a market leader in the production of over 
20 million gallons of juice a year at the Tipton, California processing 
plant. Sunkist already uses Membralox ceramic membrane purchased 
from GEA Filtration since 1994 and get high-cost saving. A sales 
engineer of GEA Filtration, who manufactures membrane system, 
Mike Grigus said that about more than 40 % can reduced the amount 
of daily caustic usage by use reclaimed caustic. The caustic filtration 
system worked with the original membrane set for seven years (Bhave 
et al., 2001). Ceramic membrane also has a long lifespan. In some 
cases, about 20 years of warranty for ceramic membrane was offered 
from manufacturers. Sixteen years of ceramic membrane operation 
with little loss in permeability also was reported (AMTA, 2014). This 
means that ceramic membrane is a great filtration product. 

The expensive raw materials can be replaced by cheap raw 
materials such as natural clay that has good potential as membrane 
filtration. Natural clays are in abundance and need a low 
firing/sintering temperature compared to the metal oxide materials 
like zirconia, alumina, silica and others (Khemakhem et al., 2009; 
Belibi et al., 2015). For example, metal oxide like alumina and 
zirconia as a precursor needs a higher sintering temperature, which is 

more than 1100 °C (Nandi et al., 2008; 2010) compared to the natural 
clay that only need around 800 to 900 °C for sintering temperature 
(Das et al., 2016; Kumar et al., 2015; Hristov et al., 2012) during 
fabrication. Thus, the capital cost of these membranes could be 
reduced efficiently. 
 
FABRICATION OF CERAMIC MEMBRANE 
 

The preparation of single layer or multilayer ceramic membrane 
could be performed in several methods such as slip casting method, 
tape casting method, extrusion method, dip coating method, chemical 
vapor deposition method and others. The configurations of ceramic 
membranes are able in flat sheet, tubular and multichannel models 
depend on the shaping method used. Fig. 3 depicts the preparation of 
single-layer ceramic membrane in general. Table 2 shows the 
elaboration of ceramic membrane in details based on literature study. 
 
 

          
 
Fig. 3 General flowchart for the preparation of single layer ceramic 
membrane 
 
 
 
 
 
 
 
 
 
 
 
 
 

Formulation (etc. materials composition) 

Shaping method (etc. slip casting, tape casting, pressing 
and extrusion method) 

Drying process 

Sintering process 
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                                                                            Table 2 Preparation and elaboration of ceramic membrane 

Type Configuration Materials Shaping methods Sizing (mm) Drying temperature 
/time taken 

 
Sintering 

temperature @ 
thermal cycling 

/time taken 
 

Reference 

 
Single layer ceramic membrane 
 
 
MF membrane Cylindrical Natural Kankara clay (different mesh of 60, 

100 and 200) 
 

3D printer D: 30 
T: 20 

Between 40 and 100 °C/ 
24 h 

1300 °C/ 3 h Hwa et al., 
2018 

MF membrane Flat disc Natural Moroccan red clay and natural 
phosphate (10, 20, 40 wt %) 

Uniaxial pressing - - 250 °C/ 4 h 
450 °C/ 1 h 
750 °C/ 1 h 

1100 °C/ 2 h 

Mouiya et al., 
2018 

MF membrane Flat Natural Moroccan clay (80-100 wt %) and 
corn starch (0-20 wt %) 

Uniaxial pressing D: 40 
T: 1.5 

- 250 °C/ 2 h 
750 °C/ 2 h 
950 °C/ 2 h 

Elomari et al., 
2017 

MF membrane Flat disc Natural stevensite clay, aluminium 
hydroxide, silica gel, sawdust containing 
blends (BSB), mixtures within resin (BR) and 
starch containing blends (BAM) 

Uniaxial pressing D: 40 
T: 3 

- 1000-1200 °C/ 1-4 h Misrar et al., 
2017 

MF membrane Flat Natural bentonite (95 wt %) and starch (5 wt 
%) 

Hydraulic pressing - - 250 °C/ 2 h 
750 °C/ 2 h 

800-1050 °C/ 2 h 
*the best 

temperature: 950 °C 

Bouazizi et al. 
2016 

MF membrane Flat Kaolin (50 wt %), quartz (15 wt %), feldspar 
(10 wt %), activated carbon (10 wt %), boric 
acid (5 wt %), sodium metasilicate (5 wt %) 
and TiO2 (5 wt %) 

Casting D: 40 
T: 5 

100 °C/ 24 h 
250 °C/ 24 h 

850, 900, 950 °C/  
6 h 

*the best 
temperature: 850 °C 

Das et al. 2016 

MF membrane Flat Natural Moroccan clays: clay of Meknes 
(CM), fine clay of Fe`s (FCF), and granular 
clay of Fe`s (GCF)) from northern part of 
Morocco 

Uniaxial pressing D: 36 
T: 1.5 

- 850, 950, and 
1050 °C/ 2 h 

*the best 
temperature: 950 

°C 

Elomari et al. 
2016 

MF membrane Flat Natural clay (75 wt %) from Wak village, 
Adamawa, Cameroon and sawdust (25 wt 
%) 

Pressing D: 420 
T: 5 

Room temperature/ 24 h 
100 °C/ 24 h 
200 °C/ 24 h 

500 °C/ 2 h 
1100 °C/ 2 h 

Belibi et al. 
2015 

MF membrane Tubular Ball clay (18 wt %), feldspar (6 wt %), kaolin 
(15 wt %), pyrophyllite (15 wt %), quartz (28 
wt %) and calcium carbonate (18 wt %) 
 

Extrusion OD: 11.5 
ID: 5.5 
L: 100 

Room temperature/ 12 h 
100 °C/ 12 h 
200 °C/ 12 h 

950 °C/ 6 h Kumar et al. 
2015 
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MF membrane Flat disc Fly ash (65 wt %), calcium carbonate (20 wt 

