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ABSTRACT 

 

Statistical and probabilistic methods are now recognized as a proper method to 

address the degree of randomness and complexity of the corrosion process. Nevertheless, 

the inclusion of this approach within corrosion model development is still rarely practiced 

in the structure assessment. This has led to the tendency by engineers and inspection 

personnel to use much simpler approaches in the assessment of corrosion progress. For 

example, the use of the linear model to predict the future growth of corrosion defects is 

widely practised despite its questionable accuracy. This work develops several corrosion-

related models based on actual metal loss data with objectives to improve the data 

interpretation as well as prediction of future defect growth. Although this work deals 

specifically with data from oil pipelines and vessel’s ballast tanks, the models has been 

designed to be generic, with no restriction on the types of structure or inspection tool. The 

procedure consists of three stages: data sampling, data analysis and probabilistic-based 

prediction. A statistical approach has been applied to model the corrosion parameters as a 

probability distribution. The issues raised by the presence of negative growth rate and 

unknown corrosion initiation time have been addressed by the development of new 

correction methods and a new data sampling technique. The research also demonstrates 

how the simple linear model can be modified to account for errors arising from the 

randomness of corrosion growth data and the variation in measured growth for severe 

defects. A proposed development of the linear-based model has been extensively used in 

the simulation programme. New data sampling techniques, data correction approaches, 

and alternative linear models have been developed to improve the assessment work on 

corrosion data. To conclude, this research was able to demonstrate how inspection data 

can be more fully utilised to optimise the application of information of corrosion progress 

to structural analysis.  
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ABSTRACT 

 

Statistical and probabilistic methods are now recognized as a proper method to 

address the degree of randomness and complexity of the corrosion process. Nevertheless, 

the inclusion of this approach within corrosion model development is still rarely practiced 

in the structure assessment. This has led to the tendency by engineers and inspection 

personnel to use much simpler approaches in the assessment of corrosion progress. For 

example, the use of the linear model to predict the future growth of corrosion defects is 

widely practised despite its questionable accuracy. This work develops several corrosion-

related models based on actual metal loss data with objectives to improve the data 

interpretation as well as prediction of future defect growth. Although this work deals 

specifically with data from oil pipelines and vessel’s ballast tanks, the models has been 

designed to be generic, with no restriction on the types of structure or inspection tool. The 

procedure consists of three stages: data sampling, data analysis and probabilistic-based 

prediction. A statistical approach has been applied to model the corrosion parameters as a 

probability distribution. The issues raised by the presence of negative growth rate and 

unknown corrosion initiation time have been addressed by the development of new 

correction methods and a new data sampling technique. The research also demonstrates 

how the simple linear model can be modified to account for errors arising from the 

randomness of corrosion growth data and the variation in measured growth for severe 

defects. A proposed development of the linear-based model has been extensively used in 

the simulation programme. New data sampling techniques, data correction approaches, 

and alternative linear models have been developed to improve the assessment work on 

corrosion data. To conclude, this research was able to demonstrate how inspection data 

can be more fully utilised to optimise the application of information of corrosion progress 

to structural analysis.  
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ABSTRAK 

 

Kaedah statistik dan kebarangkalian diakui sebagai kaedah yang sesuai bagi menangani 

tahap kerawakan dan bentuk kompleks proses pengaratan. Walau bagaimanapun, kaedah 

yang dinyatakan masih jarang digunakan dalam pembangunan model pengaratan bagi 

tujuan penilaian keadaan struktur. Ini menyebabkan jurutera dan pemeriksa terarah untuk 

menggunakan kaedah yang lebih mudah dalam menilai pertumbuhan pengaratan. Sebagai 

contoh, model linear sering digunakan dalam meramal kadar pertumbuhan pengaratan 

walaupun ketepatannya diragui. Kajian ini membangunkan beberapa siri model yang 

berkaitan dengan proses pengaratan berdasarkan data pengaratan sebenar dengan objektif 

untuk memperbaiki interpretasi data pengaratan dan juga unjuran kadar pengaratan. 

Walaupun kajian ini tertumpu kepada data pengaratan dari paip minyak dan tangki ballast 

kapal laut, model yang dibangunkan boleh juga digunakan ke atas sebarang jenis struktur 

mahupun jenis alat yang digunakan sewaktu pemeriksaan. Prosedur kajian terbahagi 

kepada tiga iaitu: pensampelan data, analisis data dan unjuran menggunakan kaedah 

kebarangkalian. Kaedah statistik digunakan bagi pemodelan pameter-parameter 

pengaratan dalam bentuk taburan kebarangkalian. Isu yang bekaitan dengan kadar 

pertumbuhan negatif dan masa permulaan pertumbuhan karat telah dikupas melalui 

pengenalan kepada kaedah pembetulan dan pensampelan yang baru. Kajian juga 

menunjukkan bagaimana model linear yang diubahsuai dapat menyelesaikan isu 

kerawakan dan serakan dimensi pengaratan. Model berasaskan pertumbuhan linear telah 

digunakan secara meluas di dalam program simulasi. Kaedah pensampelan data, 

pembetulan data dan model linear alternatif yang baru telah dibangunkan berasaskan data 

pengaratan yang sebenar bagi meningkatkan kualiti penilaian terhadap data pengaratan. 

Kesimpulannya, kajian ini telah berjaya menunjukkan bagaimana data pengaratan dapat 

ditingkatkan penggunaanya bagi mengoptimakan maklumat yang bakal diperolehi 

berkaitan dengan kadar pertumbuhan bagi tujuan analisis struktur. 
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CHAPTER I - INTRODUCTION TO RESEARCH 

 

 

1.0  Introduction  

 

 Corrosion has become a major cause of the loss of the strength in marine 

structures resulting in failures. Structural deterioration of liquid containment structures 

such as offshore pipelines and vessel’s seawater ballast tanks due to corrosion attack is a 

common and serious problem, involving considerable cost and inconvenience to industry 

and to the public. Structural failures such as explosion and leakage may induce serious 

damages and cause environmental hazards. Heavy financial loss associated with 

production loss, repair or even the clean up of the polluted marine environment will be 

experienced by the company. Therefore, awareness among structure owners in 

maintaining high reliability of their structure system has risen dramatically. An accurate 

estimation of corrosion rates plays an important role in determining corrosion allowances 

for structural designs, planning for inspections, and scheduling for maintenance [Wang et 

al., 2003]. Therefore, more inspections have been carried out so the corrosion progress 

can be monitored continuously. A robust and simple approach is required to optimize the 

information that can be acquired from the inspection data. Hence, the remaining life-time 

of structures and the probability of structure failure can be quantified and projected 

accurately into the future. 

 

 

1.1 Background and Motivation 

 

The use of inspection data in assessing and predicting the remaining lifetime of 

corroding structures has been widely applied by engineers. With proper empirical models, 

the extent of the corrosion could be monitored effectively to minimise the effects towards 

structure reliability. However, the complexity of corrosion empirical models owing to 

their dependency on so many variables such as temperature, chemical substances, 

penetration rate and partial pressure, which in certain circumstances are difficult to 

measure correctly, could affect the accuracy of the assessment results. In many cases, this 

information will not be recorded and may vary significantly over the period of service. 

On some occasions, the variables that have an effect on the corrosion theoretically have 

been proven less important for the actual field. Melchers [1999a] stated that the effect of 
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water temperature on the corrosion of steel has long been recognised as a factor in 

laboratory testing but not in field observations. 

 

Since these models are a function of many variables, which themselves can often 

be uncertain, a simpler model which is based solely on the corrosion wastage is 

appropriate as an alternative approach which would be complementary to the available 

empirical models [Melchers, 1999a]. The additional complexity introduced by more 

refined mathematical models has yet to prove the value of such an approach in improved 

corrosion prediction accuracy [Wang et al., 2003]. Based on the information provided by 

the inspections tools, repeated measurement of metal loss area could lead to developing a 

general and robust corrosion related model. Much of the previous work on corrosion 

assessment has been developed through extensive laboratory tests, in reality many issues 

regarding environmental uncertainties are not investigated accurately by such tests since 

the experiments have been run under a controlled ‘pseudo’ environment. Instead of 

relying on the data from laboratory work, a huge amount of commercial data from 

inspections on real structures might give better vision and information being at real scale 

and in more natural and uncontrolled environment. Inspection work on real structures 

could be perceived as a large scale example of experimental laboratory work. The 

collected data might be better compared to laboratory test data in terms of information on 

uncertainties, provided that the inspection is sufficiently accurate to produce high quality 

data.   

 

Hypothetically, the study on the volume of corrosion wastage taken from real 

inspection data could eliminate the barrier posed by the diversity of the types of 

corrosions, corrosion mechanisms, structure designs, and inspection tools. Most of the 

inspection on corroding structures targets mapping and measuring the volume of metal 

loss by its depth, axial length, and circumferential length. If different data from different 

structures could be collected and studied together, generic corrosion-related models could 

be developed if common aspects can be identified. If this is achievable, a single 

assessment approach could be used on different types of structures with excellent 

flexibility, suiting the application of established empirical models or theoretical models or 

both. 

 

 

1.2 Scope 
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A large part of the previous researches related to corrosion study involve 

extensive laboratory experimentation to examine the correlation between volume of metal 

loss and those parameters that are considered to influence metal loss such as pH, 

temperature, operational pressure and penetration rate of chemical substances. However 

this thesis concentrates on the analysis of corrosion data collected from inspection 

activities on site (secondary data). Two types of engineering structures/systems are 

considered (i) crude oil pipelines, and (ii) vessel’s seawater ballast tanks. Other 

structures/systems are not included owing to limited amount of inspection data available. 

Repeated and random inspection data detailing the volume of metal loss is the key factor 

considered in this research. Corrosion potential readings, for example, which are available 

for reinforced concrete assessment is not considered in the study. The development of the 

corrosion-related models and the data correction approaches are totally based on the 

physical evidence from metal loss volume. The effects of material properties, operational 

condition, and environmental parameters upon corrosion growth are not considered in 

developing the generic assessment approach of corrosion data. Statistical analysis is used 

to analyse the variation of corrosion parameters. The analysis results are then used to 

assess the current and future remaining lifetime of corroding structures by using the 

Monte Carlo simulation. 

 

 

1.3 Aims 

 

The main goal of this thesis is to develop corrosion-related models including 

metal loss dynamic and error models for structures exposed to seawater environment. The 

proposed models will be wholly developed through large scale data collection from on-

site inspection activities. The following aims were identified as steps towards achieving 

this goal: 

 

1. Analyse real inspection data by using statistical and probabilistic approaches to 

extract important information regarding corrosion behaviour. 

2. Develop simple corrosion-related model and data correction approaches based 

solely on metal loss evidence to eliminate the dependency of corrosion progress 

upon structure material and environmental properties.  
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1.4  Importance of Study 

 

The study will provide much simpler models to analysing inspection data and 

evaluating the current and future condition of corroding structures. The corrosion-related 

models are fully developed from real inspection data to make it readily understood and 

practical during on site assessment owing to its independency on environmental 

parameters and structure material. This study will also provide correction methods to 

improve the interpretation of corrosion data. The whole package of the proposed model is 

designed to simplify the practical aspects of structural assessment and to identify 

inspection plans, both complying with specific requirements on the maximum acceptable 

annual probability of structural failure and at the same time minimising overall service 

life cost. Furthermore, this will encourage plant engineers and inspection personnel to 

make optimum use of the inspection data. 
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CHAPTER 2 - REVIEW ON CORROSION 

 

 

2.0  Introduction 

 

This chapter is intended to justify the purpose of this research by reviewing 

related corrosion issues. It begins with a general principle of corrosion including 

corrosion problems suffered by engineering structures or systems and corrosion behaviour 

including the corrosion electrochemistry, variation of corrosion forms and growth 

patterns. The discussion of corrosion forms is primarily in terms of pitting corrosion due 

to its severe destructive nature in perforating the wall thickness of liquid containment 

structures. A number of corrosion-related models have been discussed briefly with the 

intention of demonstrating the model complexity due to its dependency on environmental 

parameters and structural properties. Previous works on data analysis and structural 

assessment guidelines of pipelines and vessel tank structures has been covered to identify 

the potential future research on corrosion assessment guidelines. The last part of this 

chapter is the discussion on the major issues related to corrosion engineering and 

introduces the idea of a generic assessment approach of corrosion data and its application 

to structure reliability. 

 

 

2.1  Corrosion in General 

 

Corrosion encountered in engineering structures is an electrochemical process in 

nature with the presence of oxygen in some form [Peabody, 1967]. In general terms 

corrosion is defined as the destruction or deterioration of a material because of reaction 

with its environment [Fontana, 1986]. Although the term is usually applied to metals, all 

materials, including ceramics, plastics, rubbers, and wood, deteriorate at the surface to 

some extent when they are exposed to certain combinations of liquids and/or gases. 

Common examples of metal corrosion are the rusting of iron, the tarnishing of silver, the 

dissolution of metals in acid solutions, and the growth of patina on copper. In the 

structural engineering field, metal corrosion is considered as one of the most dominant 

failure mechanisms that significantly affects the reliability of structure. Corrosion rates 

may be reported as a weight loss per area divided by the time (uniform corrosion) or the 

depth of metal corroded, divided by the time (localised corrosion). 
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2.1.1 Corrosion in Engineering Structures 

 

Reliability deterioration of engineering structures due to corrosion is a wide 

spread problem, inflicting huge financial loss and sometimes dreadful catastrophe. 

Corrosion is considered to be one of the most important factors affecting age related 

structural degradation of steel structures and therefore has attracted large scale research to 

explore and investigate the complexity of the corrosion process [Paik, 2004]. Corrosion 

decreases the ability of the structures to withstand loads and hence the level of safety of 

these structures diminishes with time due to accumulation of corrosion damage. 

Preserving structure lifetime when under corrosion attack is not a simple task. It requires 

deep knowledge of the corrosion process in order to predict the future growth of corrosion 

defects accurately. 

 

In reinforced concrete structures, corrosion-initiated longitudinal cracking and 

associated spalling of the concrete cover are particularly common problems. Corrosion 

can cause a serious metal loss from the reinforcement bars causing the structure to lose its 

integrity. The corrosion product, rust accumulates causing tensile stresses inside the 

concrete which triggers internal microcracking, external longitudinal cracking and 

eventually spalling. These reduce the structural strength capacity due to reduction in the 

depth of concrete compression area [Thoft-Christensen, 2002]. Corrosion in steel beams 

can cause severe thickness loss from the web and flange areas. A corroding steel beam 

subjected to bending might fail in different ways, depending on its dimensions and the 

loading it undergoes, such as buckling of flanges, lateral-torsional buckling, and shear 

failure of the web and in bearing failure of the web. In a highly corrosive environment, 

initiation and subsequent propagation of pits can result in complete perforation of the 

structure wall of containment structure such as pipelines, water tanks, and ballast tanks. A 

fraction of the fluid that is carried or contained will be lost and might lead to 

contamination of the environment for example the contamination of seawater due to crude 

oil leaking from offshore pipelines. 
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2.1.2 Corrosion Electrochemistry  

 

Corrosion is usually an electrochemical process in which the corroding metal 

behaves like a small electrochemical cell. The corrosion of iron by dissolved oxygen is 

taken as an example to illustrate the electrochemical nature of the process since it is the 

most common reaction occurring in the atmosphere. Figure 2.1 shows the illustration of 

the corrosion process represented by a sheet of iron divided into two different areas which 

are an anodic area and cathodic area. 

 

When this sheet of iron is exposed to a water solution containing dissolved 

oxygen, iron is oxidized by reaction with dissolved oxygen to form ions and electrons. 

This first process is known as anodic or oxidation reaction. At the same time, the 

generated electrons are consumed by the second process and oxygen molecules in the 

solution are reduced at the cathodic areas. This is known as cathodic or reduction 

reaction. These two processes have to balance their charges. The sites hosting these two 

processes can be located close to each other on the metal's surface, or far apart depending 

on the circumstances. These two processes produce an insoluble iron hydroxide in the 

first step of the corrosion process. Generally, this iron hydroxide is further oxidized in a 

second step to produce Fe(OH)3, the flaky, reddish-brown substance that is known as rust. 

Unfortunately, this new compound is permeable to oxygen and water, so it does not form 

a protective coating on the iron surface and the corrosion process continues. The whole 

reaction process can be represented by formulas as detailed in Table 2.1: 

 

Table 2.1: The chemical reaction process of corrosion initiation 

Reaction Formula 

Anodic reaction (oxidation) 

 

Cathodic reaction (reduction) 

−++ +→ eFeFe 222 32  

 
−− →++ OHeOHO 22222

1  

Total reaction   −++ +→++ OHFeOHOFe 222 3
222

12  
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2.1.3  Forms of Corrosion 

 

 There are eight common different forms of corrosion; uniform, galvanic, crevice, 

pitting, intergranular, leaching, erosion and stress corrosion. Normally, it is easy to 

classify corrosion into two different classes based on the metal loss area [Ahammed and 

Melchers, 1994]. For uniform loss of material thickness, it can be classified as general 

corrosion whereas non-uniform metal loss represents localised corrosion. General 

corrosion is a corrosion reaction that takes place uniformly over the surface of the 

material, thereby causing a general thinning of the component and eventually failure of 

the material. The geometry of a wide spread general corrosion is difficult to measure. In 

contrast localised corrosion comprises clearly defined, relatively isolated, regions of 

metal loss [O’Grady II, 1992a and 1992b]. Therefore, it is theoretically easy to measure 

the extents of axial and circumferential corrosion of a localised defect.  

  

 Pitting is categorised as a form of localised corrosion. A pit is a hole, for which 

the width is comparable with or less than its depth [West 1986]. Pitting is one of the most 

destructive forms of corrosion for many metallic structures and is well known as the 

predominant internal failure mechanism of steel offshore pipelines [Ahammed and 

Melchers, 1994; Fontana, 1986; Shi and Mahadevan, 2000]. Under aggressive 

circumstances due to the corrosive environment, propagation of pitting corrosion can 

result in perforation of the wall structure. A similar way to pitting corrosion, pinholes can 

occur which have a narrow depth, and also lead to a high-risk of leakage and spillage 

from a containment structure such as pipelines and water tank. Corrosion can also occur 

in other forms such as groove shape like a channel where its width is greater than its 

depth. The loss of metal section due to uniform corrosion is important for structural 

strength considerations while pitting is clearly of importance for containment.  

 

 

2.1.4  Corrosion Growth  

 

 The assumption of linear growth is widely used by researchers in predicting the 

progress of corrosion due to its simplicity and lack of information to develop a proper 

growth model. Till now, there is no evidence that linear growth is the most accurate 

model for prediction purposes. It has been suggested that for long term prediction, the 

linear form is highly likely while less accurate for short term prediction [Caleyo, 2002]. 
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However, there are no specific guidelines on how to distinguish between long term and 

short term predictions. Yahaya [1999] described the linear model as robust and simple 

compared to other models, but noted it has some limitations. However in contrast, the 

author stated that the prediction of corrosion growth into the future should be done for 

short term only due to the unpredictable nature of corrosion rate. The variation of 

corrosion rate might be random due to unforeseen circumstances that can accelerate the 

corrosion rate such as accidental flow of corrosive product, structural degradation due to 

accident, unpredictable environmental conditions and changes in operating pressure. 

Therefore, continuous corrosion monitoring is essential in order to get a better insight and 

information. 

 

 Figure 2.2 illustrates alternative patterns of corrosion growth. The convex curve 

indicates that the corrosion rate is accelerating as the corrosion progress proceeds. This 

type of corrosion progression may be likely to happen in marine immersion conditions at 

sea, specifically in dynamically loaded structures where flexing continually exposes 

additional fresh surface to the corrosion effects [Paik and Thayambali, 2002]. The 

concave curve shows that the corrosion rate is increasing in the beginning but is 

decreasing as the corrosion progress proceeds. The formation of rust product on the steel 

surface will reduce the diffusion of the irons away from the steel surface. Also, the area 

ratio between the anode and the cathode is reduced. This suggests that the corrosion rate 

will reduce with time; namely, rapidly during the first few years after initiation but then 

more slowly as it approaches a nearly uniform level [Vu and Stewart, 2000]. This type of 

corrosion progression may be typical in a non-immersion environment of liquid (water or 

oil) since the corrosion lump at the steel surface can disturb the activation of corrosion 

progress [Paik and Thayambali, 2002]. 

 

2.1.5  Corrosion Rate Models 

 

The corrosion process is time-variant and the amount of corrosion damage is 

normally defined by a corrosion rate with units of, say, mm/year, representing the depth 

of corrosion increase per year [Paik and Thayambali, 2002]. While the extent of corrosion 

presumably increases with time, it is not straightforward to predict the progress of 

corrosion. The only real alternative is then to pessimistically assume more corrosion 

extent than is likely [Paik and Thayambali, 2002]. There are theoretical and empirical 

models available to estimate the rate of corrosion growth. An empirical model such as 
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deWaard and Milliams equation was developed through extensive lab tests on simulated 

corroding environment for offshore pipelines. Generally, empirical models are developed 

based on a defined relationship between material and environmental properties to 

estimate the corrosion rate. Unlike an empirical model, a theoretical model such as linear 

estimation can be simpler and practically available to estimate the average growth rate 

based on metal loss evidence regardless the effect of material and environment properties.  

 

 

2.1.5.1 Linear Model 

 

 The corrosion growth rate can be calculated using a linear corrosion growth 

model. This theoretical model is normally used on metal volume loss data or corrosion 

depth by comparing two corresponding defect dimensions at different time. The linear 

equation is performed as below: 

 

12

12

 - TT
dd

CR
TT −

=  Equation 2.1 

 

where: 

CR = corrosion growth rate   

dT1   = corrosion loss volume in year T1 

dT2 = corrosion loss volume in year T2 

T1  = year of inspection T1 

T2 = year of inspection T2 

 

 

2.1.5.2 The deWaard & Milliams Model 

 

 The deWaard & Milliam empirical model has been widely used to estimate the 

averaged corrosion growth rate in an oil and gas pipeline subjected to CO2-induced 

corrosion [DeWaard et al, 1991; Lotz et al, 1991]. In this model, the charge transfer 

controlled reaction of carbon dioxide and water with steel was represented 

algorithmically in terms of CO2 partial pressure and an exponential temperature function. 

One of the main advantages of the deWaard-Milliams model is that it is capable of 

estimating corrosion rates without considering the actual corresponding dimension of 
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corrosion defect in later inspection such as in the linear model procedure. The rates of 

corrosion are estimated by: 

 

mr

CR

VV

V
11

1

+
=  Equation 2.2 

 

where: 

 

)(pCO .
T

.)(V
mp

r 2log580
273

1119
934log +

+
−=  Equation 2.3 

 

and 

 

oprpnCOpCO 22 =  Equation 2.4 
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m =  Equation 2.5 

 

where:   

D = pipeline diameter (mm) 

Dh = hydraulic diameter of the pipe. (D-2t) (mm) 

nCO2 = fraction of CO2 in the gas phase  

pCO2 = partial pressure of CO2 (bar) 

popr = operating pressure (MPa) 

t = pipeline radius (mm)  

Tmp = temperature (oC) 

U =  liquid flow velocity (m/s) 

Vcr = corrosion rate (mm/year) 

Vm = flow-dependent contribution to the mass transfer rate  

Vr = flow-independent contribution to the reaction rate. 
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2.1.5.3 Corrosion Model of Concrete Reinforcement Bar 

 

This model was proposed by Vu and Stewart [2000] to predict the progress of 

corrosion of reinforcement bar in concrete structures. This model is applicable when the 

corrosion rate is governed by the availability of water and oxygen at the steel surface, and 

the concrete cover. This model indicates that corrosion rate will reduce rapidly with time 

during the first few years after initiation but then more slowly as it approach a nearly 

uniform level. 

 

( )2

64.1

/

18.37

cmA
c

c
w

i
x

e
corr µ

−









−

=       Equation 2.6 

 

where: 

cx =   concrete cover (cm) 

icorr  =  corrosion rate (µA/cm2) 

w/ce  =  water-cement ratio  

 

By taking into consideration the effect of corrosion initiation time, the above equation can 

be written as: 

 

( )229.0 /85.0. cmAtii pcorrtcorr µ−
− =       Equation 2.7 

 

where: 

tp  =  time since corrosion initiation. (year) 

 

 

2.1.5.4 Erosion-Corrosion Model 

 

Abdulsalem [1992] proposed a steady state model for erosion corrosion of feed 

water piping. The rate of erosion corrosion is dependent on two factors which are oxide 

dissolution and mass transfer based on the oxide dissolution. The kinetics of erosion 

corrosion is governed by two steps that operate in series. The first step is the kinetic rate 

of oxide dissolution, Rk expressed as: 

 



 13





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 −
=
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E
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u

k
ok exp  Equation 2.8 

 

where: 

Ek  = activation energy (31,580 cal/mol) 

Ro  = 9.55x1032 atoms/cm2 

Ru  = universal gas constant (2 cal/mol/K) 

T  = temperature (oK) 

 

The second step involved is the estimation of mass transfer limit, RMT: 

 

( )bsMT CCKR −=  Equation 2.9 

 

where: 

Cb  = a given bulk concentration 

Cs  = surface concentration 

K  = mass transfer coefficient 

 

Total erosion corrosion rate can be defined as: 

 

( )11 −− += MTk RRRate  Equation 2.10 

 

 

2.1.5.5 Probabilistic Model of Immersion Corrosion 

 

 Melchers [1999a] has proposed a probabilistic model for corrosion weight loss 

that is suitable for immersed structures. The proposed model was constructed from a 

mean value expression accounting for random and other uncertainties not modelled in the 

mean value expression, as follows: 

 

( ) ( ) ( )vvv EtEtfnEtc ,,, ∈+=  Equation 2.11 

 

where: 

( )vEt,∈   = zero mean error function 
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( )vEtc ,   = the weight-loss of material 

Ev = vector of environmental condition 

( )vEtfn ,  = mean valued function 

t  = time 

 

 The proposed model accounts for the major processes involved in the corrosion 

process using E that involves initial corrosion, oxygen diffusion controlled by corrosion 

products and micro-organic growth, limitations on food supply for aerobic activity and 

anaerobic activity. The author suggests that to refine the model, further detailed field 

observations are necessary to gather more precise information on environmental 

conditions such as temperature, dissolved oxygen, pollutants, water velocity and factors 

that influence the microbiological growth.  
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Figure 2.1: Corrosion Electrochemical Process 

 

 

 

Figure 2.2: Corrosion progress model 
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2.2 Related Works 

 

 This section contains a literature review on corrosion data analysis for pipeline 

and liquid containment structures, and available assessment guidelines specifically 

developed on the statistical and probability basis. Due to limited sources of corrosion data 

from other types of structures, further analysis in this research is related solely to two 

general steel structures, namely oil and gas pipelines and vessel’s seawater ballast tanks. 

 

 

2.2.1 Corrosion of liquid containment structures 

 

 Paik and Thayambali [2002] present a methodology for modelling corrosion in a 

vessel’s ballast tank based on corrosion depth measurement on outer bottom plating of a 

bulk ship. The reduction of plate thickness due to corrosion was expressed as a function 

of time (year) after the corrosion starts, namely 

 

2
1

CTCt =   Equation 2.12 

 

where: 

C1 = annual corrosion rates 

C2  = coefficient determines the trend of corrosion progress 

t  = corrosion depth/loss (mm) 

T = exposure time in year after breakdown of coating 

 

 The authors explain the coefficient of C2 can be determined based on carefully 

collected corrosion data for existing ship structures. However, this approach is in most 

cases not straightforward to apply mainly because of the differences in data collection 

sites typically visited over the life of the vessel and also differing periods of time between 

visits [Paik and Thayambali, 2002]. This is part of the reason for the relatively large 

scatter of corrosion data in many studies by the authors. The simple alternative is to 

determine the value of corrosion rates, C1 assuming a constant value of C2 which 

measurements have suggested varied between 0.3-1.0. For practical design purposes, the 

authors assumed C2=1 and was taken as the usual value. 
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Wang et al. [2003] presents an estimation of corrosion rates of structural members 

in oil tankers based on a corrosion wastage database of over 110,000 thickness 

measurements from 140 single hull oil tankers. The Weibull distribution was used to 

represent the distribution of corrosion rates. The mean, standard deviation and maximum 

values of corrosion rates for structural members were obtained based on the entire 

population of the database. They were then compared with the ranges of corrosion rate 

published by Tanker Structure Co-operative Forum (TSCF). A constant-rate corrosion 

progress model (linear model) was used to estimate the corrosion rates for each individual 

defect by assuming that there is no corrosion during the first five years of service for 

simplicity sake. The finding from this research shows that the average corrosion rates do 

not seem to depend on usage spaces (cargo or ballast tank) as shown in Table 2.2.  

 

 Paik [2004] focuses on the corrosion in seawater ballast tank structures of bulk 

carriers and oil tankers. Measured data for the corrosion of wastage of seawater ballast 

tanks of ocean-going oil tankers and bulk carriers have been collected using an ultrasonic 

measurement tool. Statistical analysis has been carried out to quantify the characteristic of 

corrosion data in terms of ship age and to develop time-dependent corrosion wastage 

model. Three assumptions were made for the analysis of corrosion in this study namely 

 

1. The annualised corrosion rate is constant so that the relationship between the 

corrosion depth and the ship age is linear. 

2. The life of coating applied on the structure wall is varied at 5, 7.5 and 10 years in 

the study, because no information about the breakdown of the coating is available. 

3. Corrosion starts immediately after the coating breakdown takes places. 

 

 The loss of plate thickness due to corrosion is expressed linearly as a function of 

the time (year) after the corrosion starts. Corrosion rates were estimated individually by 

incorporating assumed values of coating life and found by best fit to the Weibull 

distribution function. The annualised corrosion rates were determined by including all of 

the data and the data only at the tail of 95% and above band (extreme model). Tables 2.3 

and 2.4 summarise the computed results for the mean value and coefficient of variance of 

annualised corrosion rates. The main problem with the proposed assessment work by Paik 

and Thayambali [2002] and Paik [2004] is the assumed value of coating life. The author 

only made assumptions of the coating life to simplify the estimation of corrosion rate 

which might causes uncertainty in the prediction.  
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Table 2.2: Estimated mean, standard deviation and maximum values of corrosion 

rate for various structural members in oil tankers and comparison with the range of 

general corrosion by TSCF (1992) (unit: mm/year) [Wang et al., 203] 
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Table 2.3: Summary of the computed results for mean value and COV of annualised 

corrosion rate of bulk tanker’s seawater ballast tank [Paik and Thayambali, 2002]. 

Corrosion data 

used 

Coating life 

assumed 

Mean of annualised 

corrosion rate (mm/year) 

COV 

 

 

Bulk 

Carrier 

All 

corrosion 

data 

5 years 0.0473 0.8388 

7.5 years 0.0621 0.9081 

10 years 0.0804 0.9031 

95% and 

above 

band 

5 years 0.1678 0.1678 

7.5 years 0.2212 0.2212 

10 years 0.2997 0.2997 

 

 

Table 2.4: Summary of the computed results for mean value and COV of annualised 

corrosion rate of oil tanker’s seawater ballast tank [Paik and Thayambali, 2002]. 

Corrosion data 

used 

Coating life 

assumed 

Mean of annualised 

corrosion rate (mm/year) 

COV 

 

 

Bulk 

Carrier 

All 

corrosion 

data 

5 years 0.0463 0.7583 

7.5 years 0.0549 0.7596 

10 years 0.0684 0.7897 

95% and 

above 

band 

5 years 0.1481 0.1428 

7.5 years 0.1777 0.1316 

10 years 0.1926 0.3630 

 

 

2.2.2 Corrosion Analysis Guideline for Pipelines 

 

 Yahaya [1999] has used multiple sets of corrosion data from pipeline inspection of 

the same pipelines in three different years to examine the relationship between corrosion 

defect size and corrosion rate. Two different sampling methods were applied to match the 

data from one inspection with the corresponding data in the other inspections. The first 

approach is by sorting the depth of corrosion depth by its severity before locating the 

corresponding data while the second approach samples the data randomly. The 

description of the sampling approach is shown in Table 2.5. The author focuses on 

matching data with high depth severity in order to investigate the connection between 

rapid growth rate and severe corrosion pit. This connection is very important to establish 
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the hypothesis that the deepest defects are most likely to grow at a faster rate and hence 

become the most likely site to fail [Yahaya, 1999] 

 

 The linear model was used to estimate the corrosion growth rate based on metal 

loss volume between the two matched data. An intensive statistical analysis was carried to 

study the correlation between corrosion depth, corrosion length and corrosion growth 

rate. The conclusions on data analysis are summarised as follows: 

 

1. There is a weak relationship between corrosion peak depth and 

axial length, hence both parameters were considered independent. 

2. Some of the sampling techniques resulted in negative average 

values of corrosion growth rate which is unrealistic and unacceptable for 

prediction purposes. The negative value is believed to be caused by certain factors 

such as random corrosion behaviour and measurement error due to improper tool 

calibration. 

3. Based on a bivariate Normal distribution model, there was 

evidence of a very strong negative correlation trend between the measured depth 

and subsequent corrosion depth. This signified that on average, a substantial 

proportion of low-to-middle depth defects in the previous inspection grew more 

rapidly compared to some of the deeper features, contrary to the earlier 

hypothesis. 

 

 The author has introduced a correction method to reduce the deviation of 

corrosion distribution by eliminating the extreme negative and positive growth rate. A 

normal distribution of correction factor with zero mean value was introduced by assuming 

that there has been some level of error in the inspection measurement of defect 

dimensions. Yet, the proposed method is only applicable to Normal distribution of 

corrosion growth rate with positive mean value. With this limitation, better approaches 

are required to be developed to address different types of anomalies within corrosion data. 

 

 The problems of predicting the future size of corrosion defects from the inspection 

data and the effect of the uncertainty of such predictions upon the structural integrity 

assessment were highlighted. The large volume of detected data results in the 

involvement of several thousands of corrosion sites and so an extreme value statistic 

using peaks over threshold approach was adopted. The effect of the selection of threshold 
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levels upon the structural reliability for the various limit states was also examined using 

Monte Carlo simulation and it was suggested that threshold levels over 30% for corrosion 

depth of pipeline wall thickness to be used as this retained a reasonable number of 

remaining data after the cut-off (25% at least from the amount of whole data) and the 

consistency of predicted failure probability. The proposed assessment procedure of 

pipeline corrosion data is shown in Figure 2.3. 

 

Table 2.5: Examples of data sampling description [Yahaya, 1999] 

Sampling method Descriptions 

Top 500 depth 

severity sorted in 

1992 

Data are sequenced based on depth severity in 1992, then the 

corresponding 500 matched features in 1990 and 1995 are 

located. 

Top 500 depth 

severity sorted in 

1992 

Data are sequenced based on depth severity in 1995, then the 

corresponding 500 matched features in 1990 and 1992 are 

located. 

Random sampling Data are sampled randomly in 1995, and then the corresponding 

matched features are located in 1990 and 1992. 

 

 

 The Health & Safety Executive proposed guidelines for use of statistics for 

analysis of sample inspection of corrosion [HSE, 2002]. This guideline is intended to 

advise plant engineers and inspection personnel on methods for analysing and 

extrapolating inspections for large plant including vessels, pipeworks and pipelines, 

taking into account the statistical nature of corrosion. Moreover, it provides an 

introduction to the techniques and capabilities of the statistical methods with view to the 

wider application in industry. The widespread application of statistical analysis on 

corrosion data is not common, largely because the use of statistics requires specialist 

knowledge, and no reference standard exists. The statistical analysis comprising least 

square method and probability plot for determination of statistical distribution and the 

corresponding moment value, and extreme value theory to predict the likelihood of early 

wall perforation. The linear model was suggested for prediction of defect growth in the 

future due to its simplicity and non dependency upon operational condition, structure 

material, and environmental properties. 
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 Desjardins [2002a and 2002b] presents a method for optimising the repair and 

inspection based on in-line inspection data corrosion growth modelling, and a 

probabilistic approach to defect severity predictions. The data matching procedure has 

been combined with risk assessment methodology to assessing future risk based on 

calculating the probability of failure due to corrosion at any point of time. By analysing 

the risk to a pipeline based on probable future corrosion severity and probability of 

failure, an optimised integrity strategy can be developed to either minimise the failure 

probability given a set integrity budget, or to minimise integrity costs while maintaining 

an acceptable level of risk. The proposed methodology is depicted in Figure 2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 
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Figure 2.3: A general summary of overall procedure on the use of inspection data in 

the structural reliability assessment of corroding pipelines as proposed by Yahaya 

[1999]. 
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Figure 2.4: Corrosion growth analysis and probability of failure methodology by 

Desjardins [2002a and 2002b]. 
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2.3 Corrosion Issues 

 

  The corrosion process in total is very complex and the modelling is often based on 

observations or speculations rather than a clear understanding of the physical and 

chemical processes [Thoft-Christensen, 2002]. For instance, the diffusion coefficient and 

surface chloride concentration in practice are assumed as independent derived variables 

[Vu and Stewart, 2000]. This is not so in reality. In nearly all reported data, diffusion 

coefficients and surface chloride concentrations that play major roles in governing 

corrosion growth rate in reinforced concrete are not obtained by physical measurements, 

but by ‘best fits’ to Fick’s law [Vu and Stewart, 2000]. Simplicity in predicting corrosion 

progress such as the use of linear growth model based on assumption may be perceived as 

a conservative estimate of the corrosion rate. Consequently, it might be misleading in 

terms of residual safe life and hence might lead to premature condemnation of a structure. 

[Melchers, 1999a] 

 

  Despite some quite extensive, long term experimental test programs, the 

prediction of the likely corrosion loss of material is still rather simplistic and not well 

developed [Melchers, 1999a]. The complexity of corrosion nature is due to the 

unpredictable condition of the corrosion progress and the uncertainties related to material 

and environment properties. Corrosion empirical models have been extensively developed 

through proper laboratory testing. However, due to random nature and uncontrolled 

environment on the real sites, these tests sometime mislead the information on corrosion 

growth. Some parameters related to environmental properties such as temperature might 

have been shown to have a significant affect on corrosion growth based on laboratory 

testing. However, when further analysis was carried out on real field data, the relationship 

between these properties can hardly be identified [Melchers, 1999a]. 

 

  The deWaard and Milliams model, for instance is able to estimate the average 

corrosion growth rate in oil and gas pipelines. Mostly, empirical corrosion models are 

presented as a function of many variables, which on some occasion the actual values are 

barely measurable. No matter how reliable the corrosion models are, if the required 

variables can’t be measured accurately, it will affect the reliability of assessment results. 

The dependency of these models on so many variables would be perceived as impractical 

when precise information is not available. 
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 The corrosion damage of steel structures is influenced by many factors, including 

the corrosion protection system and various operational parameters. This makes the 

corrosion an unpredictable process, complex, and randomly progress in time [Thoft-

Christensen, 2002]. Even though the sources of corrosion can be identified and treated 

accordingly, the prediction of corrosion progress might still be inaccurate. This is because 

of other factors that can also trigger and accelerate the corrosion growth rate. Corrosion in 

concrete due to chloride penetration might be predicted by using chloride penetration 

model and corrosion initiation time model. However, the process is more complicated 

since chloride is not the only factor that governs the corrosion progress. Corrosion of 

reinforcement bar causes loss of area and the increased volume of rust causes concrete 

tensile stresses that may be sufficiently large to cause internal micro cracking. This 

internal cracking will create a very narrow opening on the outer surface which is large 

enough to allow other substances from outside, such as water and oxygen to reach the 

reinforcement bar surface. Hence, this may lead to acceleration in corrosion rate. This 

may explain why researchers believe that corrosion rate is not always constant with time, 

non-uniform and difficult to predict [Melchers, 1999a; Sarveswaran et al., 1998]. 

 

 There is a dilemma in modelling corrosion growth. If the model contains too many 

variables, the inherent uncertainties associated with these variables might jeopardise the 

integrity of assessment results. Modelling corrosion growth based on metal loss volume 

may sound too simple and less technical. The assessment results might be too 

conservative. However, if proper research can fully utilise the information from field 

data, the inaccuracy of this simple model might be compensated by its great practicality. 

Morrison Inc. has been aggressively developing a practical yet simple approach in 

estimating the corrosion growth rate inside pipelines without relying on empirical models 

[Morrison et al, 2000b]. The corrosion assessment is based purely on the data matching 

procedure between multiple set of inspection data to obtain the actual growth rate. A 

better way in the handling of corrosion growth problem is by incorporating empirical 

model based on lab testing and statistical model based on field data study to achieve the 

best result of corrosion assessment. Both approaches can be seen as complementary to 

each other in order to minimise the inaccuracy of corrosion assessment due to 

unavoidable uncertainties. 
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2.4 Concluding Remarks 

 

 This chapter is intended to justify the proposed research by highlighting key 

points on corrosion issues. There is an ongoing interest in developing models for 

predicting corrosion wastage [Gardiner and Melchers, 2001]. There are several quotes 

which refer to corrosion as a complex and an unpredictable process. Moreover, the 

simplicity of the linear model cannot account for the random nature of corrosion. The 

available empirical models of corrosion are dependent upon operational conditions (such 

as working pressure), material properties, and environmental parameters, which can vary 

greatly in the real situation. Hence, an averaged value might miscalculate the possible 

corrosion growth rate. More effort is needed to improve the use of the linear model as an 

alternative to these empirical models.  

 

The availability of real inspection data has greatly improved the understanding of 

the subject of corrosion. Nevertheless, corrosion assessment procedures, that are easily 

understood and conveniently applied by engineers and inspection personnel, are barely 

developed. It is important to compile systematically the assessment and analysis work on 

inspection data as a practical guideline. The application of the statistical and reliability 

approach on corrosion data and corroding structures is still not a widespread practice on 

sites. Moreover, there is a great lack of optimising the available inspection data to address 

any flawed information obtained, such as negative growth rate. More can be done to 

utilise fully the inspection data. Generalising assessment work on different types of 

corrosion data and structures is a large task, but if this can be done in a proper way it may 

simplify the assessment process and be of greater practicality.  

 

 Based on a review of previous research works and corrosion related subjects, this 

research is aimed towards developing a generic assessment approach of corrosion data 

and its application to structure reliability. The goal is to generalise the corrosion 

assessment work and to improve the understanding of the corrosion process by fully 

utilising the inspection data. The use of the statistical and reliability method is intended to 

address the random nature of corrosion which leads to uncertainties. Finally, the findings 

from this research may provide an alternative corrosion assessment procedure for 

application on site. The issues related to the complexity of the corrosion process and 

corrosion divergence will be addressed extensively, hence, providing a solution to 
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encounter flawed information such as negative growth rate, and the lack of parameters 

such as corrosion initiation time. 
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CHAPTER 3 - STATISTICAL ANALYSIS OF PIGGING DATA 

 

 

3.0 Overview 

 

This chapter focuses on statistical analysis on multiple sets of real corrosion data 

collected through pigging inspection on three different offshore crude oil pipelines. The 

proposed analysis procedure consists of two parts, namely data observation and statistical 

analysis. Several corrosion-related models have been tested and developed based on the 

pigging data. Errors that are likely to be related to imperfect defects measurement by the 

pig tools have been encountered during the analysis process which leads to the 

introduction of correction methods to increase the reliability of the corrosion information. 

All of the corrosion-related models developed to date have been based solely on the 

measured metal loss volume with no attempt to include the specific effect of any 

environmental parameters or material properties. The aim is therefore to establish generic 

models for application to corrosion data from various types of inspection tools and 

structures. The methodology described here has been developed particularly for use on 

multiple sets of data from the same structures, since the information between two 

inspections at different times enables engineers to monitor the corrosion progress 

efficiently. 

 

 

3.1 Data Analysis  

 

 In this study, an extensive amount of pigging data was gathered through in-line 

inspection activities on the same pipelines at different times. These databases of pigging 

data were collected from three different pipelines, named  Pipelines A, B and C. Pipelines 

A and B consist of three sets of data, recorded in years 1990, 1992 and 1995. Pipeline C, 

however, includes only two sets of data collected from inspections done twice in year 

1998 and 2000. Normally, pigging data provides valuable information on the internal and 

external corrosion defect geometry, such as depth and length, orientation, defect location 

and types of corrosion regions. The physical dimensions and other related information of 

these three pipelines are presented in Tables 3.1 and 3.2. 
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All data represent internal defects in the form of corrosion pits. Therefore, other 

types of corrosion defects such as groove were not considered in the sampling procedure. 