%), sodium carbonate (10 wt %), boric acid 
(2.5 wt %) and sodium metasilicate (2.5 wt 
%) 

Paste casting D: 55 
T: 5 

- 100 °C/ 12 h 
250 °C/ 2 h 

800, 850, 900 and 
1000 °C/ 4 h 

*the best 
temperature: 900 

°C 
 

Singh and 
Bulasara 2015 

MF membrane Flat disc Clay (60 wt %), kaolinite (29 wt %), sodium 
carbonate (5 wt %), sodium metasilicate (3 wt 
%) and boric acid (3 wt %) 

Paste casting D: 55 
T: 5 

Room temperature/ 24 h 
100 °C/ 12 h 
250 °C/ 24 h 

800, 850, 900, 
950 °C/ 5 h 
*the best 

temperature: 800 
°C 

Anandkumar et 
al. 2014 

MF and UF 
membrane 

Flat Natural Moroccan clay (region of Agadir) Extrusion and 
calendaring 

D: 49 
T: 2 

40 °C/ 24 h 800 °C/ 30 min Baraka et al. 
2014 

MF membrane Flat 
(rectangular) 

Natural Sayong Ball Clay (65-100 wt %), corn 
starch (0-35 wt %) and ethanol as a medium 

Pressing L: 80 
W: 30 
T: 6.5 

- 1200 °C/ 2 h Bazin et al., 
2014 

MF membrane Flat Natural Sayong ball clay (55 % of the total 
mixture), Methacrylamide (5,  10,  15,  20 wt 
%), N'-Methylenebisacrylamide, 0.1 % of 1-
Octanol, Ammonium Peroxodisulfate (0.1 %)     
and   Tetramethylethylenediamine 
(0.05 %) 

Gel casting - 25 °C/ 2 h 
60 °C/ 30 min 

600 °C/ 1 h 
1300 °C/ 30 min 

Ahmad et al. 
2013 

MF membrane Tubular SM1: kaolin (40 wt %), quartz (20 wt %), 
feldspar (10 wt %) and sawdust (30 wt %)  
SM2: kaolin (40 wt %), quartz (30 wt %), 
feldspar (20 wt %) and sawdust (20 wt %)  
SM3: kaolin (30 wt %), quartz (10 wt %), 
feldspar (40 wt %) and sawdust (10 wt %)  
SM4: kaolin (40 wt %), quartz (25 wt %), 
feldspar (25 wt %) and sawdust (10 wt %)  
SM5: kaolin (50 wt %), quartz (25 wt %), and 
sawdust (25 wt %) 
SM6: kaolin (50 wt %), feldspar (25 wt %) 
and sawdust (25 wt %) 

Pressing OD: 50 
T: 10 

- 100 °C / 12 h 
250 °C / 24 h 550, 
700 and 850 °C / 5 

h 

Bose and Das, 
2013 

MF membrane Flat disc M1: kaolin (50 wt %), quartz (25 wt %), 
calcium carbonate (25 wt %) 
M2: kaolin (50 wt %), quartz (25 wt %), 
calcium carbonate (22 wt %), titanium dioxide 
(3 wt %) 
M3: kaolin (50 wt %), quartz (25 wt %), 
calcium carbonate (15 wt %), titanium dioxide 
(10 wt %) 
 

Uniaxial 
compaction/pressing 

D: 62 
T: 5 

110 °C/ 24 h, 
200 °C/ 24 h 

900 °C/ 6 h Vasanth et al., 
2013 
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MF membrane Flat Natural perlite powder from Tidiennit, Morocco 

(81.7 wt %), Methocel derived from 
methylcellulose (organic additives) (4 wt % ) 
as a plasticizer, Amijel derived from starch (4 
wt %) as a binder, corn starch (10 wt %) as 
porosity agent, PEG 1500 (Prolabo) (0.3 wt %) 
as a binder 
 

Extrusion and 
calendaring 

D: 49 
T: 1.75 

40 °C/ 24 h 1000 °C Majouli et al. 
2011 

MF membrane Flat disc A: clay (70 wt %) and water (30 wt %) 
B: clay (70 wt %), sodium carbonate (3 wt %), 
sodium metasilicate (1.5 wt %), boric acid (1.5 
wt %) and water (24 wt %) 

Paste casting D: 52 
T: 6 

Room temperature/ 24 h, 
100 °C/ 12 h 

A: 900, 950, 1000 
°C/ 6 h  

B: 800, 900, 1000 
°C/ 6 h 

Jana et al. 
2010 

MF membrane A: flat 
B: tubular 

A: kaolin 
B: kaolin (80 wt %) and starch (20 wt %) 

A: roll pressing B: 
extrusion 

- - 1000-1250 °C/ 1 h 
*the best 

temperature: 1200 
°C 

Bouzerara et 
al. 2009 

        
Multilayer ceramic membrane       
       
MF membrane Flat disc SB: natural clay powder (feldspar, kaolin, 

pyrophyllite, ball clay, quartz and calcium 
carbonate) and polyvinyl alcohol (2 wt %) 
TL: TiO2 nanoparticle 

SB: uniaxial 
compaction/pressing 

TL: hydrothermal 
treatment (deposition 

layer) 

D: 55 
T: 5 

SB: 100 °C/ 24 h 
200 °C/ 24 h 

TL: 110 °C/ 12 h 

SB: 950 °C/ 6 h 
TL: 400 °C/ 3 h 

Suresh and 
Pugazhenthi 

(2017) 

MF membrane Tubular SB: natural Texenna kaolin halloysite type 
(TKH) (75 wt %), calcium carbonates powder 
(19 wt %), Amijel as a binder (3 wt %) and 
Methocel as a plasticizer (3 wt %) 
IL: tamazert kaolin (TK) (0 wt %), polyvinyl 
alcohol (PVA) (30 wt %) (12 wt % aqueous 
solution) and water (60 wt %) 
TL: TKH powder (15 wt %), water (57 wt %) 
and PVA (28 wt %) (12 wt % aqueous 
solution) 

SB: extrusion 
IL: stable 

suspension/colloid 
process (synthesis) 

and slip casting 
(deposition layer) 
TL: slip casting 

(deposition layer) 

OD: 10 
ID: 6 

L: 200 

IL: room 
temperature/ 12 h 

TL: room 
temperature / 24 h 

SB: 1100- 
1250 °C/ 1 h 

*the best 
temperature: 

1250 °C 
IL: 1150 °C / 1 h 
TL: 1050 °C / 1 h 

Ghouil et al. 
2015 

MF membrane Tubular SB: clay (74 wt %), calcium carbonate (21 wt 
%), organic additives (2.5 wt % of Amijel 
derived from methylcellulose, 2.5 wt % of 
methocel derived from starch 
TL: 10 wt % of ZrO2, 30 wt % of PVA (12 wt % 
aqueous solution) and water (60 wt %) 

SB: extrusion 
TL: slip casting 

(deposition layer) 

- SB: room 
temperature/ 24 h 

SB: 1150-1300 
°C/ 60 min 

*acceptable: 1150- 
1250 °C 

TL: 1050 °C/ 1 h 

Bouzerara et 
al. 2012 

 
MF membrane 

 
Tubular 

 
SB: natural perlite powder from Tidiennit, 
Morocco (81.7 wt %), Methocel derived from 
methylcellulose (organic additives) (4 wt %) as 
a plasticizer, Amijel derived from starch (4 wt 
%) as a binder, corn starch (10 wt %) 
 

 
SB: extrusion 

TL: suspended 
powder (synthesis) 

and slip casting 
(deposition layer) 

 
- 

 
SB: 40 °C/ 24 h 

 
SB: 1000 

TL: 930 °C/ 1 h 

 
Majouli et al. 

2012 
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UF membrane Flat disc SB: clay (70 wt %), kaolin (18 wt %), sodium 

carbonate (6 wt %), sodium metasilicate (3 wt 
%) and boric acid (3 wt  %) 
TL: chitosan solution + 0.12 % (v/v) 
glutaraldehyde solution in 1:1 ratio 
 

SB: paste casting  
TL: dip-coating 

(deposition layer) 

D: 50 
T: 5 

SB: room temperature/ 24 
h, 100 °C/ 12 h 
TL: 100 °C/6 h 

SB: 1000 °C/ 6 h Jana et al. 
2011 

Notes: UF: ultrafiltration membrane; MF: microfiltration membrane; SB: support body; IL: intermediate layer; TL: top player; D: diameter; OD: outer diameter; ID: inner 
diameter; T: thickness; L: length; W: width 
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Slip casting 
Slip casting method is commonly used in the fabrication of 

pottery for a complex shape which is irregular and non- concentric as 
shown in Fig. 4. This method was first used in France, 1790 by 
Monsieur Tendelle in conjunction with the porcelain fabricating. In 
the ceramic membrane fabrication, slip casting method commonly 
used due to their simple technique and cheaper than other techniques 
(Hubadillah et al., 2018). In the process, a slurry (the mixture or 
solution in slip casting) is poured onto a microporous plaster of Paris 
(POP) mold. The porous nature of the mold gives a capillary suction 
pressure, which draws the fluid from the slurry into the mold as 
depicted by Darcy's law. A consolidated layer of solid or also known 
as a cast, forms on the walls of the mold (Fig. 4). After proper cast 
thickness is created, the excess slip is poured out and the mold and 
cast are left to dry. The cast contracts typically during drying from the 
mold and can be easily removed. When dried completely, the cast is 
heated to burn the binder out and sintered to produce the final product 
(Rahaman, 2003). However, the ratio of powder mixture and water 
used should be exact composition to prepare a slurry to achieve a 
required final product. This method often requires a long casting time,  
as it involves a slow drying process. In addition, the wall thickness is 
difficult to control during the consolidation of the drying stage, and is 
usually thick. The thickness of ceramic membrane using slip casting 
method was, as stated by Li (2007), depending on the casting time and 
slurry condition. The Material composition used in the slip casting 
method is described in Table 3. 
 

 
Fig. 4 Schematic diagram of the slip casting process (Rahaman, 2003) 

 
Table 3 Composition of mixture in the slip casting technique (Rahaman, 

2003) 

 
Extrusion 

Extrusion method is widely employed in the manufacturing of 
ceramic floor, wall tiles, clay pipes and, clay blocks and bricks. A 
powder mixture is compacted and formed using an extrusion process 
by pushing it through a nozzle in a screw/auger extruder or piston/ram 
extruder. The piston extruder is easy to use and consists of a piston, a 
tube, and a die. Although the auger extruder is a more complex design 
than the ram extruder as defined in Fig. 5. This extruder must ensure 
that the powder and other additives are homogeneous and produce 
adequate pressure to transfer the mixture to the die. The shaping of the 
final product is achieved at the die (Rahaman, 2003). However, in 
basic, extrusion method is applied in the ceramic membrane 
fabrication for obtained a tubular shape only. Only this method offers 
a strong membrane structure; this method requires a complicated 

process of preparation and also need to produce adequate pressure to 
move the mixture (Hubadillah, 2015). 