The types of pig tools used in the inspection for Pipelines A, B and C were magnetic flux 

leakage devices. The crude data obtained from pig devices were in the form of electric 

signals. The measurement system converts the leakage field into an electrical signal that 

can be stored and analysed [Nestleroth and Batelle, 1999]. This electric signal was then 

converted by the inspection contractors to actual dimensions, measured in distance units 

or expressed as a ratio. Table 3.3 presents a typical form of a listing of converted 

corrosion data recorded by the pig device over a certain distance. The data were collected 

in accordance to the direction of flow, i.e. from the launching point to receiving point. 

 

Table 3.1: Summary of recorded pigging data 

INFORMATION PIPELINE A PIPELINE B PIPELINE C 

Diameter (mm) 1066.8 914.4 242.1 

Inspected distance (km) 2 150 22 

Wall thickness (mm) 14 22.2 9.53 

Year of inspection 1990,1992,1995 1990,1992,1995 1998,2000 

Year of installation 1977 1977 1967 

No. of data (all sets) 7734 7009 6639 

 

 

Table 3.2: Number of recorded defects for each set 

Set of 

data 

PIPELINE A PIPELINE B PIPELINE C 

1990 1992 1995 1990 1992 1995 1998 2000 

Number 

of data 

1425 2995 3314 1397 1528 4084 2581 4058 

 

Table 3.3: A typical presentation of pigging data 

Spool Length 

(m) 

Relative 

distance 

(m) 

Absolute 

distance 

(m) 

d% 

wt 

l 

(mm

) 

W 

(mm

) 

O’cloc

k 

t 

(mm

) 

Loc. 

11.6 6.6 1016.5 18 32 42 6.00 14.2 Internal 

11.5 11.5 1033.0 19 46 64 5.30 14.2 Internal 

11.8 10.6 1043.6 12 18 55 5.30 14.2 Internal 

11.7 1 1045.8 13 28 83 5.30 14.2 Internal 
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where: 

Absolute distance : Distance of corrosion from start of pipeline  

d%wt   : Maximum depth of corrosion in terms of percentage 

l   : Longitudinal extent of corrosion  

Loc   :  Location of corrosion either internal or external. 

O’Clock  : Orientation of corrosion as a clock position. 

of pipe wall thickness. 

Relative distance : Relative distance of corrosion from upstream girth  

Spool length  : Length of pipe between weld (10m to 12m approximately) 

tt   : Nominal thickness of pipe in pipe spool 

W   : Extent of corrosion around pipe circumference weld  

 

 

3.1.1 Data Sampling  

 

Because of the very large number of defects, a sampling process was used to 

match corresponding inspection results from different years in order to estimate the exact 

growth of metal loss caused by the corrosion process which reflects the corrosion growth 

rate value. The use of repeated inspection data for corrosion growth modelling has been 

practised in the past by Yahaya and Wolfram [1999] and Worthingham [2000]. Feature-

to-feature data matching is carried out by locating the corresponding matched feature on 

every set of pigging data. One of the advantages of this method is that the growth is 

estimated using the actual dimension of the defects in each inspection. This approach 

should encourage pipeline operators to utilise the inspection data fully to make it 

worthwhile spending a substantial amount of money on in-line inspections. The data will 

possibly give a better indication of what has happened and what might happen in the 

future. Before the data matching procedure can take place, it is necessary to review the 

data to pinpoint any potential errors and determine the quality of the data.  

 

 

3.1.1.1 Observation Stage  

 

The main reason for observing the data prior to sampling is to determine the early 

sign of errors. A principal source of error can be generated owing to the limited resolution 
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of the pig devices [Bhatia et al, 1998]. Also, if the operator has used a dissimilar type and 

setting of inspection tool with perhaps a different manufacturer or resolution of magnetic 

flux, the data may be difficult to match. Thorough observation was carried out 

successfully on the all sets of pigging data used in this study. The presence of variation in 

the spatial position of the defects is most easily detected by observing the total length of 

inspected pipelines. If the readings of the total inspected length from previous inspection 

do not match the new reading from the current inspection, this indicates the possibility of 

errors related to defect distance.   

 

The total inspected length of Pipelines A and C, as recorded by the pig tools on 

each occasion are equal (see Table 3.4). On the other hand, the overall inspected pipeline 

distance of the first inspection of Pipeline B in year 1990 was 142.996 km, approximately 

six km short of the recorded distance of 149.853 km and 149.237 km in years 1992  and 

1995 respectively (see Table 3.4). It is very obvious that each spool of Pipeline B was 

recorded shorter than the spool distance recorded in the next two inspections. The 

difference of inspected distance in year 1990 from that in years 1992 and 1995 might 

increase the difficulty in tracing the corresponding data on each inspection of Pipeline B. 

 

Table 3.4: Comparison of absolute distance 

Set of data PIPELINE A PIPELINE B PIPELINE C 

1990 1992 1995 1990 1992 1995 1998 2000 

spool no. 

(pig retrieving 

point) 

1850 1850 1850 122510 122510 122510 19360 19360 

Overall 

distance (km) 
2.017 2.017 2.017 142.966 149.853 149.273 22.333 22.333 

 

 

 

3.1.1.2 Feature-to-Feature Data Matching  

 

The data sampling procedure has been conducted to match corresponding 

inspection results from different years manually. To find the corresponding defects, 

information of spool number, relative distance and defect orientation are referred to. The 

existence of distance error may cause difficulties in locating the corresponding corrosion 

defect with the closest relative distance in the next inspection. Therefore, a reasonable 
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error margin on the relative distance was allowed until the numbers of matched data were 

believed to be sufficient to produce a proper distribution. 

 

The negative growth of defects is possible as a result of inherent uncertainties 

which cause variation in measurement. Some of the matched corrosion defects might not 

show any increment in the depth and length, indicating no growth [Dawson and Clyne, 

1997]. The possibility to find a matched data that produced negative corrosion rate is 

quite likely [Yahaya and Wolfram, 1999]. This might be triggered by the error of the 

inspection tools or human error during data matching. To minimise human error, data 

matching has been done and checked repeatedly. 

 

 In this study, the matching process has matched 418 data from Pipeline A, 627 data 

from Pipeline B and the highest number of 1074 data from Pipeline C. The matching 

process was applied to every pair of data points. Yahaya [1999] demonstrated a data 

matching process by sequencing the data on depth severity (descending); then the 

corresponding matched features on other inspections are then located. This method was 

used to establish a relationship between the rapid growth rate of corrosion and severe 

corrosion features. The present research work, however, places more emphasis on finding 

all possible matched corrosion features regardless of severity in order to establish the 

variation of corrosion growth rates.  

 

 Localized forms of corrosion, such as pitting and crevice corrosion, are difficult to 

quantify and model because the corrosion rate at a particular location on a sample 

depends sensitively on the many local microscopic material and environmental 

conditions. As a result, at a macroscopic level, pitting and crevice corrosion often appears 

to occur in a random, probabilistic manner [Vajo et al., 2003]. Therefore, it is important 

not to exclude the non severe pairs of data since the growth rate is of great concern than 

the depth severity. Estimating the exact value of corrosion growth is the main objective of 

this section. A simple extreme model is proposed in a later section to tackle this matter. 

Table 3.5 shows an example of the results of the matched data for Pipeline C. The 

matching procedure is summarised and presented by a flow chart in Figure 3.2. 
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Table 3.5: Example of matched data from Pipeline C 

Spool 

Number 

Year 1 Year 3 

Absolute 

Distance 
Orientation Depth Length 

Absolute 

Distance 
Orientation Depth Length 

10 10.307 03:20 10 19 10.109 03:20 14 18 

20 2.481 01:30 14 52 2.440 00:30 14 17 

30 11.636 03:50 12 6 11.589 04:00 13 11 

30 11.721 03:50 12 6 11.692 04:10 16 9 

30 11.885 05:10 14 58 11.824 04:50 14 8 

40 2.859 02:20 14 8 2.857 01:00 10 13 

40 3.369 01:40 10 8 3.389 02:40 11 12 
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DATA SAMPLING

Observation Stage
- check the total inspected length of

pipelines
- check the inspected length of each

spool

Feature-to-Feature Data Matching
Match the corresponding defects from

different years based on:
- defect relative distance
- defect orientation

- defect location (specific spool)

Satisfied with the
size of matched

defects?

Increase the sampling
tolerance

of defects distance and/
or defect orientation

Finish

YES

NO

 

Figure 3.2: The flow chart of data sampling process 
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3.2 Statistical Analysis  

 

This section describes the statistical analysis of the matched data with the main 

objective to determine the corrosion growth rate value for each corrosion pit (see Figure 

3.3). The main concern is the depth growth caused by the risk of perforation through 

pipeline wall thickness causing leakage and bursting. This analysis is vital in identifying 

the characteristic of the corrosion dimension and establishing the relationship with the 

extreme growth rate. 

 

 

3.2.1 Sampling tolerance 

 

It is important to examine the quality of the information acquired from the 

matching procedure by estimating the averaged tolerance between recorded distances and 

orientations. Two main criteria are applied to locate corresponding defect features from 

different years of inspection. The relative distance and orientation of each matched defect 

are compared to estimate the averaged tolerance. The average is the sum of the 

differences of relative distance and orientation (between two inspection sets) divided by 

the total number of defects. 

 

Table 3.6: Difference in the relative distance for matched data 

Pipeline PIPELINE A PIPELINE B PIPELINE C 

Matched set 90-92 92-95 90-95 90-92 92-95 90-95 1998-2000 

Average 

(mm) 

29 21 27 219 53 211 61 

Average 

(o’clock) 

0:25 0:30 0:12 0:18 0:20 0:18 0:23 

 

 As shown in Table 3.6, the averaged tolerance of relative distance used to find 

corresponding features in Pipeline A shows a great consistency on all sets with values 

ranging from 21mm to 29mm. However, the averaged tolerance of Pipeline B is too large 

to consider the set to be matched based on data in year 1990. This is in agreement with 

the earlier statement regarding the absence of inspected length in year 1990 (see Section 

3.2.1). The averaged tolerance of relative distance of matched data from year 1990 to year 

1992 and year 1990 to year 1995 is found to be greater than 200 mm while matched data 
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from year 1990 to year 1995 yield only averaged tolerance of 53mm. This is most likely 

the consequence of the imperfect measurement of corrosion location and inaccurate 

record of inspected length by the inspection tools during the first inspection in year 1990. 

Based on this observation, it is believed that the Pipeline B data collected in year 1990 is 

somewhat uncertain owing to the missing inspected length and has a high tolerance of 

relative distance. For Pipeline C, only one set of matched data can be produced with 

approximately 60 mm of averaged tolerance of relative distance.  

  

Only a few features matched with a tolerance of relative distance more than one 

metre. Some of these defects are located solely in one single spool. Even though the 

tolerance of relative distance was more than one metre, strong indication given by other 

criteria such as defect orientation and the same number of defects in a specific spool 

influenced the decision making. For instance, in spool 52490 of Pipeline B, two defects in 

year 1990 were located in the same spool section in year 1992 with tolerance of relative 

distance more than one metre as shown in Table 3.7. Most of the spool lengths of Pipeline 

B recorded in year 1990 were between 0.2 metre and one metre, which is less than the 

recorded distance in years 1992 and 1995. This clearly explains the matching difficulty 

and high tolerance limit applied on matched sets based on data set in year 1990. However, 

in contradiction to the mixed results of measured tolerance of relative distance, the 

averaged features orientation does not show any distinct anomaly on all pipelines. This 

indicates that it was much easier to locate the corresponding features by referring to the 

circumferential orientation rather than relative distance. 

 

Table 3.7: Example of matched data with difference of relative distance more than 1 

metre (Pipeline B) 

Year 1990 Year 1992 

Spool 

No. 

Spool 

Length 

Relative 

Distance 
Orientation 

Spool 

No. 

Spool 

Length 

Relative 

Distance 
Orientation 

112130 11.5 10.969 07:00 112130 12.8 12.188 07:00 

57260 11.6 7.180 06:00 57260 12.3 6.000 06:00 

52490 11.2 11.098 06:00 52490 12.2 12.102 06:00 

52490 11.2 11.098 05:30 52490 12.2 12.102 06:00 

36000 12.1 10.883 05:00 36000 12.3 9.402 05:00 

11310 11.1 6.062 05:30 11310 11.9 5.000 06:00 
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3.2.2 Corrosion Dimension Analysis 

 

Theoretically, the average of defect depth in the later inspection is expected to be 

higher than the previous one as a result of corrosion growth. Negative growth is illogical 

and there is no reasonable explanation of how certain defects can recuperate the volume 

of metal loss. The apparent appearance of negative growth calculated from the matched 

data can arise from several causes, the most likely of which are imperfect measurement 

by the inspection tools and/ or incorrect data conversion or human error during the 

matching process. An indication of this negative rate phenomenon was found from the 

matched data sets of Pipeline B and C when lower average depths were measured on the 

later inspection compared with the previous one. Table 3.8 summarised the average and 

standard deviation value of corrosion depth for each pipeline based on all of the matched 

data. 

Table 3.8: Average and standard deviation of corrosion depth sample 

Parameter 

(mm) 

PIPELINE A PIPELINE B PIPELINE C 

1990 

dA90 

1992 

dA92 

1995 

dA95 

1990 

dB90 

1992 

dB92 

1995 

dB95 

1998 

dC98 

2000 

dC00 

Average 2.706 2.776 2.915 4.045 3.929 4.518 1.317 1.160 

Std  0.865 0.718 0.546 2.084 2.137 2.003 0.442 0.320 

 

 

3.2.3 Corrosion Growth Analysis 

 

 The availability of two and three sets of pigging data from the same pipeline 

segment enables the pattern of corrosion growth to be examined in detail for each single 

defect. This is due to the fact that inspection data, although near to each other, seemed to 

be growing at different rates [Jones, 1997]. The corrosion growth rate can be calculated 

using a simple linear equation. The linear equation is as follows: 

 

12

12

 - TT
dd

CR
TT −

=  Equation 3.1 

 

where: 

CR = corrosion growth rate   

dT1   = corrosion depth in year T1 
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dT2 = corrosion depth in year T2 

T1  = year of inspection T1 

T2 = year of inspection T2 

 

The depth of a located defect can then be predicted using Equation 3.2 

 

( )1212 TT  CR   d d TT −×+=  Equation 3.2 

 

Table 3.9 shows the results of corrosion growth rate analysis for the three 

pipelines. It can be seen that the corrosion rates for Pipeline B (CRB90-92) and Pipeline C 

(CRC98-00) are negative, as expected (see section 3.2.2.2). Data set in year 1990 of 

Pipeline B have shown early sign of error owing to the absence of six km of inspected 

length. Moreover, the averaged depth of defects in year 1990 is higher than the average in 

year 1992, resulting in negative growth. Pipeline A is the only data set that produces a 

sensible average of corrosion growth rate for all matched sets.  

 

With the limited set of data in Pipeline C, the negative growth rate problems may 

be difficult to resolve. In the case considered here, most defects have a smaller measured 

depth in the 2000 inspection than in the 1998 inspection. These matched pairs of 

inspection results therefore imply a negative average corrosion rate, which is of course 

impossible, so there is not just uncertainty in the data, but also some bias that must be 

addressed.  Furthermore, it is not clear if the 1998 inspection measurements are, on 

average, overestimates of defect size, or whether the results in year 2000 are 

underestimates. That is to say, it is not clear which set of measurements is biased, indeed, 

it is possible that there is some bias in both sets. Neglecting all matched features which 

yield negative rates is not recommended as this leaves only a small sample of positive 

values.  

 

Some methods to overcome this problem are proposed in the next section. 

Wolfram and Yahaya [1999] suggested that the negative corrosion rates may be caused 

by the presence of corrosion scale deposits or alien products (wax for example) within the 

pipeline. The wax may fills local corrosion pits, hence prevent the pits being detected and 

measured accurately during inspection [Tiratsoo, 1992]. 
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Table 3.9: Corrosion growth rate for defect depth 

Paramete

r 

(mm/year

) 

PIPELINE A PIPELINE B PIPELINE C 

90-92 

CRA90-

92 

90-95 

CRA90-

95 

92-95 

CRA92-

95 

90-92 

CRB90-

92 

90-95 

CRB90-

95 

92-95 

CRB92-95 

98-2000 

CRC98-00 

Average 0.035 0.040 0.044 -0.087 0.073 0.179 -0.081 

Std 0.420 0.179 0.241 0.810 0.314 0.484 0.157 

 

 

3.2.4 Extreme growth rate 

 

Since pig tool resolution has advanced to the point where it will often identify 

thousands of corrosion defects on a pipeline, including very shallow defects (less than 

5%wt), the number of recorded data is not the main indication of the current state of the 

pipeline. Instead, the peak depth of corrosion defects is the best indication to predict the 

time to failure of the pipeline. However, there is a question concerning whether deeper 

defects corrode faster than shallow defects. There is a possibility that when the defects 

start to grow at a certain rate, once they reach a certain level the defects might grow 

faster. This is possibly owing to the downgrading of structural integrity by persistent 

corrosion attack. When a corroded area is severely weakened by the loss of metal, even 

though the factor that contributes to the corrosion growth is no longer significant 

(temperature, pH), the defects could still growing faster in theory. 

 

Worthingham et al. [2002] in their research work on pigging data have proposed 

this relationship between severe defects and extreme growth rate. Based on matched data 

results, they found that the corrosion rate tends to be higher for deeper corrosion defects 

than for shallower defects. Figure 3.4 shows and compares the distribution of corrosion 

rates for various depths. The slowest corrosion rates are for defects with depth between 0 

and 0.5mm while corrosion defects deeper than 1.0mm have the highest corrosion rate. It 

is obvious that corrosion defects which are larger must have grown more rapidly in the 

past. The question arises will that rapid growth rate continue? On the other hand, Yahaya 

[1999] found that a substantial proportion of low-to-middle depth defects grew more 

rapidly compared with some of the deeper features. The rapid growth of severe defects is 

still unproven and not certain as stated in previous publications [Ishikawa et al., 1981; 

Scarft and Laycock, 1994]. 
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Corrosion data from matched sets have been plotted against their corresponding 

corrosion growth rate to establish the relationship between severe defect depth and 

extreme growth for all pipelines. Figures 3.5 and 3.6 indicate no strong correlation of 

rapid growth with large defects except for Pipeline B (see Figure 3.7). The scattered 

pattern indicates that some of the large defects grow at a slow rate and some even grow at 

apparent negative rates. The relationship is hard to identify owing to the nature of the 

data. Unless the uncertainties and errors can be eliminated, it is impossible to tell if the 

large defects continue to have a particularly fast growth rate. Since the evidence for a 

strong correlation between growth rate and depth is somewhat contradictory and prone to 

error the analysis in the present work assumes that the corrosion growth rate is 

statistically independent of the variation of defect depth.  
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DATA ANALYSIS

Sampling tolerance
- Estimate the averaged tolerance of 

corrosion distance
- Estimate the averaged tolerance of 

corrosion orientation
- Pinpoint the possible causes of error 

if necessary

Defect Property
-Estimate the average and variation of 

defects depth for matched data

Corrosion Growth Rate
-Estimate the average and variation of 

corrosion growth rates.

 
 

Figure 3.3: The flow chart of statistical analysis on matched defects 
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Figure 3.4: Corrosion rate exceedance distribution. [Worthingham et al., 2002] 
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Figure 3.5: Corrosion rate, CRC98-2000 plotted against defect depth, dC-2000 with linear 

regression line. 
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Figure 3.6: Corrosion rate, CRA90-92 plotted against defect depth dA92 with linear 

regression line. 
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Figure 3.7: Corrosion rate, CRB90-95 plotted against defect depth dB95 with linear 

regression line. 
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3.2.5 Theory of Time Interval-based Error 

 

 It can be seen that the standard deviation (Std) of corrosion growth rate estimated 

between two inspections with shorter time interval is smaller for some sets of matched 

data (see Table 3.9). The decreasing of the Std value is theoretically associated with the 

time interval between the two inspections. The longer the time interval between two 

inspections, the smaller variation of corrosion growth rate. This theory is satisfied by 

some of the Std values taken from Tables 3.9. For instance, the Std value of corrosion 

growth rates obtained from the matching procedure between years 1990 and 1992 (2 

years’ time interval) is expected to produce the highest Std value while the smallest std of 

corrosion rates will be produced by a set of matched data between inspections in year 

1990 to year 1995 (5 years’ time interval). The best results that comply with this theory 

are from three sets of matched data from Pipelines A and B.  

 

Figure 3.8 presents the illustration of time interval-based error. The actual defects 

in T1 might appear to grow in a wide range of rates owing to uncertainties within the data. 

The variation of predicted defect sizes in T2 and T6 are the likely dimensions in the future 

based on random corrosion growth rate. It may be presumed that if the variation of 

predicted dimension is similar, the higher variation angle of corrosion growth rate would 

be the prediction with a shorter time interval from T1 to T2. This variation angle represents 

the quality of knowledge gained from the two sets of inspection data. Given that the 

corrosion progress is a slow process, information from two repeated inspections within a 

short period of time, for example two years, is unlikely to reveal definite information on 

the progress of corrosion. The growth pattern could be more obvious if the defects are 

given more time to grow. Therefore, an inspection undertaken five years after the first 

inspection is expected to reveal more knowledge of corrosion behaviour as well as 

minimising the uncertainties, compared with an inspection carried out only two years 

after the first inspection. This argument can be explained mathematically. The corrosion 

rate equation can be written as: 

 

T

dd
CR itt −

= +11  Equation 3.3 

 

where ii ttT −= +1  and is a constant value. 
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If corrosion depth d is assumed statistically to be varied, the variation of corrosion rate 

can be expressed as: 

 

( ) 






 −
= +

T

dd
CR itt 11variancevariance  Equation 3.4 

 

Since the time interval, T is a single value with no variation, Equation 3.4 can be 

rewritten as: 

 

( )
ittCR dd

T
−=

+11
variance.