 

   
 
Fig. 5 Schematic diagram of type of extruder: A) ram extruder and B) 
auger extruder (Li et al., 2017) 

 
Pressing 

Pressing method is one of the most widely used in the ceramics 
industry. Uniaxial die pressing and isostatic pressing widely used for 
dry powder compaction (contain <2 wt % water), and semidry 
powders (hold ~5-20 wt % water). In uniaxial die compaction, the 
powder material undergoes simultaneous uniaxial compaction and 
shaping in a rigid die (Rahaman, 2003). Uniaxial die compaction 
process can be categorized into two processes which are, cold (Fig. 6) 
and hot process. A die is filled with a mixture of powder material, 
which is then uniaxially pressed to a green body (compacted powder) 
for cold pressing process. Then remove the sample. The hot process is 
almost similar to the cold process; however, induction under vacuum 
or inert gas atmosphere heats the green body (Suarez et al., 2016). 
Pressing process provided more coverage for the manufacture of 
ceramic membrane as compared with slip casting method.Pressing 
method could produce the ceramic membrane with high mechanical 
strength, thus, could apply in the high-pressure applications. However, 
the configuration made by a pressing method normally in a disc or 
rectangular shape only, therefore, produce symmetrical membrane 
rather than asymmetrical membrane. Ceramic membrane manufacture 
by pressing method often demanded high costs (Hubadillah, 2015). 

 

 
 

Fig. 6 Schematic diagram of uniaxial die compaction for cold process 
(Suarez et al., 2016) 
 
Injection molding 

Injection molding is a method to fabricate small components of 
complicated geometries and low wall thicknesses in large quantities. 
In basic, injection-molded components are cores for metal thread 
guides, casting, welding nozzles, cutting gear, and turbocharger 
rotors. Ceramic powders with plasticizers, binders and lubricants are 
homogenized to plastify the feeds, which is done in heatable mixers or 
kneaders above the melting point of the additives. The homogenized 
feed with up to 50 vol % of additives is cooled and granulated 
concurrently through the screws. This granulate is fed through the 

 
No. 

 

 
Product 

 
Materials used (concentration, vol %) 
 

 
1 

 
Alumina 

 
Alumina (40-50) 
Water (50-60) 
Ammoniul polyacrylate as dispersant 
(0.5-2) 
Ammonium alginate or methyl 
cellulose as binder (0-0.5) 

   
2     Whiteware Clay, silica, feldspar (45-50) 

Sodium silicate, polyacrylate or 
lignosulfate as dispersant (< 0.5) 
Calcium carbonate as flocculant (< 0.1) 
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filling hopper to the heated injection nozzle of the injection molding 
machine. Fig. 7 shows the schematic diagram of screw type injection 
molding machine (Heinrich and Gomes, 2015). In this method, 
binders play a vital role within the overall fabrication route; however, 
the choice of a kind of binders is important to the success of the 
injection molding method. A good binder should have desirable 
chemical, rheological and debinding characteristics. In addition, it 
should possess several qualities for fabricating such as low cost and 
environmental friendly. The ratio of powder to binder is also a key 
parameter for successful injection molding. Insufficient amount of 
binder results in a high viscosity and to the formation of trapped air 
pockets, each of that create molding difficult. On the other hand, an 
excessive amount of binder results in microstructural heterogeneities 
in the molded product (Rahaman, 2003). 

 

 
 

Fig. 7 schematic diagram of injection molding machine: screw type 
(Heinrich and Gomes, 2015) 
 
FACTORS AFFECTING CERAMIC MEMBRANE 
PROPERTIES 

 
The properties of ceramic membrane obtained, generally, depend 

on their parameter elaboration. The elaboration of ceramic membrane, 
however, should be concerned on the type of raw materials used, 
sintering temperature, pore former content and additive agents as a 
main factor that contribute to the mechanical properties, such as 
strength and hardness as well as shrinkage, porosity, density and water 
absorption of ceramic membrane as described in Table 4. Among 
these factors, the addition of pore former in the composition of the 
membrane increases porosity and permeability (Elomari et al. 2017). 
Porosity is defined as a porous substance, as the volume of emptiness 
can be indicated (Youmouse et al., 2017). As Obada et al. (2016) 
reported, the porosity of the ceramic bodies increased as a percentage 
of pore-forming agent applied increased. Numerous materials have 
been applied as a pore former, such as potato starch and sago starch 
(Jamaludin et al., 2014; Lorente-ayza et al., 2015), rice bran 
(Mahmudul et al., 2011; Lorente-ayza et al., 2015), sawdust (Bose 
and Das, 2015), or even in pure substances like urea (Vijayan et al., 
2013). However, the higher percentage of pore former used caused the 
body strength decreased and shrinkage behavior increased. On the 
other hand, the higher porosity resulting from the rise in the 
percentage of pore former makes the membrane less mechanically 
robust as well as sample size significantly decreased. The shrinkage 
phenomenon might be occurred due to the burn out of the pore former 
and losses of moisture during sintering process. The shrinkage had 
increased as the percentage of pore former used is increased. For zero 
percentage of pore former content, the shrinkage occurs mainly due to 
the losses of moisture (Bazin et al., 2014). In the meantime, the 
density of the membrane is also decreased as the pore former content 
is increase. The drop in density value is caused by the elimination of 
pore formation. While, the ceramic membrane's mechanical strength 
also depends on the existence of pores-like defects that act as stress 
concentration (Chandradass et al., 2009). The presence of closed and 
open pores may reduce the membrane strength (Bazin et al., 2014). In 
Obada et al. (2017) report, they propose a compromise to obtain a 
high porosity, high mechanical strength macro-porous support 
ceramic membrane. Therefore, the sintering temperature had to be 

increased in order to gain greater mechanical strength. However, it 
should be noted that due to the transformation of the clay and the 
formation of the glassy phase, porosity decreases with temperature. 
On the other hand, the mechanical strength increases with the 
temperature induced by the transformation of the clay and the 
presence at high temperature of the glassy layer. 

Therefore, sintering temperature plays the main parameter to the 
properties of ceramic membrane through alteration of the 
microstructure, included mechanical strength (Denry and Kelly, 2008; 
Fan et al., 2017). The sintering process is where the consolidation step 
or densification of granular compact is performed by heat action with 
a high temperature below the melting point of the main constituent, in 
order to accelerate its strength by bonding the particles together. 
Whether by dry pressing or slip casting method, after the initial 
molding of the ceramic it is still necessary to densify the green bodies 
to create a continuous 3D structure and therefore to produce ceramic 
pieces acceptable for the chosen application. For example, Guo et al. ( 
2015) focused on the intensity of Al2O3-ZrO2 composites affected by 
the different sintering temperatures. They  found that the compressive 
intensity usually increased with the increased sintering temperature  
(from 1400 °C to  1500 °C) (Al2O3:ZrO2 = 7:3) (Fan et al., 2017). 
Similar to Mohtor et al. (2017a), there was a pattern of increase in 
mechanical strength in the manufacture of kaolin hollow fibre 
membrane with the rise in sintering temperature. This phenomenon 
could be described by the grain production of ceramic particles that 
took place during the sintering process, resulting in the creation of 
bonds between the ceramic particles that strengthened the mechanical 
strength of the membrane. Thus, a higher sintering temperature may 
lead to the formation of further bonds between the ceramic particles, 
which would reinforce the membrane. So, a higher sintering 
temperature could contribute to the creation of more bonds between 
the ceramic particles, resulting in membrane strengthening. Liu and Li 
(2003) also stated that the sintering temperature had a significant 
impact on the membrane's mechanical strength due to the need for the 
ceramic particles to fuse and bond properly. Hence, they clarified that 
the sintering temperature should be selected at about three-fourths of 
the material's melting point during membrane manufacture. However, 
the higher sintering temperature applied, caused increased body 
densification and shrinkage, and contributed to water flux output and 
reduced or entirely deformed porosity. As reported by Mohtor et al. 
(2017b), reductions in porous structure across the membrane were 
observed when higher sintering temperature were applied, which was 
greatly affected by the shrinking pores and membrane densification. 
In addition, a good compromise should be found between the sintering 
temperature and the former pore percentage to produce a high water 
flow, high mechanical strength and high ceramic membrane porosity. 

Besides, an additive agent such as binder, which is also used in 
the manufacture of ceramic membranes to give the ceramic membrane 
strength by creating bridges between particles. This also provides 
plasticity in some situations, as well as assists in the process of body 
formation and is usually eliminated as completely as possible during 
the sintering steps (Jamaludin et al., 2014; Das, 2011). As shown in 
the Mohtor et al. (2017b) study, the kaolin hollow fibre precursor has 
still not been sintered, and the presence of dispersant and polymer 
binder in the kaolin hollow fibre precursor could be strongly detected 
from the SEM images. After done sintering temperature at 1200 °C, 
there is no binder and dispersant showed. However, at this 
temperature, the sintering process of the kaolin hollow fibre 
membrane is starting to take place based on the shape of the neck 
between the contact grains. In addition, at high binder contents, 
particles appear to stay close to each other or increase the 
interconnection between particles-particles reduces the voids in the 
membrane support, resulting in a decrease in porosity and increased 
strength (Bose and Das, 2014). However, the high amount of binder in 
ceramic manufacture (above 40 %) was harmful to the mechanical 
strength of the resulting clay-alumina supports. This may be due to the 
creation of pores and the relation between particles is distant because 
the binder burns off during the sintering process (Oun et al., 2017). 
Thus, the optimum amount of binder should be applied in order to 
ensure good adhesion and uniformity of the ceramic structure 
associated with rheological properties is achieved. In addition, Zhang 
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3 

3 

et al., (2006) concluded that, at the liquid state, polymer binder could 
better maximize the efficiency of alumina support compared to the 
solid-state. Often, that the amount of its use directly influences the 
support efficiency including porosity, pore size distribution and 
binding strength. 

The types of raw material also influence the properties of ceramic 
membrane. For example, Kitouni and Harabi (2011) focus on 
porcelain making using local quartz, potassic feldspar (PF) and kaolin 
raw materials. All these deposits of raw materials in Algeria, i) quartz 
from the El Oued region, ii) PF from the deposit of Ain Barbar 
(Annaba region), and iii) kaolin from the deposit of Debagh (Guelma 
area). Based on the flexural strength result, these manufactured 
membranes were achieved a higher strength, which is about 197 MPa 
at sintering temperature of 1200 °C for 2 h holding time compared to 
the commercial porcelain, only about 60 and 80 MPa. In addition, 
Elomari et al. (2016) study different natural Moroccan clay on the 
fabrication of ceramic membrane, which is, collected from different 
location of northern part of Morocco; 1) clay of Meknes (CM), 2) fine 
clay of Fe’s (FCF) and 3) granular clay of Fe’s (GCF). All these 
manufactured membranes fabricated using uniaxial pressing method 
and sintered at 950 °C for 2 h. The result obtained is all manufactured 
membrane shows a different porosity and mechanical strength depend 
on their type of clay. The porosity of CM, FCF and GCF are 28.1 %, 
30.8 % and 40.0 %, respectively; and the mechanical strength is 14.8 
MPa, 16.13 MPa and 14.42 MPa, respectively. This might occur due 
to the chemical composition of the clay itself. In facts, different of raw 
materials used as precursors applied a different of condition 
preparation (etc. sintering temperature, sintering time) was creating 
the different types of stability, morphology and porous texture of 
ceramic membrane as well as contributes to the mechanical strength 
(Jana et al., 2011).  
 
APPLICATION OF CERAMIC MEMBRANE IN THE WATER 
AND WASTEWATER TREATMENT 
 

The successful of ceramic membrane in many industrial 
applications, such as the application of microfiltration in the bacteria 
removal from food and dairy products (Tomasula et al., 2011), juice 
clarification (Nandi et al., 2009), hot gas filtration (Li et al., 2011) 
and the filtration of fermentation broths in the biotechnology and 
pharmaceutical applications (Waszak and Gryta, 2016) nowadays, 
attracts much attention in the membrane technology development. 
Also, ceramic membrane has become a great interest to be the 
alternative treatment of the wastewater included, pollution treatment 
from industrial area; separation of oily wastewater (Madaeni et al., 
2012; Fazullin et al., 2015), removal of heavy metal content in 
industrial effluent (Noor et al., 2017) and treatment of textile mill 
(Barredo-Damas et al., 2012). Table 5 summarizes some applications 
of ceramic membrane in the water and wastewater treatment based on 
type of membrane, commercial or fabricated membrane and main 
material used either natural or commercial clay. 