1
2

2σ  Equation 3.5 

 

and simplified into: 

 

( )22
2

2
1

1
ii ttCR T

σσσ −=
+

 Equation 3.6 

 

Therefore, the relationship between inspection time interval and the variation in corrosion 

growth rate can be presented as: 

 

( )22
1

1
ii ttCR T

σσσ −=
+

 Equation 3.7  

 

where: 

σCR  =  variation of corrosion growth rate 

σti  =  variation of corrosion depth from the previous inspection 

σti+1 =  variation of corrosion depth from the next inspection 

dti  =  corrosion depth from the previous inspection 

dti+1  =  corrosion depth from the previous inspection 

T  =  time interval between two inspections 

 

From this expression, the smaller the time interval, T, the higher the variation of 

corrosion rate value, CR, and vice versa. Therefore, it is important to keep a reasonable 

time interval between the two inspections so that the information gained from two 

inspection data will reflect as closely as possible the actual inner condition of the 
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pipeline. Even though a longer time interval would theoretically give much better 

information of about the progress of the corrosion, if the time interval between 

inspections is too long, the structure might experience an extreme condition which may 

increases the maintenance and failure cost. Hence, the reduction of inspection cost might 

not compensate the huge loss incurred by expensive maintenance work.  

 

 

 

 

Figure 3.8: Illustration of the Time interval-based error theory. The uncertainty 

produced by measurement error upon growth rate reduces as the interval increases. 
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3.3 Probability Distribution of Corrosion Parameters 

 

To take into account the various uncertainties associated with corrosion, a 

probabilistic treatment is essential [Paik and Thayambali, 2002]. Statistical distributions 

are required to represent each parameter obtained from the data analysis rather than 

averaged values. The variation in corrosion parameters needs to be considered in order to 

minimise the effect of uncertainties upon corrosion growth prediction. The following 

steps were implemented in order to define the corresponding distribution and its 

parameters for corrosion size dimensions and corrosion growth rates as depicted in Figure 

3.9: 

 

i. Construction of the frequency histogram. 

ii. Estimation of the parameter distribution. 

iii. Verification of the proposed distribution. 

 

 

4.3.1 Construction of histogram 

 

The histogram is the most important graphical tool for exploring the shape of data 

distributions [Scott, 1992]. The shape examined from the histogram puts the type of 

distribution into view. A histogram was constructed by plotting the frequency of 

observation against the midpoint class of the data. Figures 3.10-3.11 illustrate the 

constructed histogram of corrosion depth and corrosion growth rate. It would appear from 

the histograms that the corrosion depth could be represented by the Weibull distribution. 

Normally, the adequate numbers of bin can be computed using Equation 3.8: 

 

na 10log3.31+=  Equation 3.8 

 

where: 

a : number of bin / class 

n : number of observation (data) 
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3.3.2 Estimation of Distribution Parameter. 

 

 From the hypothesis made on the type of distribution based on the shape of 

histogram, the distribution parameters must then be estimated. For the Weibull 

distribution, three parameters are required, these are β,θ and δ. A probability plot was 

used to determine the possible distribution parameters (see Figure 3.12). This graphical 

method is less accurate but much simpler than other established method such as 

Maximum Likelihood Estimator (MLE).  

 

 

3.3.3 Verification of Distribution 

 

 The probability plot and Chi-square goodness-of-fit test were used for the 

verification of the proposed distributions. The Probability plotting is used not just to 

estimate the distribution parameters such in section 3.3.2 but it can also be used to 

determine the best distribution by linear fitting. The correlation coefficient, R, is used to 

verify the proposed distribution. The R value that approaches one indicates that there is a 

high possibility that the data can be represented by the proposed distribution. Most of the 

corrosion data was well represented by the Weibull distribution, with the majority of 

probability plots having R values close to one (see Figure 3.9 as an example). Table 3.10 

shows the estimated Weibull parameters for all pipelines. 

 

 The second goodness of fit test used was the Chi-square test. An attractive feature 

of the Chi-square goodness of fit test is that it can be applied to any types of distributions 

for which the CDF can be calculated [Snedecor and Cochran, 1989]. The chi-square 

goodness of fit test has been applied to binned data as shown in Table 3.19. Therefore, 

histogram or frequency table should be constructed first before generating the chi-square 

test. However, the value of the chi-square test statistic is dependent on how the data is 

binned. As mentioned in section 3.4, Chapter 3, the disadvantage of the chi-square test is 

that it requires sufficient sample size in order for the chi-square approximations to be 

valid. In this case, the corrosion data is more than enough to produce a good result. 

 

 Table 3.11 demonstrates the calculation of chi-square value, χ2 for each bin based 

on Equation 3.37. The test statistic follows, approximately a chi-square distribution with 

degrees of freedom, d = 4 (d=k-1) where k is the number of non-empty cells. Expected 
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frequency, E was estimated by multiplying the probability from CDF with observed 

frequency, O. The hypothesis of an underlying Weibull distribution for corrosion depth, 

dC98 was accepted at significance levels of 0.05 or 5% where the total χ2 value of 6.963 

was less then ( )
2

4,05.0λ value of 9.488, taken form chi-square standard table (see Appendix 

C). 

 

Table 3.10: Estimated Weibull parameters of corrosion depth 

Pipelines Depth Probability Plot 

ββββ θθθθ δδδδ 

 

Pipeline A 

dA90 2.2881 2.3419 0.700 

dA92 2.0483 2.1717 0.980 

dA95 2.9689 1.7558 1.400 

 

Pipeline B 

dB90 1.9037 4.3521 0.666 

dB92 1.6601 3.9083 0.666 

dB95 1.9312 4.4028 0.666 

Pipeline C 
dc98 1.0925 0.4183 0.953 

dc00 0.9001 0.2315 0.953 

 

Table 3.11: Estimation of chi-square value for corrosion depth, dC98 

Lower 

Class 

(%wt) 

Upper 

Class 

(%wt) 

Probability Observed 

Frequency, O 

Expected 

Frequency, E 

χχχχ2=(O-E)2/E 

10 15 0.7416 815 795 0.503 

15 20 0.1826 198 196 0.020 

20 25 0.0525 38 56 5.786 

25 30 0.0159 14 17 0.529 

30 35 0.0050 2 5 0.125 

35 40 0.0016 2 2  

40 45 0.0005 0 1  

45 50 0.0002 1 0  

50 55 0.0001 1 0  

55 60 0 0 0  

60 65 0 1 0  

ΣΣΣΣχχχχ2 6.963 

8 7 
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PROBABILITY
DISTRIBUTION

Construction of Histogram
- Plot the frequency of observation
against midpoint class of the data
-Construct hypothesis based on

observation on the shape of histogram
(Select the most likely distribution to

be verified)

Estimate the distribution parameter
- Probability plot

Verification of distribution
- Chi-square goodness of fit test

 
 

Figure 3.9: The flow chart of construction of probability distribution 
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Figure 3.10: The histogram of corrosion depth, dB95 (Pipeline B) 
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Figure 3.11: The histogram of corrosion rate, CRB92-95 (Pipeline B) 
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Figure 3.12: The Weibull Probability plot for corrosion depth, dB95 (Pipeline B) 
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3.4 Correction for Erroneous Corrosion Rate 

 

Apparent negative rates of corrosion growth are useless for prediction of corrosion 

progress in time. However, it is impossible to eliminate uncertainties within the 

inspection data. What the engineer can do is to minimise the effect of uncertainties on the 

reliability of the inspection data. This section focuses on developing correction methods 

to reduce the effects of negative growth rates on the prediction of corrosion progress.  

 

 

3.4.1 Reduction of corrosion rate variation. 

 

This correction method is based on the assumption that the corrosion rate for a set 

of matched defects is normally distributed. The main aim of this method is to reduce the 

standard deviation of the corrosion rate estimates, while maintaining the mean value to 

remove, as far as possible, the effects of measurement error. By reducing the standard 

deviation, the effect of negative rates upon corrosion growth can be avoided. This type of 

correction method was introduced earlier by Yahaya [1999].  

 

 

3.4.1.1 Modified Variance (Z-score method) 

 

Yahaya [1999] assumes there has been some level of error in the inspection 

measurement of the defect dimension, resulting in errors in the calculated corrosion rates. 

The original corrosion rate distribution was corrected using this expression: 

 
222
errortruemeasured σσσ +=  Equation 3.9 

 

where: 

σ2
error  =  variation of error 

σ2
measured  =  variation of measured defects 

σ2
true  =  variation of true defects 

 

The true value can then be calculated by eliminating the error since the measured value 

has been affected with a certain level of uncertainty, which increases the spread of the 

data from its mean value as illustrated in Figure 3.13. 
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222
errormeasuredtrue σσσ −=  Equation 3.10 

 

The variance of measured corrosion rate distribution is reduced to eliminate 

negative values by using the Normal distribution representing an error with zero mean 

value, N(0, 2
errorσ ). The drawback of this method is the need to estimate the value of 

variance of error. With limited information, it is difficult to estimate an actual value. 

Yahaya [1999] solved this problem by fixing the variance based on the percentage of 

allowance of negative corrosion rate. He allowed 1% of negative value which is 

somewhat arbitrary. 

 

The same principle can be applied much more easily by fixing the coefficient of 

variation of corrected corrosion rate distribution according to the Z-value of the standard 

normal distribution, N(0,1). The corrosion rate of Pipeline B is taken as an example. The 

normal distribution of this corrosion rate has a mean value of 0.179 mm/year and standard 

deviation of 0.484 mm/year. The problem can be addressed by transforming the original 

random corrosion rate denoted as X, into a standard normal variable with zero mean and 

unit standard deviation as follows (see Figure 3.14): 

 

x

xX
Z

σ
µ−

=  Equation 3.11 

 

where: 

σx = standard deviation of corrosion rate. 

µx = mean of corrosion rate. 

Z = Z-score value for standard normal distribution. 

 

In the actual normal corrosion rate distribution, the X value that is equal to three units of 

standard deviation, Z=-3 is in the left side area of the mean value and can be calculated as 

follows: 

 

484.0
179.0

3
−

=−
X

 

 

X = -1.273 mm/year 
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Since the standard deviation of the original corrosion rate is so high, it produces a 

large fraction of outcomes with a negative rate. To eliminate the negative value, X is fixed 

at the origin axis of zero with Z-score value of –3. With mean value still remaining 

constant, the new value of the standard deviation can be calculated as follows: 

 

,
179.00

3
xσ

−
=−

  

and hence: 

 

 

 

With this new standard deviation, omitting the left and right tail of the Normal 

distribution diminished the uncertainties in the corrosion rate variable. The area under the 

distribution from Z=-3 (left tail) to Z=3 (right tail) was covered by 99.7% of the variable 

(see Figure 3.14). Therefore, 99.7% of the corrosion rate underlying this corrected 

distribution has a positive value. The coefficient of variance of this new distribution was 

approximately 33% and just slightly exhibits the suggested limit of coefficient of variance 

of statistical parameters of 30% [Melchers, 2000]. From the derived equation, this 

correction method can be rewritten in a simple form: 

 

3
x

corrected

µ
σ =  Equation 3.12 

 

 

3.4.1.2 Modified Corrosion Rate 

 

 Unlike the first method, this second reduction method is used to modify one of the 

matched set of data, which is assumed to be erroneous, so that the modified set can be 

applied with its corresponding set to recalculate the corrosion rate. The modification of 

corrosion depth value is intended to minimise the error hence reducing the variance of the 

corrosion rate distribution. To demonstrate the correction procedure, the matched set of 

Pipeline A is taken as an example.  

 

yearmmx /058.0
3
179.0

 ==σ
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 Theoretically, if a prediction is made from year 1992 to year 1995, the amount of 

uncertainty in  the measured defect sizes will grow larger given there is no improvement 

in the inspection tools and procedure, hence resulting in higher variation and mean value 

of corrosion depth. The expression can be written as: 

 
2
92

2
95 measuredmeasured −− ≥ σσ       Equation 3.13 

 

Nevertheless, the variation of dB92 is found higher than dB95, reflecting the severity of 

errors and uncertainties in the 1992 set (see Table 3.9). There is a significant 

improvement of the quality of data collected from inspection in year 1995 judging by the 

smaller variation of corrosion depth. This is possibly owing to the improvement of the 

inspection tools. The measured data on both occasions are assumed to be the real or the 

true value of corrosion depth with a certain level of error which is unknown 

mathematically in this case and can be expressed as follows: 

 
2
92

2
95 measuredmeasured −− ≤ σσ       Equation 3.14 

  

where 

 

errorrealmeasured σσσ +=       Equation 3.15 

 

where: 

σreal  =   variation of real data with no error 

 

therefore: 

 
2
92

2
92

2
95

2
95 errorrealerrorreal −−−− +≤+ σσσσ      Equation 3.16 

 

By assuming that the variance of real depth should be no greater in year 1992 than in year 

1995, the measured variance in years 1992 and 1995 is assumed equivalent. Hence, the 

variance of error from the inspection in year 1992 becomes larger than the 1995 variance 

as shown by following equations. 

 
2
92

2
95 realreal −− = σσ        Equation 3.17 



 57

therefore: 

 
2
92

2
95 errorerror −− < σσ        Equation 3.18 

 

The principle of this correction method is to use information from set 1995 (which is 

assumed to be more accurate) to reduce the corrosion depth variance of set 1992, in 

accordance with the relation expressed in Equation 3.12. In other words, an inspection in 

year 1995 is assumed to be more accurate; therefore if the same accuracy is applied to the 

prior inspection carried out in year 1992, the real variation of set in year 1992 will be the 

same or smaller than the measured variance in year 1995. With reference to Equation 

3.19, the real (modified) variance of dB92 as it should be in theory can be represented by: 

 
22

92
2
92 correctionmeasuredmodified σσσ −= −−      Equation 3.19 

 

and it is assumed: 

 
2
95

2
92 measureddmodifie −− =σσ         Equation 3.20 

 

 When the variance of modified depth in year 1992 is assumed equal to the 

variance of measured depth in year 1995, the end result will warrant a smaller variation of 

set in year 1992 compared with that of year 1995. The variance of the correction factor is 

assumed to be dependent upon the variance of depth of both sets in years 1992 and 1995. 

To reduce measurement error in year 1992 so that it matches with the error severity in 

year 1995, measured data in year 1992 have to be resampled by using a simulation 

procedure. The modification of depth data in year 1992 can be written as follows: 

 

cdd measuredmodified −= −− 9292       Equation 3.21 

 

where 

 

( ) 2
9292 . kdc measuredmeasured −− −= µ      Equation 3.22 

 

 The correction factor, c, will randomly shift the measured depths towards the 

mean value of the corrosion depth hence reducing the spread of the data. The correction 
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factor, c, is assumed to be dependent upon k, which  is a variation factor assumed to be 

normally distributed. In deterministic form, k is expressed as: 

 

2
92

2
95

2
922

measured

measuredmeasuredk
−

−− −
=

σ
σσ

      Equation 3.23 

 

therefore, statistically the mean value of k is equal to: 

 

2
92

2
95

2
92

measured

measuredmeasured
k

−

−− −
=

σ
σσ

µ      Equation 3.24 

 

the variance of k can be written as (see Equations 3.19 and 3.20): 

 
2
95

2
92

2
measuredmeasuredk −− −= σσσ       Equation 3.25 

 

 If the variance of corrosion depths in years 1992 and 1995 is equal, the k value 

will be zero as will be the c value, indicating no changing in the variation of corrosion 

depth. The bigger the difference between variance values of both corrosion depths, in 

years 1992 and 1995 in this case, the larger the k value resulting in a large reduction of 

variance of corrosion depth for the earlier inspection. Figure 3.15a depicts the idea of this 

correction method. 

 

 The proposed correction approach was applied to reduce the variance of corrosion 

data of Pipeline B in year 1992 using the data in year 1995. The corresponding 

parameters and the results are shown in Tables 3.12 to 3.14. The variance of the corrosion 

distribution in year 1992 (see Table 3.9) was successfully reduced by approximately 53% 

from the measured variance. Nevertheless, the modified data still produced negative 

corrosion rate despite the 34.5% of variance reduction compared with uncorrected 

variance of corrosion rate distribution. The possible explanation of the appearance of 

negative rates despite the modification of the measured data is a result of the true quality 

of the data in year 1995. It was assumed that the data of 1995 is the real data with no 

uncertainties so the corresponding information can be used to correct the erroneous data 

of 1992 . In fact, the error could still be large in the 1995 data. The variance of corrosion 

depth in year 1995 could still be associated with a certain degree of error (see Figure 

3.15b). The proposed procedure has then removed only a small amount of the errors in 
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the 1992 data. Therefore, the proposed variance reduction method could be more effective 

if the last inspection data contains a small amount of errors regardless of the severity of 

error of data from the earlier inspection. 

 

Table 3.12: Parameters used to reduce the variation of corrosion depth taken from 

verified distribution. 

Parameter Value 
2
92 measured−σ  0.967 
2
95 measured−σ  0.328 

k2 0.661 

kµ  0.813 

kσ  0.800 

 
Table 3.13: Comparison between measured and modified data (raw data) 

 Measured data, 
d92 

Modified data, 
dm92 

%∆ 

Average 2.776 2.773 0.1 
Variance 0.516 0.241 53.3 
Std 0.718 0.491 31.6 
COV 
(Std/Average)x100% 

25.9% 17.7% - 

 
Table 3.14: Comparison between uncorrected and corrected corrosion growth rate 

distribution parameters (CRA92-95) 
 Uncorrected CR Corrected CR %∆ 

Average 0.044 0.045 2.27 
Variance 0.058 0.038 34.5 
Std 0.241 0.195 19.1 
COV 547% 433% - 

 

 

3.4.2 Exponential Correction Distribution 

 

 In spite of the capability of variance reduction techniques to reduce the numbers 

of negative growth values from the corrosion rate distributions, there are some 

drawbacks. The corrected Normal distribution still predicts a significant number of 

negative values which should be avoided during the structural assessment stage. In fact, 

the Normal distribution is a poor choice as there is always a negative tail. The other 

drawback of this approach is the limitation whereby it is only suitable for a Normal 

distribution with a mean value greater than zero. If the mean value of corrosion growth 

rate is zero or approaching zero presumably less than 0.03 mm/year; the shape of the 
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corrected distribution will become extremely slender with very low dispersion, as shown 

by Figure 3.16 This will reduce the number of values at the upper extreme, hence 

producing less variation in corrosion rate values which is vital in reliability analysis.  

 

 A different approach could be taken to avoid the abovementioned drawback. 

Instead of assuming that the erroneous data came from the left side and the right side of 

the distribution tail area, it is possible to adjust for all of the negative growth values, 

leaving the positive values to be considered as the likely value of corrosion rates. If the 

actual Normal distribution of corrosion growth rate has a mean value equal to zero or 

approaching zero, the positive side of the distribution is seen to be close in shape to the 

Exponential distribution. Therefore it is proposed that an Exponential distribution could 

be used to represent the distribution of the corrosion rate values. The principle of the 

corrected Exponential distribution approach is totally different from the Z-score approach 

(see Section 3.4.1.1) based on the assumption of the erroneous data in the tail area. For 

instance, by taking corrosion rates estimated from year 1990 to year 1992 for Pipeline B 

(CRA90-92) with a mean value of 0.033 mm/year and Std of 0.420 mm/year, the Normal 

distribution has been transformed into a new Exponential distribution. The inverted mean 

value of uncorrected corrosion growth rate was calculated as 3.731. The probability 

density function of this Exponential distribution can be written as: 

 

( ) xxf 731.3exp.731.3 −=  Equation 3.26 

 

The drawbacks arising from the Z-score correction method were overcome by 

using the Exponential correction distribution approach. All corrosion data under the 

Exponential distribution are positive forming values. It is suggested that to apply the 

mean value of corrosion rate from its initial Normal distribution as shown in Table 3.9 

(see Section 3.2.2.3). Therefore, only the distribution shape is changed from Normal to 

Exponential while the averaged corrosion growth rates underneath the positive area are 

not required for recalculation. The basic principle of this simplified distribution is based 

on the assumption that the avoidance of all negative values will not change the total 

average of corrosion growth rate prior to the actual Normal distribution. If only the 

positive corrosion growth rate is considered to form an Exponential distribution, the 

higher mean value might over-predict the corrosion growth considering that the values at 

the upper extreme are flawed as negative values. 
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Figure 3.13: The relationships between measured, ‘true’ and error corrosion rates 

distribution according to Yahaya [1999]. 

 

 

 

Figure 3.14: Corrected corrosion rates distribution (CRB92-95) using Z-score 

correction method. 
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Figure 3.15a: Illustration of modified corrosion rate. 

 



 63

2
95 measured−σ2

mod92 ified−σ

2
92 measured−σ

2
95 measured−σ2

mod92 ified−σ

2
92 measured−σ

 

Figure 3.15b: Illustration of modified corrosion rate. 
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Figure 3.16: Exponential distribution extracted from Normal distribution of actual 

corrosion rate, CRA90-92.with mean value given by sample mean from normally 

distributed raw data. 
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3.4.3 Defect-free method 

 

 The implementation of the aforementioned correction techniques is valid only for 

the corrosion rate distribution with a positive mean value. For the corrosion rate 

distribution with a negative mean value, another method has to be used to correct the 

error. One possibility is that the corrosion rate can be recalculated based on the 

assumption that the pipeline is  free from defects at the time of  installation. The corrosion 

rate therefore can be estimated from the day the pipeline had been installed for service to 

the time of inspection. This method can be performed as follows: 

 

01

1

TT
d

CR T
cor −

=  Equation 3.27 

 

where: 

CRcor = corrected corrosion rate   

dT1 = corrosion depth in year T1 

T0  = year of installation 

T1 = year of inspection in year T1 

 

 Hence, for this approach accurate information on the year of construction and 

installation of the pipeline is imperative. This straightforward approach has been applied 

previously by other researchers. Previous work however ignored the possibility of delay 

in the onset of corrosion due to the resistance given by the internal coating system 

[Desjardins, 2002a]. 

 

 For pigging data of Pipeline B and C, the corrosion rates have been recalculated 

using this method. The mean value for the corrected corrosion rate distribution from all 

pipelines was found higher compared with the actual corrosion rate distribution. Without 

information on the coating resistance, the estimated growth rate might over-predict the 

growth of the defect depth. Table 3.15 shows the estimated corrected corrosion rate for 

defect depth of Pipelines B and C. 
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Table 3.15: Corrected corrosion growth rate for defect depth using Zero-defect 

correction method 

Set of data PIPELINE B PIPELINE C 

1977 to 1990 

CCRB77-90 

1977 to 1992 

CCRB77-92 

1977 to 1995 

CCRB77-95 

1967 to 1998 

CCRC67-98 

1967 to 2000 

CCRC67-00 

 

Average 

(mm/year) 

0.311 0.258 0.245 0.042 0.035 

Standard 

deviation 

(mm/year) 

 

0.852 

 

0.929 

 

0.899 

 

0.013 

 

0.010 

 

 

3.4.3.1 Delay of the Corrosion Onset 

 

The protection of the internal surface of a pipeline from corrosion attack relies 

wholly on the applied coating systems which can effectively delay the onset of corrosion. 