Several studies investigating the ceramic membrane have been 
carried out on the application of industrial wastewater (Noor et al., 
2017; Ebrahimi et al., 2016; Almandoz et al., 2015). A recent study 
by Noor et al. (2017) elaborated the ceramic membrane filtration 
based on Sayong ball clay which is obtained from Sayong District in 
Perak State, Malaysia, for nickel removal from industrial wastewater. 
Around 82 % to 89 % of nickel was efficiently rejected. Ebrahimi et 
al. (2016) conducted a study that focused on potential applications of 
ceramic membranes in the pulp and paper industry for the treatment of 
bleach plant effluent. In this study, semi and series batch membrane 
processes consisting of microfiltration (MF), ultrafiltration (UF) and 
nanofiltration (NF) ceramic membranes were designed to remove 
residual lignin from effluent and reduce the chemical oxygen demand 
(COD) during production of sulfite pulp. The two-stage process of 
MF and followed by UF (both filtration prepared using ceramic 
membrane) gave good performance of separation and efficient for the 
alkaline bleaching effluent treatment. In addition, these processes also 
reduced residual lignins and COD concentration greater than 70 % 
and 35 %, respectively. Almandoz et al. (2015) study on ceramic 
membrane from natural alumino silicates as principal components 

(clay, feldspar, quartz, bentonite, and alumina) due to the low price 
and locally produced. The performance of manufactured membrane 
was tested with different substances from food industry, i) goat milk 
pasteurization and ii) slaughterhouse wastewater treatment. The 
excellent results have been achieved with about 87-99 % of bacterial 
removal and 100 % of insoluble residue rejections; make these 
ceramic membranes suitable for microfiltration processes application. 
This shows that natural clay has a significant potential to become a 
great ceramic membrane filtration due to their low price and good 
performance. 

In the household water treatment application, Fatimah et al. 
(2015) described the development and characterization of new TiO2-
modified kaolinite ceramic membrane, which is prepared using 
natural kaolinite with the tubular support configuration. Different 
composition of TiO2 was coated on the ceramic surface was study. 
The manufactured membrane then, applied in the analysis of bacteria 
content, ferum (Fe), manganese (Mn), nitrate (NO-) total dissolved 
solid (TDS) and total suspended solid (TSS) before and after 
filtration. It has conclusively been shown that there is significantly 
affected in Fe, Mn, NO - and bacteria reduction, while COD, TSS and 
TDS are not significantly affected. Similarly, Ajayi and Lamidi 
(2015) studies on the heavy metal (zinc (Zn), nickel (Ni), manganese 
(Mn), lead (Pb), chromium (Cr), copper (Cu)) and physicochemical 
parameter (etc. hardness, turbidity, conductivity, TDS, pH) in-home 
use water using ball clay as the main precursor for ceramic water 
filters. Their manufacturer ceramic membrane shows an excellent 
result with all the parameters studies is significant reduction. 

In the oily wastewater treatment, the study by Abbasi et al. (2012) 
had fabricated the tubular mullite ceramic microfiltration membrane 
from kaolin clay, obtained from the Zenooz mine in Marand, Iran. 
According to the obtained result, about more than 94% of total 
organic carbon rejection for synthetic feeds was achieved. Similar to 
Nandi et al. (2010) had treated oily wastewater using low-cost 
ceramic membrane that has been prepared from inorganic precursors 
such as quartz, kaolin, feldspar, sodium carbonate, sodium 
metasilicate and boric acid. At 150 mg/L feed oil concentration (ΔP = 
206.8 kPa), 15.05 × 10−6 m3/m2s of permeate flux and 98.51 % of 
rejection efficiency was observed. 
 
FUTURE PERSPECTIVE 

 
Development of membrane technology to the industry is 

dependent on its performance as well as its cost. The ceramic 
membrane more focused nowadays in the scientific research world 
compared to the polymeric membrane due to its benefits. However, 
the big issue of ceramic membrane having a high fabrication cost. 
Therefore, comprehensive studies leading to the benefits of ceramic 
membrane in terms of long service lifespan and better performance 
will definitely a more focused in future to compensate for the high 
cost. On the other hand, other alternatives also should be focused such 
as on the fabrication cost of ceramic membrane. It can be realized by 
the selection of raw materials and method used. For example, natural 
clay or solid waste or any cheap materials can be used as the main 
material in the fabrication of ceramic membrane as well as in terms of 
method. Most of the researcher use the pressing method. This method 
is expensive compared to the other method. Slip casting method offers 
an excellence method where is cheap, no complicated technique and 
no assistance of high technology machinery needed. However, the 
thickness of ceramic membrane using slip casting method was 
depending on the casting time and slurry condition and also 
challenging to control. Thus, a modified slip casting technique should 
be introduced to overcome this problem. In addition, the performance 
of ceramic membrane should be focused and this strongly connected 
to the factor contributing in the production of effective low-cost 
ceramic membranes. However, further investigation such as 
optimization of composition and size of precursor materials and pore 
formers through the design of experiment (DOE) is necessary to 
improve the development and properties of the ceramic membrane. 
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Table 4 Fabrication parameters and properties of ceramic membrane 
 

 
Fabrication parameter 

 

 
Properties 

Reference  
Materials and 
compositions 

 
Shaping 
methods 

(configuration) 

 
Sintering 

temperature 
/time taken 

(°C)/time t 

 
Pore 

Diameter 
(µm) 

 
Shrinkage 

(%) 

 
Density 

(%) 

 
Porosity 

(%) 

 
Water 

absorption 
(%) 

 
Mechanical 

strength 
(MPa) 

 
Natural bentonite from 
Nador, Morocco (95 wt %) 
and starch (5 wt %) 
 

 
hydraulic 
pressing 

(flat) 

 
950 °C/ 2 h 

 
1.70 

 
7.5 

 
- 

 
32.12 

 
14.33 

 
22 

 
Bouazizi et 
al., 2017 

Kaolin (40 wt %) + PES (5 
wt %) + NMP (54 wt %) + 
Arlacel P135 (1 wt %) 

Extrusion
(hollow 
fibre) 

1200 °C/ 5 h 
1300 °C/ 5 h 
1400 °C/ 5 h 
1500 °C/ 5 h 

1200 °C:0.58 
1300 °C: 0.51 
1400 °C: 0.49 
1500 °C: 0.45 

- - - -  1200 °C: 5 
1300 °C: 33 
1400 °C: 70 

1500 °C: 127 
 

Mohtor et al., 
2017b 

Kaolin clay (25 wt%), 
alumina (75 wt%), binder 
(methocel, 6 g) and water 
(30 g) 

Extrusion 
(tubular) 

    1350 °C/  
      90 min 

0.75 - - 48 - 37 Oun et al., 
2017 

Natural Moroccan Pozzolan 
(different Moroccan 
pozzolans (Pozzolan of 
N’Aid Said (PN), Black 
Pozzolan of Hebri (BPH) 
and Red Pozzolan of 
Hebri (RPH) from Central 
middle atlas) 
 

Hydraulic 
uniaxial 
pressing 
(flat disc) 

950 °C/ 2 h PN: 2.84 
BPH: 2.20 
RPH: 2.36 

PN: 2.14 
BPH: 4.95 
RPH: 2.17 

     PN: 2.1 
BPH: 2.1 
RPH: 2.1 

PN:32.4 
BPH: 29.6 
RPH: 33.0 

PN: 14.6 
BPH: 12.8 
RPH: 15.2 

  PN: 14.8 
  BPH: 18.58 
  RPH: 19.16 

   Achiou et al., 
2016 

Kaolin (50 wt %), quartz 
(15 wt %), feldspar (10 wt 
%), activated carbon (10 wt 
%), boric acid (5 wt %), 
sodium metasilicate (5 wt 
%) and TiO2 (5 wt %) 
 

Casting 
(flat disc) 

850 °C/ 6 h 
900 °C/ 6 h 
950 °C/ 6 h 

850°C: 1.55 
900°C: 1.78 
950°C: 2.65 

- - 850 °C: 18.88 
900 °C: 5.59 
950 °C: 2.25 

- - Das et al., 
2016 

Natural Moroccan clays: 
clay of Meknes (CM), fine 
clay of Fe`s (FCF), and 
granular clay of Fe`s 
(GCF)) from northern part 
of Morocco 

Uniaxial 
pressing 

(flat) 

950 °C/ 2 h CM: 1.8 
FCF: 1.50 
GCF: 2.84 

CM: 5.26 
FCF: 2.5 
GCF: 3 

- CM: 28.1 
FCF: 30.8 
GCF: 40 

- CM: 14.80 
FCF: 16.13 
GCF: 14.42 

Elomari et 
al., 2016 

          
Natural clay (75 wt %) from 
Wak village, Adamawa, 
Cameroon and sawdust 
(25 wt %) 
 

Pressing 
(flat disc) 

1100 °C/ 2 h - - - 42 - - Belibi et 
al., 2015 
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Natural Texenna kaolin 
halloysite type (TKH, 75 wt 
%), calcium carbonates 
powder (19 wt %), Amijel 
as a binder (3 wt %) and 
Methocel as a plasticizer 
(3 wt %) 
 

 
SB: 

extrusion 
(tubular) 

 
1250 °C/ 1 h 

 
SB: 8 

 
- 

 
- 

 
47 

 
- 

 
40 

 
Ghouil et 
al., 2015 

Ball clay (18 wt %), 
feldspar (6 wt %), kaolin 
(15 wt %), pyrophyllite (15 
wt %), quartz (28 wt %) 
and calcium carbonate (18 
wt %) 
 

Extrusion 
(tubular) 

950 °C/ 6 h 0.309 - - 53 - 12 Kumar et 
al., 2015 

M1: kaolin (50 wt %), 
quartz (25 wt %), calcium 
carbonate (25 wt %) 
M2: kaolin (50 wt %), 
quartz (25 wt %), calcium 
carbonate (22 wt %), 
titanium dioxide (3 wt %) 
M3: kaolin (50 wt %), 
quartz (25 wt %), calcium 
carbonate (15 wt %), 
titanium dioxide (10 wt %) 
 

Uniaxial 
compaction 

method 
(flat disc) 

900 °C/ 6 h M1: 1.30 
M2: 1.06 
M3: 0.45 

- - M1: 30 
M2: 26 
M3: 23 

- M1: 34 
M2: 12 
M3: 10 

Vasanth et 
al., 2013 

Natural zeolite from 
Kralevo, Haskovo region, 
Bulgaria 
IL: zeolite powder 

Semi-dry 
pressing 
(flat disc) 

800 °C 
850 °C 
900 °C 

1000 °C 

- 800 °C: 5.0 
850 °C: 10.0 
900 °C: 18.0 
1000 °C: 22.5 

800 °C: 1.48 
850 °C: 1.59 
900 °C: 1.86 
1000 °C: 2.1 

800 °C: 38 
850 °C: 30 

   900 °C: 13.39 
1000 °C: 0 

 