According to Paik and Thayambali [2000], the time interval, which is assumed to be 

lognormally distributed, is greatly dependent  upon the resistance lifetime  of the coating 

system applied and the transition time once the coating system completely loses its 

durability completely. The transition time is that time between the loss of coating 

effectiveness and the time of corrosion initiation, as illustrated in  Figure 3.17. Paik and 

Thayambali [2000] also state that the transition time can often be considered an 

exponentially distributed random variable. In the particular case considered here, the time 

for the coating to fail and the transition time are not considered separately. It is just 

assumed that the corrosion will start at some time after installation of the pipeline. 

Therefore, if repeated inspection data fail to deliver a reasonable corrosion growth rate 

(positive rate), information on corrosion initiation time due to resistance by the coating 

system is required. A new approach of projecting the future growth of corrosion depth 

without relying on corrosion initiation time has been applied on the corrosion data of 

vessel’s seawater ballast tank, this is described in Chapter 5. 
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Figure 3.17: The corrosion initiation time of coated structures [Paik and 

Thayambali, 2002] 

 

 

3.4.4 Linear Prediction of Future Corrosion Defect Sizes  

 

Prediction of future defect size can be used to examine the accuracy of the 

proposed data sampling and correction approaches. This can be done by predicting 

forward from earlier inspection results to the year of a more recent inspection. By 

comparing the predicted defect depth distribution with the real field data, the differences 

which  can give an indication of the quality of the inspection data and the validity of the 

analysis process can be calculated. In this regard, a prediction of corrosion data from year 

1992 to year 1995 has been made by using different corrected corrosion growth rates for 

Pipelines A and B. Pipeline C was excluded owing to the negative value of the corrosion 

growth rate. 

  

Figures 3.18 to 3.21 present the prediction results for Pipelines A and B by using 

the Z-score method and Exponential correction distribution. The proposed variance 

reduction method (modified corrosion rate) is not used in the comparison since the early 

results still indicate the existence of a substantial amount of negative growth rate. Based 

on a comparison of the results predicted by the Z-score method and Exponential method, 

with the actual data, the corrected distributions have produced much better predictions 

compared with those using the uncorrected corrosion growth rate. The best prediction 

results were obtained from Pipeline B. The prediction of data distribution from year 1992 

to 1995 is almost similar in shape to the actual distribution of corrosion data in year 1995.  
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Figure 3.18: Comparison result: Prediction of data from 1990 to 1995 using 

uncorrected corrosion growth rate (Pipeline A). 
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Figure 3.19: Comparison result: Prediction of data from 1992 to 1995 using 

corrected corrosion growth rate (Pipeline B). 
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Figure 3.20: Comparison result: Prediction of data from 1992 to 1995 using 

uncorrected corrosion growth rate (Pipeline B). 
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Figure 3.21: Comparison result: Prediction of data from 1992 to 1995 using 

corrected corrosion growth rate (Pipeline B). 
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3.5 Corrosion Linear Model for Severe Defects. 

 

Pipeline failure caused by serious leakage is not totally dependent on the number 

of defects that occur inside or outside of the pipeline. The most important factor is the 

number of defects with severe depth. Pipeline as a series system, leaking in a certain 

section, will cause failure to the whole pipeline system. If the pipeline operator is more 

concerned with the effect  of extreme data upon structure reliability, it is suggested that  

the extreme growth of corrosion defects to be considered. The proposed model is 

developed specifically for predicting the future growth by using numerical simulation 

procedures. 

 

 

3.5.1 Extreme growth model 

 

Theoretically, the corrosion defects inside the pipeline grow randomly, subject to 

variation of the corrosion rate value for each single defect [Thoft-Christensen, 2002]. If 

an extreme characteristic is considered by assuming that the severe corrosion defects will 

keep growing faster than the non severe defects, the corrosion rate model can be written 

as: 

 

ave

r
rextreme d

d
CRCR ×=  Equation 3.28 

where: 

CRr = corrosion rate randomly selected from its corresponding distribution. 

dave = fixed value of averaged defect depth. 

dr = defect depth randomly selected from its corresponding distribution. 

 

Then, the linear model with extreme corrosion rate can be rewritten as: 

 









××+=+ T

d
d

CRdd
ave

r
nn 1  Equation 3.29 

 

This model continues into the future with the rapid growth of existing severe defects. In 

the simulation, each randomly selected corrosion rate will be multiplied by the ratio 

between the (random) corrosion depth and averaged corrosion depth. If the selected 
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corrosion depth is higher than its depth average, the new corrosion rate will be higher 

than the initial selected corrosion rate and vice versa. By using this model, the possibility 

that the existing severe corrosion defects will perforate through the thickness of pipeline 

wall can be determined to be high or low. This model is expected to give a more 

conservative result for structural assessment compared to the use of the actual random 

corrosion growth rate values.  

 

 

3.5.2 Extreme growth model with partial factor 

 

A partial factor is added so the extreme model can represent both non-extreme and 

extreme growth conditions, as shown by Equation 3.37.  

 

( ) ( ) 







××−+×=

ave
extreme d

d
CRwwCRCR 1  Equation 3.30 

 

The partial factor can takes a range of values from 0 to 1. If w is equal to zero, the 

extreme corrosion rate is fully dependent upon the ratio between the random corrosion 

depth and its average. Otherwise, if w is equal to 1, there will be no indication of rapid 

growth for the larger defects. To determine the effect of this partial factor to the 

prediction results, two simulations have been conducted to predict future data in year 

1995 from year 1992 for Pipelines A and B. The partial factor is chosen to be 0 and 1, 

representing the extreme and non-extreme model respectively. The predicted data in year 

1995 shows no significant difference between the prediction based on w=0 and that based 

on w=1. The partial factor seems not to give any significant contribution within its range 

from 0 to 1 (see Figures 3.22 and 3.23). The random selection of large defects is balanced 

by the random selection of small values of corrosion rate since both parameters are 

treated independently, which minimises the effect of the extreme growth of larger defects. 

 

To minimise the effect of the selection of a random sample of smaller defects, the 

large defects derived from the tail area of the distribution were extracted using the 

extreme value theory. The extraction of the large defects can be represented by an 

extreme distribution produced from its parent/actual distribution. A prediction is carried 

out similar to the earlier prediction using the whole data from the Weibull distribution. By 

using the extreme Weibull distribution, as expected, the predicted distribution when w=0 
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is more extreme, compared with w=1, as shown in Figures 3.24 and 3.25. Thus, it can be 

concluded that the proposed extreme growth model has more significant effects on larger 

defects. This is different from the prediction of future growth based on the whole data 

including the fact that non severe defects will not be significantly affected by different 

values of the partial factor. 
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Figure 3.22: Comparison of predicted defect depth to actual depth based on extreme 

growth model and partial factor of 0 and 1 (Pipeline A) 
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Figure 3.23: Comparison of predicted extreme defect depth to actual depth based on 

extreme growth model and partial factor of 0 and 1 (Pipeline A) 
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Figure 3.24: Comparison of predicted defect depth to actual depth based on extreme 

growth model and partial factor of 0 and 1 (Pipeline B) 
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Figure 3.25: Comparison of predicted extreme defect depth to actual depth based on 

extreme growth model and partial factor of 0 and 1 (Pipeline B) 
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3.6   Random Linear Model  

 

For structural prediction purposes, the growth pattern of corrosion defects is usually 

assumed to be linear [Caleyo et al., 2002]. However, some modification on this general 

theoretical model can be introduced by inserting random elements. The basic linear model 

assumes that the corrosion rate for each defect is the same for all future years but a so-

called random linear model implies that the future corrosion growth rate will vary from 

one year to the next in a random manner. Equations 3.38 and 3.39 represent the basic 

linear and random linear model for corrosion growth respectively. These models are 

depicted in Figure 3.26. 

 

( )nnnn TTCRdd −+= ++ 11  Equation 3.31 

 

∑
=

+ +=
an

i
Tin CRdd

1
11  Equation 3.32 

 

where: 

CRTi    =  corrosion rate in each single year 

dn   = corrosion depth in year Tn 

dn+1 = corrosion depth in year Tn+1 

na =  number of inspection 

Tn  = year of inspection Tn 

Tn+1 = year of inspection Tn+1 

 

A sensitivity analysis was conducted to ascertain the effects of this new model on 

the prediction results. Three different dimensions of corrosion rates were chosen 

arbitrarily and fixed as 5 mm, 10 mm and 15 mm for the purpose of illustration. Each 

defect is linearly predicted for a time interval of twenty years from year T0 to year T20. 

Two models are used; the basic linear model (deterministic model) and the random linear 

model. A simulation procedure was utilised to select three different values of the 

corrosion growth rate for each defects based on the basic linear model. For predictions 

using the random linear model, each defect was provided with twenty random values of 

corrosion growth rate. Each corrosion rate represents the growth value for a time interval 

of one year. The arbitrary selection of the corrosion rate value is based on the Exponential 

distribution of the corrected corrosion growth rate (see Equation 3.26 in Section 3.4.2). 
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The prediction result can be seen in Figures 3.27 to 3.29. For a long term prediction, the 

differences predicted by these models are significant.  

 

Hence, another comparison has been carried out by predicting the future depth of 

defects in year 1992 to year 1995 (short-term projection), and year 2010 (long-term 

projection). One thousand data were generated randomly from extreme defect depth 

distribution in year 1992 and projected to years 1995 and 2010. Similar to the 

deterministic comparison, the short-term prediction from year 1992 to year 1995 for 

Pipelines A and B shows no significant difference between prediction results as opposed 

to long-term prediction where the random linear model yields higher averaged value of 

defect depth (see Figures 3.30 to 3.33). The basic linear model is being used widely to 

predict the future growth of corrosion defects due to its simplicity and lack of data from 

on site observation. No robust proof is available to relate the linear model with the 

corrosion growth process. Therefore, a random linear model can be a solution to 

incorporate the uncertainties associated with the growth pattern. 
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Figure 3.26: An illustration of three different patterns of corrosion growth 
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Figure 3.27: Linear prediction of corrosion defects by using basic and random linear 

models (d=5mm) 
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Figure 3.28: Linear prediction of corrosion defects by using basic and random linear 

models (d=10mm) 
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Figure 3.29: Linear prediction of corrosion defects by using basic and random linear 

models (d=15mm) 
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Figure 3.30: Comparison of predicted corrosion depth to actual depth in year 1995 

using linear and random models (Pipeline A) 
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Figure 3.31: Comparison of predicted extreme corrosion depth to actual depth in 

year 2010 using linear and random models (Pipeline A) 
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Figure 3.32: Comparison of predicted corrosion depth to actual depth in year 1995 

using linear and random models (Pipeline B) 
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Figure 3.33: Comparison of predicted extreme corrosion depth to actual depth in 

year 2010 using linear and random models (Pipeline B) 
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3.7 Sources of Error of Pigging Data 

 

The proposed methodology for pipeline assessment cannot accurately evaluate the 

integrity of the corroded pipeline unless good inspection data is obtained. Even though 

pigging inspection is the most sophisticated inspection technology at the present time, the 

accuracy of the data is still argued by the operators. The aim of this section is to discuss 

the error that can affect pigging data by looking at technical aspects such as pig velocity 

and data interpretation  

 

In current practices most operators are interested only in identifying critical 

defects, and there is less emphasis on locating small defects. Small defects are equally 

important in the inspection report as these groups of small defects have a high possibility 

to grow extensively in the future. Furthermore, it is not impossible that these small 

defects would become more severe than the other extreme pits in the future owing to the 

random nature of the corrosion growth process.  

 

The detection of corrosion length also has a significant bearing on the assessment 

results. Length accuracy is important since large errors in length can cause a significant 

error in estimating the severity of a defect. Nestleroth and Battelle [1999] have illustrated 

how this error could affect the estimated failure pressure. They concluded that, for a 30% 

deep and 26 centimetre long defect, a four centimetre error in length does not appreciably 

change the failure pressure. Therefore, an error in length will not significantly affect the 

calculated severity. However, for deeper defects, errors in length become increasingly 

important. For a 60% deep and 8 centimetre long defect, an error of four centimetre leads 

to a much larger error in the severity. Therefore, length accuracy is more important for 

short deep defects than for long shallow defects [Nestleroth and Battelle, 1998].  

 

Even if the problem with the accuracy of detection can be overcome by increasing 

the tool accuracy, errors will still exist. With very high accuracy, difficulties arise, when 

several defects are in close proximity. Nestleroth and Battelle [1999] described how, in 

most inspection reports, many vendors will group individual defects together as a 

composite defect; that is, two or more defects are reported as a single defect. This practice 

can be very conservative, especially when several deep defects are grouped. Most 

assessment codes such as the DNV RP-F101, allows corrosion pits (short deep defects) to 

be treated as individual pits when their separation is relatively small. The pits can be 
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treated as individual defect when the separation is greater than, for example, three times 

the wall thickness or two centimetres. Clearly, reporting four 4-centimetres long defects 

as one 16-centimetres long defect will cause serious errors in the final estimated severity 

[Nestleroth and Battelle, 1998]. 

 

Characterisation of accuracy is important in differentiating between defects, 

imperfections, pipeline components, and non-relevant indications, which cannot be 

ignored. “False calls” are indications that are classified as anomalies where no 

imperfection, defect, or critical defect exists. MFL tools, by their nature, receive signals 

from pipeline features and non-relevant conditions [Nestleroth and Battelle, 1998]. 

Occasionally, these indications are characterised as anomalies. Two common causes of 

false calls are metal objects near the pipeline and sleeve eccentricities. If these features 

are reported as imperfections or defects, costly excavations and remedial work may be 

performed, where none is needed. 

 

 Errors in inspection data are also associated with the speed of the in-line 

inspection tool. The MFL signal is not only proportional to the depth of the metal loss but 

is also influenced by speed of the pig [Tiratsoo, 1992]. Control of pig speed and velocity 

during inspection especially in low pressures gas pipelines, is difficult leading to the 

potential loss of inspection data [Smith, 1992]. The speed should be held within a certain 

ranges to ensure that high quality measurements can be made. For an MFL pig tool, the 

flux leakage fields are significantly influenced by tool velocity. High velocity may reduce 

the leakage field amplitude, changes the leading and trailing edges of the leakage field 

and decreases the base signal amplitude [Nestleroth and Battelle, 1998]. Detection of a 

corrosion defect with a shallow depth is affected more by the tool speed and velocity.  

 

 The other possibility of error is the different internal condition of the pipeline 

[Noor, 2002]. At the time of inspection the detection of corrosion defects might be 

different between two inspections if the cleaning routine is not carried out effectively. 

The waste of hydrocarbon products, such as wax when it becomes harder and thicker will 

cover the internal surface of pipelines. If the cleaning process is carried out only during 

the first inspection and not continuously in the second inspection, this will affect the 

measurement of corrosion depth and probably result in reduced measurement of defects 

compared with the previous inspection. 
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 Lastly, the error in pigging data can also be related to the different inspection 

vendor to conduct inspection activities at different time for the same pipeline. Any 

replacement of inspection vendor might cause a change in many aspects, which are; 

 

i. Change in instrumentation of the pipeline pigging tool 

ii. Change in mathematical algorithm used to convert the electrical signal to 

defect size. 

iii. Change in procedure used during pigging process. 

 

The inspection tools used by different inspection consultants are often different in 

terms of tool construction, calibration and accuracy [Noor, 2002]. In addition, different 

techniques are used to convert the detected electrical signal to extract the corrosion 

dimension based on the speciality and engineering experience. In addition, the whole 

procedure of inspection may differ from one to another. The drastic change of these three 

items will cause a notable difference of data presentation. If two sets of data are collected 

from the same pipeline at different times by two different inspection consultants, the 

proposed matching procedure will not guarantee the number of matched data that can be 

detected. The accuracy of any assessment procedure is very dependent upon the accuracy 

of the pigging data.   

 

 

3.8 Concluding Remarks 

 

 This chapter has demonstrated the investigation and analysis work on corrosion 

data of offshore pipelines. The proposed approaches include a discussion of data 

observation, feature-to-feature data matching procedure, statistical and probability 

analysis, correction methods and theoretical corrosion models. Thorough observation on 

the data prior to the data sampling work has effectively forewarned the existence of errors 

within the data, which might affect the corrosion growth rate value. Data matching 

procedure provides the best information on corrosion progress based on the metal loss 

evidence between inspections carried out at different time. All corrosion parameters have 

been treated statistically by their corresponding probability distribution to reduce the 

uncertainties that might be associated with inspection work and the environment. This 

probability distribution will be used later in the simulation of structure reliability 

subjected to corrosion attack. Several correction methods have been proposed to 
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encounter the negative corrosion rates. Based on the comparison between measured and 

predicted data, it is obvious that the proposed correction method of the Exponential 

distribution is effective in minimising the effects of negative corrosion rate. However, if 

more data becomes available, better justification of the method accuracy can be done. 

Two theoretical-based corrosion models have been introduced to include the extreme 

growth of severe defects and the randomness of the corrosion progress. Figures 3.34 and 

3.35 illustrate the step-by-step flow chart of the proposed analysis approaches on pigging 

data.  
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DATA SAMPLING
i. General observation

ii. Feature-to-feature data matching

CORROSION ANALYSIS
I. Defect dimension (ex. depth, length)

ii. Defect growth rate

STATISTICAL ANALYSIS
i. Probability distribution
ii. Distribution parameters
iii. Verification of distribution 

DATA CORRECTION
i. Elimination of negative corrosion growth 

rates

PREDICTION OF CORROSION DEPTH
i. Extreme growth model

ii. Random linear growth model
i. Linear prediction of future defect depth 

distribution 
ii. Comparison of measured defect depth 

to predicted defect depth

 
 

Figure 3.34: The proposed methodology of corrosion defect analysis of pipelines 
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Figure 3.35: The flow chart of data assessment for corroding pipelines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 85

CHAPTER 4 - ANALYSIS OF SEAWATER BALLAST TANK 

CORROSION DATA 

 

 

4.0 Introduction 

 

The analysis methodology presented in Chapter 4 is specified for repeated inspection 

data for which a data matching procedure was used to estimate the corrosion growth rate for 

each pipeline. However, this methodology cannot be applied when corrosion data are 

collected from a number of structures have been grouped altogether in one single database. It 

is not feasible to implement the data matching procedure when one cannot identify the 

subsequent inspection, even if there were one. This chapter describes how this so-called 

random data can be used to predict the corrosion growth statistically. Instead of estimating 

the corrosion growth rates by assuming the corrosion initiation time as proposed in earlier 

research work [Paik and Thayambali, 2002], an alternative approach is presented to estimate 

the corrosion progress without relying on the corrosion initiation time. 

 

 

4.1 Corrosion of Ship Structures 

 

Problems arising from corrosion are considered to be among the most important age 

related factors affecting structural degradation of ships in complex seawater environments. 

Seawater properties such as oxygen content, salinity, temperature, pH level, and chemistry 

can vary according to site location and water depth, making it difficult to predict the 

corrosion progress. Statistics for ship hulls show that 90% of ship failures are attributed to 

corrosion [Melchers, 1999a]. Localised corrosion especially pitting, is among the major types 

of physical defects found largely on ship structures. The areas of the ship most exposed to 

corrosion are wing ballast tanks, resulting from exposure of seawater, humidity and salty 

environment when empty. 

 

The corrosion damage of steel structures in ships is influenced by many factors, 

including the corrosion protection system (coating and inhibitor) and various operational 

parameters. The operational parameters include maintenance, repair, percentage of time in 



 86

ballast, frequency of tank cleaning, temperature profiles, use of heating coils, humidity 

conditions, water and sludge accumulation, microbial contamination, composition of inert 

gas, etc. To date, rigorous work to understand the effect of many of these factors and their 

interactions is lacking in the case of ship structures [Paik and Thayambali, 2002]. Moreover 

there are limited research and corrosion measurement data available for corrosion rates in 

tankers [Wang et al., 2003]. Discussions on corrosion wastage still remain largely qualitative 

rather than quantitative [Wang et al., 2003]. 

 

 

4.2  A Review of the Original Research Works 

 

 Paik and Thayambali [2001], Paik [2004] and Paik et al. [2004] have carried out an 

extensive study on corrosion data from seawater ballast tanks to model the deterministic 

time-dependent corrosion wastage mode. Measured data from the corrosion loss in structural 

members of seawater ballast tanks for ocean-going oil tankers and bulk carriers have been 

collected. Data for renewed structural members were excluded. A total of 1507 measurement 

points for seawater ballast tanks from the side and bottom shell plates were obtained and 

available for the study. The number of vessels involved in the data collection is unknown. 

Corrosion loss was measured mostly by the technique of ultrasonic thickness measurements. 

This implies that the measurements were made at several points within a single plating, and a 

representative value (e.g., average) of the measured corrosion loss was then determined to be 

the depth of corrosion. Table 4.1 indicates collected data of corrosion loss as a function of 

time (vessel age). It can be seen from Figure 4.1 that the distribution of corrosion loss is very 

scattered. The authors also surmised that the statistical frequency distribution of corrosion 

depth at a younger age tends to follow the normal distribution, while it follows a lognormal 

or exponential distribution for corrosion from an older stage. 

 

In the analysis, three assumptions were made: 

 

1. The annualized corrosion rate is constant so that the relationship between the 

corrosion depth and the ship age is linear. 

2. The life of the coating is varied at 5, 7.5 and 10 years, because no information about 

the breakdown of coating is available (see Table 4.2). 
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3. Corrosion starts immediately after the coating breakdown takes place. 