800 °C: 30.00 
850 °C: 20.12 
900 °C: 7.20 
1000 °C: 0 

800 °C: 4.5 
850 °C: 5.0 
900 °C: 6.0 
1000 °C: 6.5 

Hristov et 
al., 2012 

Natural perlite powder 
from Tidiennit, Morocco 
(81.7 wt %), Methocel 
derived from 
methylcellulose (organic 
additives) (4 wt %) as a 
plasticizer, Amijel derived 
from starch (4 wt %) as a 
binder, corn starch (10 wt 
%) as porosity agent, PEG 
1500 (Prolabo) (0.3 wt %) 
as a binder 
 

Extrusion 
and 

calendaring 
(flat) 

1000 °C 6.64 - - 41.8 - 1.2 Majouli et 
al., 2011 

Kaolin and water (40-45 wt 
%) 

Extrusion 
(tubular) 

1150 °C 0.9  8.12 - -    19.8 - Ezziane et 
al., 2010 

Clay (81.7 wt %), Amidon 
(10 wt %), Methocel (4 wt 
%) Amijel (4 wt %) and 
PEG1500 (0.3 wt %) 
 

Extrusion 
(tubular) 

1200 °C/ 1 h 10.6 - - 31.6 - 15 Saffaj et 
al., 2010 
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Natural apatite powder 
from Metlaoui in the south 
of Tunisia (84 wt %), 
methocel (2.5 wt %), amijel 
(2.5 wt %), starch (9 wt %) 
and PEG (2 wt %) 
 

 
Extrusion 
(tubular) 

 
1160 °C 

 
6 

 
- 

 
- 

      
  48 

 
- 

 
14 

 
Masmoudi 

et al., 
2007 

 
  

Table 5 Type of membrane used with their applications in the water and wastewater treatment 
 

Type of membrane 

 
Layer of 

membrane 
 

Application References 

 
Commercial ceramic membrane 
 

 
 

Microfiltration membrane    Multilayer Synthetic dye filtration (Cationic: Methyl Green and Neutral Red; and anionic: 
Reactive Black 5) 

Chougui et al. (2019) 

Ultrafiltration membrane Multilayer Synthetic produced water containing the cationic surfactant 
Dodecyltrimethylammonium bromide (DTAB) 

Weschenfelder et al. (2019) 

Ultrafiltration membrane Multilayer Synthetic dye filtration (Reactive Blue KN-R, Reactive Black 5, Reactive 
Red-H E7B, NaCl, and Na2SO4 in water solution) 

Ma et al. (2017) 

Nanofiltration membrane Multilayer Synthetic dye filtration (Rhodamine-B) Yadav et al. (2017) 
Ultrafiltration membrane Multilayer Synthetic dye pollutant (Methylene Blue and Methyl Orange) Athanasekou et al. (2015) 
Nanofiltration membrane Multilayer Synthetic dye filtration (textile Industries reactive, disperse, acidic and direct 

in blue and red) 
Kishore and Kamala (2015) 

Ultrafiltration membrane Multilayer Wastewater from beverage production Agana et al. (2013) 
Ultrafiltration membrane Multilayer Synthetic dye filtration (Reactive Black 5) Alventosa-deLara et al. (2012) 
Ultrafiltration membranes Multilayer Textile mills effluents Barredo-Damas et al. (2012) 
Microfiltration membrane Single layer Treatment of oily wastewater produced by petrochemical and oil industry Madaeni et al. (2012) 
Ultrafiltration membrane Multilayer Synthetic dye filtration (Methyl Orange, Indigo Carmine, Amido Black, Titan 

Yellow, Direct Green, Direct Blue and Direct Black) 
Majewska-Nowak and J. Kawiecka-

Skowron (2011) 
   

Fabricated ceramic membrane: commercial clay 
 

 

Microfiltration membrane Single layer Oily wastewater Rasouli et al. (2019) 
Ultrafiltration membrane Multilayer Synthetic dye filtration (Alizarin Red) Oun et al. (2017) 
Microfiltration membrane Single layer Industrial wastewater Das et al. (2016) 
Microfiltration membrane Single layer Effluent from electrolysis process Yun et al. (2015) 
Microfiltration membrane Single layer Oily wastewater Vasanth et al. (2013) 
    
Fabricated ceramic membrane: natural clay 

 
 

Microfiltration membrane Single layer Dyebath phase of cotton fabric processing unit of a local textile industry Saini et al. (2019) 
Microfiltration membrane Single layer Tannery wastewater and raw seawater Mouiya et al. (2018) 
Microfiltration membrane Single layer Agro-food and tannery wastewater Saja et al. (2018) 
Ultrafiltration membrane Multilayer Synthetic dye filtration (Direct red 80, Acid orange 74 and Methylene blue) Bouazizi et al. (2017) 
Microfiltration membrane Single layer Clarification of effluent generated by local textile industry, specially washing 

water effluent of Jean process 
Achiou et al. (2016) 
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Microfiltration membrane Single layer Industrial wastewater treatment: tannery’s beamhouse section and jean 

washing process 
Bouazizi et al. (2016) 

Microfiltration membrane Single layer Preclarification step in wastewater treatment: treat colored Elomari et al. (2016) 
Microfiltration membrane Single layer Water treatment Belibi et al. (2015) 
Microfiltration membrane Single layer Water treatment Ghouil et al. (2015) 
Microfiltration membrane Single layer Oily wastewater treatment Kumar et al. (2015) 
Microfiltration membrane Single layer Industrial wastewater treatment Baraka et al. (2014) 
Microfiltration membrane Single layer Oily wastewater Abbasi et al. (2012) 
Microfiltration membrane       Single layer Water treatment Bouzerara et al. (2012) 
Microfiltration membrane Single layer Industrial wastewater treatment Majouli et al. (2012) 
Microfiltration membrane Single layer Removal of chromates from aqueous solutions Jana et al. (2010) 
Ultrafiltration membrane Multilayer Removal of heavy metal and colorant Saffaj et al. (2010) 
Ultrafiltration membrane Single layer Wastewater treatment Masmoudi et al. (2007) 
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