 

The corrosion rate incorporating coating breakdown is estimated based on the following 

equation: 

 

cTT
t

CR
−

=          Equation 4.1 

 

This study has estimated an extreme annualized of corrosion rate based on the 95 percentile 

and above band, while the averaged rate is based on the overall data (see Figure 4.2). Table 

4.2 summaries the results for the mean and the COV of the annualized corrosion rates, while 

Figures 4.2 and 4.3 illustrate the mathematical models for the time-dependent corrosion 

wastage of the seawater ballast tank. The proposed assessment procedure is based on a 

deterministic analysis where a linear equation of the corrosion growth rate is used to predict 

the future growth of corrosion depth. Moreover, the corrosion initiation time has been 

assumed to simplify the estimation of corrosion growth rate due to the lack of information on 

the coating life value. Even though the proposed procedure is straightforward and seems 

practical for use on site, the corrosion data can still to be explored to optimize the findings. A 

statistical and probability approach can be used to enhance the corrosion modelling as 

presented in the next section. 

 

Table 4.1: Summary of the computed results for the mean and the COV of annualized 

corrosion rate of bulk carrier’s seawater ballast tank [Paik and Thayambali, 2001]. 

 Coating life 

assumed 

Mean COV 

All corrosion 
data 

5 years 0.0473 0.8388 
7.5 years 0.0621 0.9081 
10 years 0.0804 0.9031 

95% and above 
band 

5 years 0.1678 0.1678 
7.5 years 0.2212 0.2212 
10 years 0.2997 0.2997 
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Table 4.2: Gathered number of measured data set of thickness loss due to corrosion in 

seawater ballast tanks of bulk carriers [Paik and Thayambali, 2001]. 

Time 
(year)-
middle 
class 

Depth of corrosion, mm (middle class) 

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 
11.25 2 0 0 0 0 0 0 0 
11.75 18 5 0 0 0 0 0 0 
12.25 6 3 9 0 0 0 0 0 
12.75 23 2 0 0 0 0 0 0 
13.25 16 26 30 2 0 0 0 0 
13.75 9 0 0 0 0 0 0 0 
14.25 3 3 0 0 0 0 0 0 
14.75 1 2 0 0 0 0 0 0 
15.25 22 13 10 3 2 0 0 0 
15.75 9 1 0 0 0 0 0 0 
16.25 5 0 0 0 0 0 0 0 
16.75 12 8 5 2 1 1 0 0 
17.25 19 1 0 0 0 0 0 0 
17.75 84 1 2 4 0 0 0 0 
18.25 34 26 37 9 4 3 0 0 
18.75 1 0 2 0 0 0 0 0 
19.25 52 10 5 8 6 1 0 1 
19.75 84 9 1 0 2 0 0 0 
20.25 165 29 9 1 0 0 0 0 
20.75 10 14 11 10 16 2 0 0 
21.25 69 42 11 7 2 4 0 0 
21.75 9 1 1 2 2 0 0 0 
22.25 3 5 0 0 0 0 0 0 
22.75 8 18 1 3 0 0 0 0 
23.25 31 13 4 1 0 0 0 0 
23.75 8 3 1 0 0 0 0 0 
24.25 7 11 7 2 0 0 0 0 
24.75 18 15 2 0 0 0 0 0 
25.25 30 49 48 57 40 2 2 1 
25.75 10 1 1 2 0 0 0 2 
26.25 8 8 1 0 0 0 0 0 
26.75 0 7 1 0 0 0 0 0 
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Figure 4.1: The corrosion depth versus the ship age from thickness measurements of 

seawater ballast tank structures [Paik and Thayambali, 2001]. 

 

 

Figure 4.2: The 95 percentile and above band for developing the severe (upper bound) 

corrosion wastage model [Paik and Thayambali, 2001]. 
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Figure 4.3 Comparison of annualized corrosion rate formulations, together with the 

measured corrosion data for seawater ballast tanks [Paik and Thayambali, 2001]. 
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4.3 Alternative Approach 

 

Unlike the pigging data analysed in the previous chapter, repeated inspection on 

vessels does not take place. The inspection and corrosion measurement activities were 

probably carried out once and randomly on different vessels. The data was then grouped 

according to the age of vessel and defect depth. Therefore, the estimation of corrosion growth 

rate is not possible for every single vessel and the feature-to-feature matching procedure is 

not possible in this case. The only way to estimate corrosion rate is by using the ‘defect-free’ 

method with the addition of corrosion initiation time. The proposed deterministic model is 

assumed valid for all vessels even though, in reality, each vessel involved in the sample has 

different factors that affect the corrosion progress. Based on this assumption, an enhancement 

of the deterministic model as proposed by Paik and Thayambali [2001], Paik [2004] and Paik 

et al. [2004] has been developed to incorporate the variation of the corrosion data. 

 

The works by Paik and Thayambali [2001], Paik [2004] and Paik et al. [2004] have 

been revised with the introduction of a statistical model for a time-dependent corrosion 

process based on the same corrosion data. In this section, two statistical models are proposed 

with the intention of minimising the effects of uncertainties caused by the scattered corrosion 

data. The works cited in the literature did not consider the effect that possible uncertainties 

and errors related to imperfect measurement by inspection tools and the complex seawater 

environment might have on estimation of growth. The revision begins with the simulation 

procedure to extract artificial data from the grouped data following the unavailability of 

crude data for each single defect from the previous research.  

 

 

4.3.1 Generating Artificial Data 

 

As tabulated in Table 4.2, the exact number of defects in each class of vessel age has 

been individually generated using the Monte Carlo simulation. The uniform distribution is 

assumed to suit the range of corrosion depth best within each interval as it is small i.e. only 

0.5mm wide. To validate the accuracy of the artificial data compared with the unknown 

actual data, a comparison of corrosion rate distribution has been carried out. The mean and 

average value of corrosion growth rate based on the artificial data is found to compare well 
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with that predicted by the actual data. The comparison was based on the corrosion set 

estimated with 7.5 years of corrosion initiation time. Table 4.3 shows that the difference 

percentage between the growth statistics calculated from the data and from the simulation is 

less than 1% of the mean 

 

Table 4.3: Comparison of Weibull moment values between actual and artificial data 

Value Artificial data Actual data %∆ 

Mean 0.0627 0.0621 0.957 

COV 0.9317 0.9081 2.533 

  

 

 

4.3.2 Statistical Time-dependent model 

 

An average value and standard deviation of corrosion depth is estimated individually 

for each set of vessel age. The graphs of average and standard deviation value have been 

plotted against vessel age to establish a relationship between the progress of averaged metal 

loss and the vessel age. The regression analysis was used to re-scale the data to time t=0. The 

interception of regression line at t=0 indicating zero corrosion initiation time was not 

considered, hence resulting a non-zero value of averaged corrosion depth in the beginning of 

vessel operation. Yet, this drawback can be resolved if more data can be collected especially 

from vessel age under 11 years. The regression line might approach zero interception with 

addition of new data. From Figures 4.4 and 4.5, it seems the averaged metal loss is scattered 

over the time but there is some indication of the increment of the averaged depth and 

standard deviation over time. The linear increment can be expressed as a function of time 

using the regression equations as follows: 

 

1511.0.0251.0 += vave td        Equation 4.2 

 

037.0.0232.0 −= vd tstd        Equation 4.3 
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where: 

dave = linear regression model of defect depth average 

stdd = linear regression model of defect depth standard deviation  

tv = age of vessel (year) 

 

The linear regression equation is likely to contain some errors owing to the large 

scatters in the averaged corrosion depth for each class of vessel age. To minimise the errors, 

this deterministic equation will be combined with a probability distribution of corrosion 

depth representing all of the data. The next step is to construct a distribution for all the data 

by removing the effects of time. This distribution of the entire data was found to be best 

reproduced by the Weibull distribution based on linear fitting of the probability plot and 

verified by the Chi-square goodness-of-fit test. Figures 4.6 and 4.7 show the histogram and 

the Weibull probability plot of all the data respectively. The Weibull distribution function for 

all of the data can be expressed as follows: 

 

( ) ( )
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




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




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xx
xf

d
      Equation 4.4 

 

where: 

xd  =  corrosion depth 

  

The shape parameter for the Weibull distribution was found to be 1.1, and adequate 

accuracy was mentioned by approximating to an Exponential distribution. Statistically, when 

the shape parameter, β=1, the Weibull distribution is identical to the Exponential distribution. 

The function of the whole can be rewritten as follows: 

 

( ) [ ]λλ ddx xxf
d

−= exp.        Equation 4.5 

 

This distribution no longer represents the corrosion progress in time since this effect 

has been removed by gathering all of the data under one distribution. Nevertheless, λ has a 

direct relation to the mean value of corrosion depth as defined by Equation 4.6. This can then 

be incorporated into the Exponential function to produce a time-dependent distribution.  
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aved
1

=λ          Equation 4.6 

 

By inserting the linear regression equation into Equation 4.6, the new expression of the 

Exponential distribution parameters can be written as: 

 

1511.0.0251.0
1
+

=
vt

λ        Equation 4.7 

 

Equation 4.5 then can be rewritten as follows: 

 

( ) 
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

+
−

+
=

1511.0.0251.0
exp.

1511.0.0251.0
1

vv
dx t

x
t

xf
d

   Equation 4.8 

 

This function now can be used to predict the distribution of corrosion depth at any point of 

time after the insertion of the linear function of averaged corrosion depth. However, there is a 

considerable doubt in the accuracy of this function for a number of reasons. 

 

1. If the distribution of corrosion depth better suits the Weibull distribution when the 

shape parameters β>1, then the change of distribution shape from Weibull to 

Exponential for the sake of simplicity might affect the accuracy of the prediction even 

though the effect might be small. 

2. The insertion of the regression equation into the distribution of corrosion depth might 

be difficult for a Weibull distribution since the mean value estimation required the 

distribution parameters unlike the Exponential distribution, which only requires an 

estimate of the averaged depth. 

3. There is a significant increment of standard deviation value of corrosion depth in time 

as portrayed in Figure 4.5. The insertion of a linear function for the averaged corrosion 

depth might contribute to the increment of corrosion depth variation over time. The 

longer the prediction, the higher the variation of corrosion depth in the future which 

might mislead the assessment results. 
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Figure 4.4: Linear regression analysis of mean value of defect depth and vessel age 
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Figure 4.5: Linear regression analysis of standard deviation of defect depth and vessel 

age 
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Figure 4.6: Histogram of the whole set of corrosion depth 

 

 

y = 1.1677x + 0.2985
R2 = 0.9917

-7.0000000

-6.0000000

-5.0000000

-4.0000000

-3.0000000

-2.0000000

-1.0000000

0.0000000

1.0000000

2.0000000

3.0000000

-6 -5 -4 -3 -2 -1 0 1 2

ln(t-l)

ln
[l
n
(1
/1
-F
(t
))
]

 

Figure 4.7: Weibull probability plot of measured data (actual) 
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4.3.3 Enhanced model 

 

 The previous proposed statistical model must be modified to provide corrosion depth 

distribution as a function of time when the Weibull distribution is found to be the best shape. 

The first step towards this enhancement is to normalise the corrosion depth data based on the 

predicted averaged corrosion depth for each class of vessel age; this can be estimated using 

Equation 4.9. The new corrosion depth can be expressed as: 

 

( )vtave

d
norm d

x
x =          Equation 4.9 

 

where: 

xnorm = normalised depth 

 

The effect of this normalising procedure has changed the value and variation of 

corrosion depth since the averaged depth is different for each class of vessel age. Each single 

histogram of corrosion depth grouped by the vessel age now has a different size of class/bin. 

All of the data with the new class of depth value must to be rescaled and regrouped so that a 

new histogram of the whole data can be constructed. Table 4.4 shows the presentation of 

normalised depth with the new size of the class. The same procedure as that applied in 

section 4.3.2 is repeated. An average value and standard deviation of corrosion depth are 

estimated individually for each class of vessel age. The graphs of average and standard 

deviation value have been plotted against vessel age to develop a relationship between the 

progress of normalised average of metal loss and time (vessel age). From Figures 4.9 and 

4.10, it may be deduced that the averaged metal loss is still scattered over the time. There is 

an indication of the increment of averaged depth; however the normalised standard deviation 

seems to be constant over time. The new normalised and regrouped data shows a better trend 

of constant variation of corrosion depth over time. The linear equation for the normalised 

average of corrosion depth over time is expressed as: 

 

5144.0.0064.0 += vave td        Equation 4.10 
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The new Weibull distribution function can be written as follows: 
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By inserting Equation 4.9 into Equation 4.11, the function can now be expressed as: 
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and the time effect is added by inserting Equation 4.10 into Equation 4.13. 
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The cumulative function then can be written as follows: 
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The Weibull function of normalised depth can now be used to predict the distribution of 

corrosion depth at any points of time. The location parameter, δ for both Exponential and 

Weibull distributions of corrosion depth was assumed as zero for any prediction time. This 

implies the smallest measurement of corrosion depth at any time will be zero. The Weibull 

distribution model is having a constant shape factor, β over time whereas the scale parameter, 

θ increases proportionally to the averaged normalised depth. This can be proven 

mathematically as follows. 
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The Weibull PDF function of normalised data is presented as follows; 
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Equation 4.15 is rearranged to exclude the expression of linear regression model from the 

random value of corrosion depth, xd. 

 

( ) ( )
( )( )

( )
( ) 






















−=

−

− β

ββ

β

θθ
β

.
exp

.1

1

vave

d

vave

d
normx td

x

td

x
xf     Equation 4.16 

 

and 
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Therefore, the final expression of Weibull function can be written as; 
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The new scale parameter, θnew can be expressed as; 

 

( )θθ .vavenew td=         Equation 4.19 

 

Equation 4.18 can be written in a simpler form as follows; 
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Equation 4.20 shows that the new scale parameter, θnew is proportional to the averaged depth 

which was derived from the linear regression model. The older the vessel, the deeper the 

averaged depth hence the larger the new scale parameter. The scale parameter then defines 

the mean and variance of the Weibull distribution (see Section 3.2.4 Chapter 3). As a 

conclusion, when corrosion progresses, the increment of averaged depth will affects the scale 

parameter hence changes the mean and variation of the Weibull distribution. However, the 

distribution shape defined by the shape parameter, β still remained the same, unaffected by 

the time of prediction. The change of the distribution variation is due to the inclusion of new 

defects growth every time corrosion prediction is made (see Figure 4.8).  

 

 

Figure 4.8: The increment of the Weibull scale parameter as corrosion progress for 

normalised data. 
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Table 4.4: Data of corrosion in seawater ballast tank (Rescaled and regrouped) 

Age 

(year) 

Depth of corrosion (mm) 

0.625 1.875 3.125 4.375 5.625 6.875 8.125 9.375 Total 

11.25 2 0 0 0 0 0 0 0 2 

11.75 19 4 0 0 0 0 0 0 23 

12.25 7 5 6 0 0 0 0 0 18 

12.75 23 2 0 0 0 0 0 0 25 

13.25 21 33 19 1 0 0 0 0 74 

13.75 9 0 0 0 0 0 0 0 9 

14.25 4 2 0 0 0 0 0 0 6 

14.75 2 1 0 0 0 0 0 0 3 

15.25 26 15 6 3 0 0 0 0 50 

15.75 9 1 0 0 0 0 0 0 10 

16.25 5 0 0 0 0 0 0 0 5 

16.75 15 9 3 1 1 0 0 0 29 

17.25 19 1 0 0 0 0 0 0 20 

17.75 84 2 5 0 0 0 0 0 91 

18.25 48 50 11 2 2 0 0 0 113 

18.75 1 2 0 0 0 0 0 0 3 

19.25 58 10 13 2 0 0 0 0 83 

19.75 90 5 1 0 0 0 0 0 96 

20.25 184 20 0 0 0 0 0 0 204 

20.75 20 19 16 8 0 0 0 0 63 

21.25 99 28 8 0 0 0 0 0 135 

21.75 10 2 3 0 0 0 0 0 15 

22.25 7 1 0 0 0 0 0 0 8 

22.75 22 5 3 0 0 0 0 0 30 

23.25 41 7 0 0 0 0 0 0 48 

23.75 11 1 0 0 0 0 0 0 12 

24.25 17 10 0 0 0 0 0 0 27 

24.75 32 3 0 0 0 0 0 0 35 

25.25 77 94 58 0 0 0 0 0 229 

25.75 11 2 3 0 0 0 0 0 16 

26.25 16 1 0 0 0 0 0 0 17 

26.75 7 1 0 0 0 0 0 0 8 

 996 336 155 17 3 0 0 0 1507 
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4.3.4 Prediction result 

 

The Weibull function model was utilized to produce artificial corrosion data which later compared 

with the measured data in the same class of vessel age. The error of comparison between predicted 

and actual defect histogram is measured using Root-mean-square-error method (RMSE). Six sets of 

corrosion data histogram were generated using numerical simulation and inverse transformation 

method for every single group of vessel’s age class. Since the predicted data is based on pseudo-

random process, the selection and histogram comparison were repeated six times to get the averaged 

RMSE in order to minimise the error due to random selection. Overall, the comparison work on every 

single histogram of corrosion depth according to its vessel’s age class yields range of RMSE between 

+0.4 to +28.8(refer Figure 4.12).The prediction results are enlarged by focusing on four histograms 

belongs to vessel’s age class of 18-18.5 years, 19.5-20 years, 20-20.5 years, and 21-21.5 years old. 

These age classes were chosen due to the high number of data collected during onsite inspection. The 

generated data was compared with the measured data in the same class of vessel age. Based on the 

comparison of histogram shown in Figures 4.13 to 4.16, the prediction results yield error values 

between + 4.47 to + 14.84. 

To visualize the relationship between RMSE values and vessel’s age, the average RMSE 

values are plotted against time.  The linear regression equation obtained from Figure 4.17 is likely to 

contain errors as there is a large spread in plotted data with value of correlation coefficient was 

estimated approximately at 0.02 indicating poor correlation between averaged RMSE and vessel age. 

Figures 4.18 and 4.19 however exhibit explicitly the increment of RMSE values as the number of data 

increases. Three groups of corrosion depth with the highest numbers of measurement of 229, 232 and 

282 produce the highest RMSE values.  Hence, indicates the diminution of prediction accuracy as the 

numbers of data increases.  
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Figure 4.9: Linear regression analysis of mean depth and vessel age (rescaled data) 
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Figure 4.10: Regression analysis of std depth and vessel age (rescaled data) 

 

y = 1.0468x - 0.1448
R2 = 0.9907

-10.0000000

-8.0000000

-6.0000000

-4.0000000

-2.0000000

0.0000000

2.0000000

4.0000000

-10 -8 -6 -4 -2 0 2 4

ln(t-l)

ln
[l
n
(1
/1
-F
(t
))
]

 

Figure 4.11: Weibull probability plot of rescaled data 
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Figure 4.12: Average of RMSE (3 and 6 cycles of selection) from comparison works on artificial and 

actual data. 
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Figure 4.13: Comparison of predicted depth data to actual data for vessel age of 18-18.5 years old 

(RMSE of +11.62) 
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Figure 4.14: Comparison of predicted depth data to actual data for vessel age of 21-21.5 years old 

(RMSE of +14.84) 
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Figure 4.15: Comparison of predicted depth data to actual data for vessel age of 22-22.5 years old 

(RMSE of +4.47) 
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Figure 4.16: Comparison of predicted depth data to actual data for vessel age of 23-23.5 years old 

(RMSE of +6.07) 
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Figure 4.17: Correlation between RMSE and vessel age. 
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Figure 4.18: Correlation between RMSE and numbers of data. 
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Figure 4.19: Correlation between RMSE and numbers of data below 40. 

 

 

5.4  Concluding Remarks 

 

This chapter has demonstrated an alternative approach to analysing corrosion data 

randomly collected from a large number of like assets (in this case vessel’s ballast tanks). 

Rather than making an assumption on the time to the start of the corrosion process and then 

develop a linear model of corrosion rate, two corrosion depth models which are a function of 

time have been proposed. The new model can be used to predict the likely variation of 

corrosion depth at any point of time without having to estimate the corrosion growth rate for 

each single defect. Even though the value of correlation coefficient were not more than 0.16 
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indicating poor correlation between averaged depth and vessel age, the incorporation of 

probability model into the analysis methodology can improve the reliability of the prediction 

results as well as minimising the errors. Furthermore, the linear regression can be improved 

once more data from further inspections can becomes available, indicating the flexibility of 

the model. The provided information from the vessel inspections is full of uncertainties 

owing to the nature of marine corrosion. The proposed model intends to simplify the 

modelling process so the available data can be fully utilised for prediction purposes. If more 

information can be revealed, the prediction model could be improved to achieve a high 

accuracy of depth prediction at any point of time. High variability of corrosion wastage has 

been acknowledged by previous researchers [Loseth et al., 1994; Melchers, 1999a; Paik et 

al., 2003 and Wang et al., 2003]. Hence, statistical analysis on a collection of corrosion 

measurements seems to be one of the best options to express corrosion rates in seawater 

ballast tank. The proposed alternative assessment of corrosion data of vessel’s seawater 

ballast tank is shown in Figure 4.20. 
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Figure 4.20: Flow chart of a development of corrosion depth distribution with defect 

depth as a function of time. 
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CHAPTER 5 - DISCUSSION 

 

 

5.0 Overview 

 

This chapter discusses the proposed concept of a generic assessment procedure for 

corrosion data and its application on structure reliability. The assessments of both the 

pipelines and vessel’s seawater ballast tanks have been combined to produce a generic 

assessment guideline. A discussion of issues related to the assessment of corrosion data and 

the application of the techniques to structure reliability evaluation has been included to 

emphasise and strengthen the justification of the research work.  

 

 

5.1 Summary of Generic Assessment Procedure of Corrosion Data And Structure 

Reliability 

 

The proposed generic procedure of corrosion data assessment consists of four stages: 

data identification, statistical and probability analysis, data prediction and structure 

assessment. The generic term is used specifically to emphasise the flexibility of this 

procedure for implementation on different types of structures that suffer from localised 

corrosion attack, regardless of the types of inspection tools used for data collection. As long 

as the dimension of a corrosion pit can be measured by the inspection tool, the proposed 

generic assessment procedure is suitable for use to evaluate and predict the future growth of 

corrosion defects and the remaining life-time of the structures. Figures 5.1 and 5.2 depict the 

flow charts of the proposed generic assessment procedure. 

 

 

5.1.1 Stage I: Data identification 

 

There are two types of inspection data sets: single set and multiple set. Each set needs 

a different approach to extract fully the information regarding the corrosion growth 

parameters. 
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5.1.1.1 Single Set of Corrosion Data 

 

For single set of corrosion data, estimating the corrosion growth rate value using a 

linear model based on metal loss evidence is possible only if information on the corrosion 

protection system (internal coating) is available. Without this information, an assumption 

must be made as to whether the corrosion started to grow immediately after the structure was 

placed into service or, alternatively, if corrosion initiation was delayed owing to the 

protection from the coating system. Then, the simple linear model can be used to estimate the 

corrosion growth rate value for each single defect. This simple method will produce only 

positive growth value; hence no correction method to deal with unreliable growth value is 

required. 

 

The other way to use single set data in predicting the future growth is by analysing 

the probability distribution of corrosion depth which the defect depth is modelled as a 

function of time (see Chapter 4). The time variation along with the distribution can then be 

used to predict if the averaged corrosion depth is increasing with time, and the probabilistic 

distribution of corrosion depth at any point of time or structure age can be also be defined. 

This method has been tailored for grouped data obtained from a large number of structures. 

All single sets of data are grouped together as one sample of corrosion depth. This sample 

can then be grouped by the dimension of depth and the structure age. A deterministic linear 

model of corrosion depth (averaged depth) as a function of time is then combined with the 

appropriate probability distribution of corrosion depth to predict the future distribution of 

defect depth at any point of time in the life of the structure. 

 

 

5.1.1.2 Multiple Set of Corrosion Data 

 

Multiple set of corrosion data from the same structure will enable the estimation of 

corrosion growth rate using a linear model based on evidence from the measurement of metal 

loss volume of the individual defects detected in two, or more, inspections. This can be 

achieved by matching the corresponding defect from previous inspection with that from the 

next inspection. The linear estimation of corrosion growth rate does not require any variables 

related to the operational condition, structure material and environmental properties which 
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are considered to have an effect on corrosion growth rate as proven through extensive 

laboratory work by previous researchers. The advantage of having multiple sets of corrosion 

data apart from the simple linear estimation of corrosion growth rate is that it provides an 

opportunity to evaluate the quality of inspection data. Multiple sets of data allow the 

development of correction methods and theoretical models related to linear growth of 

corrosion, and provide a good platform for comparison of data prediction so that the accuracy 

can be verified (see Chapter 3). 

 

 

5.1.2 Stage II : Data Sampling 

 

The main aim of this second stage is to provide a group of matched data for statistical 

and probabilistic analysis purposes. This stage requires at least two sets of corrosion data, 

collected between two different times of inspection activities from the same structure to 

estimate the corrosion growth rate. The data sampling procedures can also be used as an 

initial step to determine the likelihood of errors by estimating the sampling tolerance to 

quantify the difficulty during data matching.  

 

 

5.1.2.1 Data ‘Feature-To-Feature’ Matching Procedure 

 

Corrosion dimensions, including depth and axial length can be used to estimate the corrosion 

growth rate. Therefore, the availability of two sets of corrosion data or more is important to 

model the corrosion growth rate based on the metal loss evidence. The feature-to-feature data 

matching procedure can be accomplished by sampling the corrosion dimension based on the 

distance and orientation/position in the structure (see Section 3.2.1.2). During the sampling 

process, factors resulting from possible errors within the data caused by imperfect 

measurement by the inspection tools should be considered. It has been noticed that negative 

growth is possible owing to both imperfect measurements by the inspection tool as well as 

human error. As a result, finding the absolute location of the same defect from two 
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inspections will be almost impossible without having an acceptable sampling tolerance. The 

data matching process has to be done iteratively in order to obtain as many amounts of 

matched data as possible, by increasing the sampling tolerance until a sufficient amount of 

matched data can be achieved. Yahaya and Wolfram [1999] have suggested that the amounts 

of matched data should be around 25% from the actual data, or alternatively a minimum 

numbers of 500 data points to improve the reliability of the corrosion growth estimate. 

 

 

5.1.2.2 Data Grouping 

 

If corrosion data was collected from huge number of similar structures, all single set 

of data can be combined and grouped by the depth measurement and the age of structure to 

produce one large sample of corrosion depth. The main intention of combining all sets of 

data from different structures as demonstrated by analysis on the vessel’s ballast tank is to 

develop a probability distribution of corrosion depth for the whole set by removing the 

effects of time (see Section 4.3). Then, data from each class of structure age can be used to 

develop a linear regression equation representing the averaged depth as a function of time. 

The regression equation is then combined with the corrosion depth distribution to estimate 

the likely distribution of corrosion depth at any point of time. The requirement of corrosion 

initiation time for linear estimation of corrosion growth rate is not necessary for grouped 

data. Instead, the future growth of defect depth can be predicted directly without estimating 

the corrosion growth rate value since the corrosion depth distribution is modelled as a 

function of time.  

 

 

5.1.3 Stage III: Statistical and Probability Investigation 

 

The next stage is the implementation of the statistical and probabilistic techniques to 

analyse the corrosion properties and growth rate. Expected findings from this stage are the 

statistical parameter represented in the form of a probability distribution to cater for the 

variation of each corrosion-related parameter (corrosion rate and corrosion depth).  
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5.1.3.1 Sampling Tolerance 

 

In order to characterise the sampling tolerance on corrosion data, analysis of the 

difference in relative distance and orientation has been performed to evaluate the difficulty of 

the matching the data (see Section 3.2.2.1). Each set of the matched data between two 

inspections can be characterised by estimating the relative difference between two located 

defects which are believed to be the same defect. The relative distances are called the 

sampling distance. This distance can provide information about the quality of the matching 

procedure. This in turn can help to illustrate the accessibility of the matched data. If the 

number of matched data is low (for example less than 25% of overall data) due to distance 

error, sampling distance can be increased to increase the amount of matched data but with a 

greater chance of mismatch.  

 

 

5.1.3.2 Corrosion Properties Analysis 

 

The information on defect depth, length and growth rate for both dimensions is very 

important for assessing the reliability of a corroded structure. It is also necessary to 

determine the correlation between defect depth and length if the length parameter is thought 

to affect the structure performance, such as in offshore pipelines. If there is a strong 

correlation between defect depth and length, the projection of corrosion length in the future 

can be carried out using the same growth rate as that found for corrosion depth. If little or no 

correlation exists, the prediction of corrosion length has to be carried out independently using 

a different corrosion growth rate value. In this study, it was assumed that the defect length 

growth was independent of depth growth; hence the corrosion growth distribution of defect 

length was developed separately from the distribution for defect depth. This is based on the 

correlation analysis which shows a very weak relationship between the growth of defect 

length and depth.  
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5.1.3.3 Correction Methods 

 

 The averaged value of corrosion growth rate can give an early indication of the error 
severity due to imperfect measurement by inspection tools or human error during data 
sampling. If the average of corrosion growth rate indicates a negative value or positive value 
with a large standard deviation which extends the possible growth rates into high negative 
values, the data might be considered to be unreliable for prediction purposes unless an 
appropriate correction method is applied to minimise the error. Therefore, four types of 
correction methods have been proposed and developed to correct and reduce the embedded 
error within the corrosion data (see Section 3.4). The Z-score method can be used to reduce 
the amount of negative growth rate when this is assumed to be normally distributed (see 
Section 3.4.1.1). However, the Normal distribution is a poor choice when there is a relatively 
small amount of negative growth rate, and for this case the Exponential distribution is 
proposed to remove the negative growth value (see Section 3.4.2). A more complicated 
technique is the “modified corrosion rate method” designed for multiple sets of data. This 
method will produce a correction factor, so one set of corrosion data which is assumed to be 
flawed can be corrected (see Section 3.4.1.2). The corrected data may then be used with its 
corresponding set to re-estimate the corrosion growth rate. It is worth mentioning that 
although the proposed correction methods are relatively crude, they have been shown to 
provide a reasonable means of handling the negative growth effects for future data 
prediction. 

 

 

5.1.3.4 Determination of Distribution Parameters 

 

Reliability analysis requires data in the form of a probability distribution. For that 

reason, the corrosion dimension and corrosion growth rate have to be represented by an 

appropriate distribution. A hypothesis of the best type of distribution to represent the 

corrosion data is derived by observing the shape of the histogram of the corrosion data. From 

this hypothesis, the distribution parameter is computed using probability plotting. Chi-square 

goodness of fit test and probability plot have been used to test whether the corrosion data can 

be fitted under the proposed distribution.  

5.4 The Accuracy Of Assessment 
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The generic assessment procedure offers reasonable simplicity of approach in 

comparison with the complexity of the current methods of corrosion assessment which are 

based on identifying specific types of corrosion within individual structures. The current 

mechanical and empirical corrosion models are sometime too complex in that many 

parameters related to material and environmental conditions are required to estimate the 

corrosion growth rate. The accuracy of these models could be jeopardised by its very 

complexity and the unknown variability of the required parameters. Based on this hypothesis, 

the generic assessment procedure as proposed certainly reduces complexity and is designed 

to minimise the uncertainties arising from variations in operational condition, structure 

material, and environmental properties. However, its simplicity might trigger other sources of 

uncertainty owing to the assumption of a linear estimation of corrosion growth rate. The 

application of statistical methods has been applied to minimise the effect of linear estimation 

on the accuracy of prediction.  

 

The accuracy of the prediction of future data and remaining structural lifetime by this 

generic assessment procedure can be measured and justified only once new data becomes 

available. Therefore, it is of important that plant engineers or inspection personnel make a 

continuous assessment by comparing the previous prediction of structure reliability with the 

current condition of the structure. At some stage, once the assessment work can cover most 

of the sources of the uncertainty, the highest accuracy of data prediction and future structure 

reliability evaluation can be achieved. 

 

 

5.5 Linear Growth Model 

 

One of the disadvantages of using a linear growth model in corrosion assessment is 

the uncertainty of corrosion growth throughout the duration of the projection. The longer the 

projection, the more uncertainty that is involved. The linear model has some serious 

limitations that can cause significant error of prediction if not applied properly. For example, 

it is not able to include the probable physical effects to corrosion rates following the 

alteration of electrochemical factors inside the structure [Yahaya, 1999]. Moreover, extreme 

changes in the corrosion caused by unforeseeable circumstances cannot be predicted 

[Yahaya, 1999]. These factors do affect significantly the accuracy of a linear prediction. As a 
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result, a random linear model has been proposed specifically to include the random changes 

of corrosion growth rate because of the factors discussed previously. It is hoped that the 

random changes of corrosion growth rate selection throughout the projection period will 

minimise the uncertainties, especially for a long term projection. The inclusion of the random 

linear model will increase the random nature of corrosion growth and make the prediction 

more flexible. Since it is not possible to know if the corrosion growth is increasing or 

decreasing with time without detailed knowledge of operational condition, the random linear 

model seems to be a reasonable option to cover the uncertainties. 

 

Previous researchers asserted that the deepest defects are bound to grow at a very high 

rate, and hence become the most likely site to fail. The correlation analysis shows that the 

corrosion defects grow at a random rate regardless of the dimension of the pit in contrast to 

this commonly held assumption (see Section 3.2.2.4). The engineers or inspection personnel 

are given the option to include this common assumption in the reliability assessment. An 

extreme linear growth model has been proposed to allow a random defect, with a depth 

greater than the averaged value, to grow faster than a shallower, non severe, defect. The 

growth rate depends on the ratio between the random defect depth and its averaged value, 

and also the random growth rate. The structure reliability assessment based on the simulation 

results show an early exceedance of limit state failure if the extreme growth model is 

included in the simulation. The simulation results, based on extreme growth and non-extreme 

growth linear model, would give a reasonable time frame of possibility of two failure events, 

hence increasing the awareness of the future condition of the structure under corrosion attack 

by taking into account different aspects regarding the nature of corrosion growth. 
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STAGE 1
DATA IDENTIFICATION

-Single set
-Multiple set

STAGE 2
DATA SAMPLING

-Data grouping (for single set)
- Feature-to-feature data matching procedure (for

multiple set)

STAGE 3
STATISTICAL AND PROBABILITY ANALYSIS

- Determine statistical parameter of corrosion properties
and corrosion growth rate

- Goodness-of-fit test to verify the chosen distribution
- Select the appropriate correction method to correct

erroneous corrosion growth rate
- Predict the future growth of corrosion depth

STAGE 4
STRUCTURE RELIABILITY ASSESSMENT

- Select the Failure model
- Select the Limit state function
- Select the Limit state failure
- Select the Linear growth model

- Determine time to failure and maximum working
pressure

 

Figure 5.1: General illustration of the proposed assessment procedure for corrosion 

data and structure reliability analysis. 
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Figure 5.2: Detail illustration of the component of generic assessment procedure for 

corrosion data and structure reliability analysis. 
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CHAPTER 6 – CONCLUSIONS 
 

 

6.1 Conclusions  

 

 It can be concluded that the proposed research work has been successfully 
accomplished. The final findings from the research work have sufficiently fulfilled the aim of 
this research in developing a generic assessment approach to the analysis of corrosion data 
and structure reliability. The achievements from this research work can be summarised 
according to each research objectives. 

 

 

6.1.1 Analysis of inspection data using statistical methods to extract information 

about corrosion behaviour. 

 

 Thorough investigations on pipelines and vessel’s ballast tank data of corrosion 
defects were carried out to demonstrate how inspection data can be utilised fully to improve 
the understanding of corrosion progress. Statistical analysis was deployed to determine the 
most appropriate distribution for the key parameters of corrosion dimension and corrosion 
growth rate. The analyses of the corrosion data from offshore oil pipelines and vessel’s 
seawater ballast tanks were carried out separately because of the difference in the data 
collection method. The findings from this section are concluded as follows: 

 

1. The pigging data from the internal monitoring of pipeline structures represents the 

case for which repeated inspection data are available which allows the feature-to-

feature data matching procedure to estimate the corrosion growth rate. The data 

matching procedure has been proven to be practical and allows estimation of the 

corrosion growth rate for each single paired defect. When the normal analysis yields 

negative growth rate, several correction approaches have been shown to improve the 

reliability of corrosion interpretation. 

 

2. The vessel’s seawater ballast tank inspection data represent the case where only a 

single database is available, hence data matching is not an option to estimate 

corrosion growth rate. This corrosion database consists of a large amount of data 

collected through random inspection involving a great number of vessels, and this 

requires different analysis technique. A technique for predicting the future growth of 

defects in the vessel’s seawater ballast tanks was developed based on a combination 
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of probability distribution for the defect depth and linear regression equation of 

averaged depth as a function of time. This new approach enables the prediction of 

future corrosion depth of the whole database without having to rely on the coating 

resistance value to estimate the onset of corrosion. This represents an alternative 

solution when a large amount of data from several inspections is grouped together in 

one database as if the data represent a single structure. 

 

3. Both the above approaches have been developed to provide an alternative solution to 

the engineer and inspection personnel so that the available corrosion data can be fully 

utilised for structural assessment purposes. The proposed analysis approaches can be 

applied to (i) a multiple set of data from repeated inspection or (ii) a single set of data, 

either from a single structure or grouped data from a great number of structures 

compiled in one single database. 

 

 

6.1.2 The development of a generic corrosion-related model with suitable data 

correction methods.  

 

 The primary aim of the part of work was to show that a model of the corrosion data 
that was based solely on metal loss evidence and which eliminated the dependency of the 
model on explicit information on material and environmental properties could be formulated. 
The uncertainties associated with the inspection data, arising from various sources was 
exemplified by the appearance of apparent times of negative corrosion growth rate, a 
physically unrealistic case. The specific conclusions on this part are as follows; 

 

1. Pipelines B and C were each found to have a negative average corrosion growth rate 

for defect depth. The negative rate was expected prior to data analysis. Sources of 

errors were noticed early during the observation stage where Pipeline B data indicated 

a ‘missing’ 6km of total inspected pipelines length in year 1990 compared with the 

inspections in years 1992 and 1995. This has resulted in high sampling tolerance 

required to obtain sufficient matched data based on 1990 set. The errors are possibly 

caused by imperfect dimension measurement by pig tools or by human error during 

data interpretation and data matching. 
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2. Several correction methods were proposed and developed to correct the existing error 

and increase the reliability of the pigging data. The reduction variation techniques of 

modified variance and modified corrosion rate methods were used to reduce the 

standard deviation of the Normal distribution of the corrosion growth rate. The 

Exponential distribution was proposed as an alternative correction method since the 

Normal distribution is a poor choice for corrosion growth rate due to the existence of 

negative value for growth rate. The proposed correction methods are simple yet 

practical for improving the reliability of corrosion information. This work has shown 

how the correction methods can be used for flawed inspection data so that structure 

assessment is still possible. Since the cost of inspection and maintenance work is very 

high, it is necessary for the engineer not to neglect any single inspection data just 

because the information obtained from the data is apparently not reliable. More can 

still be done by way of improving the data interpretation as demonstrated by this 

research work. 

 

3. A time interval-based error theory was proposed to represent the relationship between 

the frequency of inspection and the quality of the corrosion data. If the structure 

operator conducted inspections within a short time interval (say every two years 

instead of every five years), the corrosion progress might not be identified because of 

the slow progress of defect growth. Any prediction of future growth based on data 

from repeated inspection within a short time interval might be flawed, especially 

when such a prediction was made based on a linear model. Therefore, it is of 

importance for structure operator to schedule the frequency of inspection work 

satisfactorily. The inspection should not be carried out within a short time interval, 

nor should it be done too frequently to reduce the total operational cost and 

uncertainties. Nevertheless, they must be balanced against the failure cost of the 

structure. If too long a time passes before the next inspection this might be too late to 

secure and improve structure remaining life time especially when new data indicates 

more extreme defects which have great potential to leads to structure failure. 

 

4. Two linear-based corrosion growth models were proposed to deal with the random 

nature of corrosion. The random linear model was introduced to minimise the 

uncertainty due to the changing of physical nature of corrosion throughout the 
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operational period of the structures. The extreme growth model was proposed to 

allow extreme defects to grow faster than non extreme defects in the simulation if the 

depth measurement is higher than the averaged depth of defect sample. This is to 

satisfy the theory of the rapid growth of severe corrosion defects. The accuracy of 

both models in predicting the future defect depth was not extensively investigated 

throughout the research due to limited inspection data. Nevertheless, these models 

can be verified if new data can become available in the future. The issues of the 

simplicity of the conventional linear prediction for corrosion growth have been 

addressed by the introduction of both models. The simplicity of the linear model does 

not warrant for high accuracy of the prediction results due to the random nature of the 

corrosion progress. This research has enhanced the application of the linear model by 

improving the flexibility of the linear model. The new models can be used to reflect 

the random growth of defects and take into account the possibility of a greater growth 

rate for severe defect. 

 

5. For the vessel’s seawater ballast tank structure, a new method of predicting future 

corrosion depth without relying on the corrosion initiation time was developed. The 

technique allows the prediction of future depth to be carried out without estimating 

the corrosion onset. A deterministic equation of averaged corrosion depth as a 

function of time is combined with a probability distribution of corrosion depth 

derived from the whole data as one sample. The proposed analysis technique was 

specifically tailored to apply to data collected from a number of structures which are 

grouped together as one large sample. The proposed correction methods and 

corrosion related models were developed independently of operational conditions, 

materials, and environmental properties to make it as a general and simple application 

yet practical on corrosion data. 

 

 

 

 

 

 

6.2 CONTRIBUTION 
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1. The proposed generic assessment approach can be applied to two common sampling 

methods. A feature-to-feature matching procedure is intended for repeated inspections 

of data. A new data sampling technique specifically designed for single inspection 

data where the issues of unknown corrosion initiation time can be resolved has also 

been developed. The generic method has an improved flexibility for practical use 

compared to the existing assessment methods. 

 

2. The issues of negative growth rate obtained from the data feature-to-feature matching 

procedure have been addressed by the development of several correction methods. 

This reflects the importance of utilizing fully the inspection data regardless of the 

quality, since the inspection activities contribute significantly to the total cost of the 

structure. 

 

3. The linear growth model has become a widespread method to predict future corrosion 

growth, especially when there is not enough information gathered on site to model the 

actual corrosion growth form. This research has demonstrated how the reliability of a 

linear model, whose accuracy is frequently questionable, can be improved to address 

the issues of corrosion randomness and differential growth of severe defects. 

 

4. Overall, the proposed data sampling techniques, correction approaches and alternative 

linear models have been specially designed for use on corrosion measurement from 

different types of structures, regardless of the types of inspection tools used during on 

site inspections. The proposed approach offers a generalised assessment of corrosion 

data which is more practical than current methods. It also provides great flexibility 

due to the range of different choices for data sampling, correction methods, and linear 

models offered. This will assist the decision-making based on the assessment of 

inspection data for structure reliability analysis 

 

 

 

 

6.3 Further Work 
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Further research can be carried out to enhance the final findings. Therefore, several 
suggestions can be made for the research work in the future. 

 

1. It is suggested that a computer programme is developed to automatically match the 

corrosion data from repeated inspections as a part of the assessment procedure. The 

manual data matching procedure as practiced by this research is a time-consuming 

work and might be vulnerable to human error. Even though repeated sampling would 

minimise the effect of human error, the automatic data matching by using computer 

software could speed up the sampling process. 

 

2. Only pitting corrosion was considered in the analysis. Therefore, the effects of other 

forms of corrosion especially uniform corrosion largely found in concrete reinforced 

steel structures can be further studied to improve the generality of the proposed 

assessment approach of corrosion data and structure reliability. The proposed data 

sampling and correction approaches in theory can be applied to uniform corrosion 

data assessed by the area of metal loss.  

 

3. The research work can be enhanced by emphasising on the optimisation problem 

where the expected lifetime costs can be minimised with a constraint on the minimum 

acceptable reliability level. The study of pipeline costing for inspection and 

maintenance can be carried out to specify the frequency of inspection in the future 

and the right type of inspection device to be used, whether high or low resolution. 

Moreover, the effects of the time interval between inspections (inspection frequency) 

can be studied extensively to determine the relationship between data reliability and 

time interval between inspections in terms of structure failure cost. 

 

 

 

 

 

 

 



 126

REFERENCES & BIBLIOGRAPHIES   

 

Abdulsalem M. and Stanley J.T. (1992), Steady State Model for Erosion Corrosion of Feed 

Water Piping, Corrosion, 48, pp.587-598 

 

AEUB (1998), Pipeline Performance in Alberta 1980-1997, Calgary, Alberta, Alberta 

Energy and Utilities Board Report 98-G. 

 

Ahammed M. (1998), Probabilistic Estimation of Remaining Life of a Pipeline in the 

Presence of Active Corrosion Defects, International Journal of Pressure Vessels and 

Piping. 75. pp. 321-329. 

 

Ahammed M. and Melchers R.E. (1994), Reliability of Underground Pipelines Subject to 

Corrosion, Journal of Transportation Engineering, 120(6), pp. 989-1002. 

 

Amirat A.; Mohamed-Chateauneuf A. And Chaoui K. (2006), Reliability Assessment Of 

Underground Pipelines Under The Combined Effect of Active Corrosion and Residual 

Stress, International Journal Of Pressure Vessels And Piping, 83, pp. 107-117. 

 

Antaki G.A. (2003), Piping and Pipeline Engineering: Design, Construction, Maintenance, 

Integrity, and Repair, New York: Marcel Dekker. 

 

Antaki G.A. (2005), Fitness-For-Service and Integrity of Piping, Vessels, and Tanks: ASME 

Code Simplified, New York: Mcgraw-Hill. 

 

Ayyub B.M. and Haldar A. (1984), A Practical Structural Reliability Techniques, Journal of 

Structural Engineering, 100(8), pp. 1707-1724. 

 

B31G (1984), ANSI/ASME B31G-1984-Manual for Determining the Remaining Strength of 

Corroded Pipelines, New York: ASME. 

 



 127

B31G (1991), ANSI/ASME B31G-1991-Manual for Determining the Remaining Strength of 

Corroded Pipelines – A Supplement to ASME B31 Code For Pressure Piping, Revision 

of ANSI/ASME B31G-1984, New York: ASME 

 

Bailey S.F (2000), Basic Principles and Load Models for the Structural Safety Evaluation of 

Existing Road Bridges, École Polytechnique Fédérale De Lausanne: Phd Thesis. 

 

Bailey S.F. and Rolf  B. (1999), Site Specific Probability Distribution of Extreme Traffic 

Action Effects, Probabilistic Engineering Mechanics, 14, pp. 19-26. 

 

Basheer L., Kropp J. and Cleland D.J. (2001), Assessment Of The Durability Of Concrete 

From Its Permeation Properties: A Review, Construction and Building Materials, 

Volume 15, Issues 2-3, March-April 2001, pp 93-103  

 

Batte A.D., Fu B., Kirkwood M.G. and Vu D. (1997), New Methods for Determining the 

Remaining Strength of Corroded Pipelines, Pipeline Technology, V, pp. 221-228. 

 

Beller M. and Scheneider U. (1995), Pipeline Maintenance, How can Intelligent Pig Help?, 

Florence, Italy: Proceedings of 11th International Conference on Pipeline Protection. 

October 9-11.  

 

Bhatia A., Mangat N.S. and Morrison T. (1998), Estimation of Measurement Errors, Lisbon, 

Portugal: OMAE 1998, 17th International Conference on Offshore Mechanics & Arctic 

Engineering. July 5-9. pp. 315-325.  

 

Bjornoy O.H., Cramer E.H. and Sigurdsson G. (1997), Probabilistic Calibrated Design 

Equation for Burst Strength Assessment of Corroded Pipes, Honolulu, USA: ISOPE 

1997, Proceedings of the 7th International Offshore and Polar Engineering Conference. 

May 25-30. Vol. IV, pp160-166. 

 

Braestrup M.W. (2005), Design and Installation of Marine Pipelines, Oxford, UK: Blackwell 

Science. 

 



 128

Bryan F.J. (1991), Randomization and Monte Carlo Methods in Biology, London: Chapman 

and Hall. 

 

Bunday B.D. (1991) Statistical Methods In Reliability Theory And Practice. Ellis Horwood.   

 

Caleyo F., González J.L. and. Hallen J. M .(2002), A Study on The Reliability Assessment 

Methodology for Pipelines with Active Corrosion Defects, International Journal of 

Pressure Vessels and Piping, Vol. 79, Issue 1, January 2002, pp 77-86  

 

Castillo, E. (1988), Extreme Value Theory in Engineering, San Diego, California: Academic 

Press Inc. 23-210. 

 

Castillo, E. (1993), Extreme in Engineering Application, Gaithersburg Maryland: 

Proceedings of the Conference on Extreme Value Theory and Applications. 

   

Chouchaoui B.A. and Pick R.J. (1993), Interaction of Closely Spaced Corrosion Pits in Line 

Pipe, Pipeline Technology, V, pp.12-16. 

 

Chouchaoui B.A. and Pick R.J. (1994), A Three Level Assessment of The Residual Strength 

of Corroded Line Pipe, Pipeline Technology, V. pp. 9-18. 

 

Clear K.C. (1976), Time to Corrosion of Reinforcing Steel in Concrete Slabs, Volume 3, 

Performance After 830 Daily Salt Applications, Federal Highway Administration 

Offices of Research & Development, FHWA-RD-76-70, Los Angeles, CA, 1976. 

 

Cohen A.C. (1975), Multi-Censored Sampling in the Three Parameter Weibull Distribution, 

Technometrics, 17(3), pp. 347-351. 

 

Coles S. and Tawn, J. (1996), A Bayesian Analysis of Extreme Data Rainfalls, Applied. 

Statistic, 45(4),  pp. 463–478. 

 



 129

Cordell J.L. (1995), An Introduction to Conventional and Intelligent Pigging, Houston, 

Texas: The Pipeline Pigging Conference. February 13-16. 

 

Cramer E., Gharpuray D., Marley M., Sigurdsson G. and Bjornoy O.H. (1999), Risk-Based 

Assessment of Corroded Pipelines. Kuala Lumpur: OGM’99.  

 

Davis P.M., Giessler K.P., Muller B. and Olcese A. (2000), Performance of Cross-Country 

Oil Pipelines in Western Europe. Report on Statistical Summary of Reported Spillages-

1999. 

 

Dawson S.J. and Clyne A.J. (1997), Probabilistic Approach to Pipeline Integrity. Aberdeen, 

UK: The Aberdeen Exhibition and Conference Centre. May 21-22, pp 1-11. 

 

de Lamore R.F. (1985), Advances in offshore oil and gas pipeline technology, Oyez 

Scientific and Technical Services Ltd, pp. 107-116. 

 

de Raad J.A. and van Agthoven R. (1989), Unique Systems for Ultrasonic Pigging and 

Inspection of Pipelines, The Hague: 8th  International Conference on Offshore 

Mechanics and Arctic Engineering, March 19-23,  pp. 353-359. 

 

de Waard C., Lotz U. and Milliams D.E. (1991), Predictive Model for CO2 Corrosion 

Engineering in Wet Natural Gas Pipeline, Corrosion Engineering,  47(12), pp 976-985. 

 

Desjardin G. (2002b), Optimised Pipeline Repair and Inspection Planning Using in Line 

Inspection Data, Journal of Pipeline Integrity, April 2002 issue, pp.85-71. 

 

Desjardins G. (2002a), Improved Data Quality Opens Way for Predicting Corrosion Growth 

and Severity, Pipeline and Gas Journal, December 2002, pp. 28-33 

 

DNV (Det Norske Veritas) (1999),  Recommended Practice RP-F101 for Corroded Pipelines 

1999, Norway: Det Norske Veritas. 

 

Dodson, B. (1994), Weibull Analysis, USA: ASCQC Quality Press.  



 130

 

Embrechts P., Kluelberger C. and Mikosch T. (1997), Modelling Extreme Events. Berlin: 

Springer. 10-36. 

 

Emmer S., Kluelberger C. and Trustedt M. (1998), VAR-A Measure of the Extreme Risk, 

Solutions,  2,  pp. 53–63. 

 

Engelhardt M. and Bain L.J. (1975), Test of Two-Parameter Exponentially Against Three-

Parameter Weibull Alternatives, Technometrics,  17 (3),  pp. 353-356. 

 

Falka M. and Reissb R.D (2001), Estimation of Canical Dependence Parameters in a Class 

of Bivariate Peaks-Over-Threshold Models, Statistics & Probability Letters, 52, pp. 

233– 242. 

 

Ferreira J.A. and Guedes Soares C. (1998), An Application of the Peaks Over Threshold 

Method to Predict Extremes of Significant Wave Height, Journal of Offshore 

Mechanics and Arctic Engineering,  120(3),  pp.165–176. 

 

Fontana M.G. (1986), Corrosion Engineering, 3rd Edition: Mcgraw Hill.  

 

Galambos, J. (1993), Extreme Value Theory for Applications, Gaithersburg Maryland: 

Proceedings of the Conference on Extreme Value Theory and Applications, pp1-14. 

 

Gardiner C.P. and Melchers R.E. (1997), Corrosion Analysis of Bulk Carrier Ships, 

Proceedings of the Conference on Corrosion & Prevention, 9–12 November, Brisbane, 

1997. 

 

Gwartney W.R. (1989), Pipeline Internal Monitoring Techniques now and the Future, The 

Hague: 8th  International Conference on Offshore Mechanics and Arctic Engineering, 

March 19-23,  pp. 253-256. 

 



 131

Haldar A. and Mahadevan S. (2000a), Reliability Assessment Using Stochastic Finite 

Element Analysis, New York: John Wiley. 

 

Haldar A. and Mahadevan S. (2000b), Probability, Reliability, and Statistical Methods in 

Engineering Design, New York: John Wiley. 

 

Hare S.; Case R.; Snodgrass B. (2003), Smart Pigging Proves Useful Inspecting Deep Water 

Tiebacks, Pipeline and Gas Journal, December, pp. 24-26. 

 

Hellevik S.G. and Langen I. (2000a), In-Service Inspection Planning of Flow lines Subjected 

to CO2 Corrosion, Seattle, USA: ISOPE 2000, Proceedings of the 10th  International 

Offshore and Polar Engineering Conference, May 28-June 2. Vol IV, pp. 372-379. 

 

Hellevik S.G. and Langen I. (2000b), Optimal Design-Phase Inspection and Replacement 

Planning of Pipelines Subjected to CO2 Corrosion, International Journal of Offshore 

and Polar Engineering, 10(2), pp. 123-130. 

 

HSE (2002), Guidelines for Use of Statistic for Analysis of Sample Inspection of Corrosion, 

Health and Safety Executive, Research Report 016. 

 

Ishikawa Y., Ozaki T., Hosaka N., and Nishida O. (1981) Pitting Corrosion Life Prediction 

of Machine Components by Means of Extreme Value Statistical Analysis, Proceeding 

of 2nd International Conference, environmental Degradation of Engineering materials in 

Aggressive environment, Nasa, Blacksburgh VA, Sept 1981, pp 577-84 

 

Jeong H.K. and Shenoi R.A. (2000), Probabilistic Strength Analysis of Rectangular FRP 

Plates Using Monte Carlo Simulation, Computers and Structures. 76, pp. 219-235. 

 

Jiou G., Sotberg T., Bruschi R. and Igland R.T. (1997a), The SUPERB Project-Line pipe 

Statistical Properties and Implications in Design of Offshore Pipelines, ASME 

Pipeline Technology,  V, pp.45-51. 

 



 132

Jiou G., Sotberg T., Bruschi R. and Igland R.T. (1997b), The SUPERB Project, Reliability 

Based Design Procedures and Limit State Design Criteria for Offshore Pipelines, 

ASME Pipeline Technology, V, pp.57-66. 

 

Jones D.G. [1997], Inspection: The key to a reliable future, proceeding of the pipeline 

pigging conference, Houston Feb. 2-3, pp. 1-20 

 

Kennedy J.L (1993), Oil and Gas Pipeline Fundamentals, 2nd edition, Penwell Publishing 

Company. 

 

Kiefner J.F and Vieth P.H (1989), A Modified Criterion for Evaluating the Remaining 

Strength of Corroded Pipe, Final Report on Project PR3-805, Battelle Memorial 

Institute Columbus Ohio to the Pipeline Research Committee of the American Gas 

Association (AGA). 

 

Kiefner J.F. and Vieth P.H. (1993), The Remaining Strength of Corroded Pipe. Houston: 

AGA Line pipe Research Conference, Pp.1-10. 

 

Kraus R.S. (1998), Storage and Transportation of Crude Oil, Natural Gas, Liquid Petroleum 

Products and Other Chemicals, Encyclopaedia of Occupational Health and Safety, 4th 

edition. 

 

Krause T.W., Mandal K., Hauge C., Weyman P., Sijgers B. and Atherton, D.L. (1997), 

Correlation Between Magnetic Flux Leakage and Magnetic Barkhausen Noise, Stress 

Dependence in Pipeline Steel, Journal of Magnetism and Magnetic Materials,  169,  

pp.207-219. 

 

Leis B.N. and Stephens D.R. (1997a), An Alternative Approach to Assess the Integrity of 

Corroded Line Pipe-Part I , Current Status. Honolulu, USA: ISOPE 1997, Proceedings 

of the 7th  International Offshore and Polar Engineering Conference. May 25-30, Vol 

IV,  pp.624-634. 

 



 133

Leis B.N. and Stephens D.R. (1997b), An Alternative Approach to Assess the Integrity of 

Corroded Line Pipe-Part II , Alternative Criterion. Honolulu, USA: ISOPE 1997, 

Proceedings of the 7th  International Offshore and Polar Engineering Conference. May 

25-30, Vol IV, pp.635-641. 

 

Lewis E.E. (1994), Introduction to Reliability Engineering, 2nd  Edition: John Willey and 

Sons Inc. 12-18. 

 

Longin F. and Solnik B. (2001), Extreme Correlation Structure of International Equity 

Markets, Journal of Finance,  December Issues, pp.20-23. 

 

Loseth R., Sekkeseter G. and Valsgard S. (1994), Economic of High Tensile Steel in Ship 

Hulls, Marine Structure, 7(1), pp.31-50 

 

Lotz U., van Bodegom L. and Ouwehand C. (1991), The Effect of Type of Oil or Gas 

Condensate on Carbonic Acid Corrosion, Corrosion Engineering, 47(8),  pp. 635-645. 

 

Marseguerra M. and Zio E. (2000), Optimizing Maintenance and Repair Policies via a 

Combination of Genetic Algorithms and Monte Carlo Simulation, Reliability 

Engineering and System Safety,  68,  pp.69-83. 

 

MATLAB (2000), The Language of Technical Computing, Language Software: Version 

6.0.0.88, Release 12, 22nd September 2000, Copyright 1984-2000: The MathWorks Inc. 

 

Mc Allister E.W. (2004), Pipeline Rules of Thumb Handbook: Quick and Accurate Solutions 

to Your Everyday Pipeline Problems, Boston, Mass.: Elsevier, 6th Edition. 

 

Melchers R.E. (1999a), Corrosion Modelling for Steel Structures, Journal of Constructional 

Steel Research, 52, pp. 3-19. 

 

Melchers R.E (1999b), Structural Reliability Analysis and Prediction. 2nd Edition, 

Chichester, UK: Ellis Herwood.  

 



 134

Melchers R.E. (2000), Discussion on the Strategies and Value of Risk Based Structural 

Safety Analysis, Structural Safety, 22,  pp.281-286. 

 

Moon Y., Lall U. and Bosworth K.(1993), Comparison of Tail Probability Estimators for 

Flood Frequency Analysis, Journal of Hydrology, 151(2-4), pp.343 –363. 

Morrison T., Bhatia A. and Desjardins G. (2000a), Development and Remote Access of an 

In-Line Inspection and Corrosion Growth Database. Calgary, Alberta, Canada: IPC00-

0051, International Pipeline Conference. October 1-5. 1-6. 

 

Morrison T., Mangat N., Desjardins G, and Bhatia A. (2000b), Validation of an In-Line 

Inspection Metal Loss Tool, ASME Pipeline Technology, V,  pp.839-842. 

 

Mousselli A.H. (1981), Offshore Pipeline Design, Analysis and Methods, Powell Publishing 

Company, pp. 6-7. 

 

Muhlbauer, W.K. (2004), Pipeline Risk Management Manual: Ideas, Techniques, and 

Resources, Burlington, Mass.: Elsevier, 3rd Edition. 

 

Nestleroth J. B., Battelle B.T. A. (1999), Magnetic Flux Leakage (MFL) Technology for 

Natural Gas Pipeline Inspection. USA: A Report for the Gas Research Institute (GRI), 

 

Noor, N.M (2002), Reliability-Based Integrity Assessment of Offshore Pipeline Subjected to 

Internal Corrosion, Universiti Teknologi Malaysia, Master Thesis. 

 

Noor, N.M. and Wolfram, J. (2003) - A Generic Risk-Based Assessment Procedure For 

Deteriorating Structures - A Conceptual Discussion, The First Scottish Conference for 

Postgraduate Researchers in the Built & Natural Environment (PRoBE), Glasgow 

Caledonian University, City Campus, Glasgow, Scotland, November 18 – 19. 

 

O’Grady II T.J., Hisey D.T. and Kiefner J.F. (1992a), Method for Evaluating Corroded Pipe 

Addresses Variety of Patterns, Oil and Gas Journal,  90, pp.77-82. 

 



 135

O’Grady II T.J., Hisey D.T. and Kiefner J.F. (1992b), A Systematic Method for The 

Evaluation of Corroded Pipelines, ASME Pipeline Engineering, 46,  pp.27-35. 

 

Onoufriou T. and Frangopol M.D. (2002), Reliability-based Inspection Optimization of 

Complex Structures: A Brief Retrospective,  Computers & Structures, Vol. 80, Issue 

12, May 2002, pp 1133-1144   

Onyekpe B.O. And Dania L.P. (1999), Flowline Corrosion Problems: A Case Study of Shell 

Petroleum Development Company, Nigeria, Anti-Corrosion Methods and Materials, 

Volume 46, Number 3, Pp. 205–211 

 

Onoz B. and Bayazit M. (2001), Effect of the Occurrence Process of the Peaks Over 

Threshold on the Flood Estimates, Journal of Hydrology,  244.  pp.86-96. 

 

OPS (1996), Annual Report on Pipeline Safety, Washington DC: US Department of 

Transportation Office of Pipeline Safety.  

 

Orisamolu, I.R., Liu Q. and Chernuka M.W. (1995), Probabilistic Residual Strength 

Assessment of Corroded Pipelines, The Hague, Netherlands: ISOPE 1995, Proceedings 

of the 5th  International Offshore and Polar Engineering Conference. June 11-16,  IV, 

pp.221-228. 

 

OTH 551 (1996), PARLOC 96, The Update of Loss of Containment Data for Offshore 

Pipelines, Offshore Technology Report prepared by the Robert Gordon University for 

the Health and Safety Executive (HSE), 

 

Paik J.K. (2004), Corrosion Analysis of Seawater Ballast Tank Structures, International 

Journal of Maritime Engineering, Vol. 146, Part A1, pp.1-12. 

 

Paik J.K. and Thayamballi A.K. (2002), Ultimate Strength of Ageing Ships, Journal 

Engineering for the Maritime Environment, Vol. 216, pp. 57-77. 

 



 136

Paik J.K, Thayambali A.K., Park Y.I. (2004), A Time-dependent Corrosion Wastage Model 

for Seawater Ballast Tank Structures of Ships, Corrosion Science, Vol.46, Issue 2, 

pp.471-486. 

 

Peabody, A.W. (1967), Control of Pipeline Corrosion. Houston: National Association of 

Corrosion Engineers, pp.145-192. 

 

Rubinstein R. Y. (1981), Simulation and the Monte Carlo Method, John Wiley and Sons, 

New York. 

 

Rackwitz R. (2000), Reliability Analysis-Past, Present and Future, Notre Dame: 8th Specially 

Conference on Probabilistic Mechanics and Structural Reliability. July 13-18. 

 

Ritche D., Voermans C.W.M., Larsen M.H. and Vrancix W.R. (1998), Probabilistic Tools for 

Planning of Inspection and Repair of Corroded Pipelines, Lisbon: OMAE 1998, The 

17th International Conference on Offshore Mechanics and Arctic Engineering. Paper-

0901. 

 

Robert B.A. (1996), The New Weibull Handbook. Second Edition: North Palm Beach.  

 

Rodriguez III, E.S. and Provan, J.W. (1989), Part II , Development of a General Failure 

Control System for Estimating the Reliability of Deteriorating Structures, Corrosion 

Science, 45(3),  pp.193-206. 

 

Rosen, (2000), Rosen Inspection Technologies (M), Exhibition Brochure. 

 

Rosen H., Schoenmaker H.and Sundag G.R. (1995), On-Line Pipeline Inspection, New 

Developments. Houston, Texas: The Pipeline Pigging Conference, Pipe Line and Gas 

Industry. Pipes and Pipeline International, February 13-16.  

 

Ross S.M. (2000), Introduction To Probability Models, 7th  Edition, USA: A Harcourt 

Science And Technology Company.  



 137

 

Ross S.M. (2001), A First Course In Probability, Sixth Edition. Upper Saddle River: Prentice 

Hall, Inc. 

 

Sarveswaran V., With J.W. and Blockley D.I. (1998), Reliability of Corrosion-Damaged 

Steel Structures Using Interval Probability Theory, Structural Safety, 20, pp.237-255. 

 

Scaft P.A. and Laycock P.J. (1994), Application of Extreme Value Theory in Corrosion 

Engineering, Journal of Research of The National Institute of Standard and 

Technology, Vol.99, No.4, July-August, pp.313-320 

 

Scott D.W. (1992), Multivariate Density Estimation. New York: John Wiley & Sons.  

 

Shi P. and Mahadevan S. (2000), Probabilistic Corrosion Fatigue Life Prediction, Notre 

Dame: 8th Specially Conference on Probabilistic Mechanics and Structural Reliability. 

July 13-18. 

 

Smith G. (1992), Pigging Velocity and Variable Pig Speed, Amsterdam: Pipeline Pigging 

and Integrity Monitoring Conference, 28th September-2nd October. 

 

Smith, J. (1991), Estimating the Upper Tail of Good Frequency Distributions, Water 

Resources, 23(8), pp.1657–1666. 

 

Snedecor G.W. and Cochran W.G. (1989), Statistical Methods  8th  Edition: Iowa State 

University Press.  

 

Sotberg T., Moan T., Bruschi R., Guoyang J. and Mork K.J. (1997), The SUPERB Project , 

Recommended Target Safety Levels for Limit State Based Design of Offshore Pipelines, 

ASME Pipeline Technology, V,  pp.71-77.  

 

Spec 5L (1991), Specification For Line Pipe, 39th Edition, American Petroleum Institute. 



 138

 

Stress Subsea Inc. (2005), Deep Water Response to Underwater Pipeline Emergencies – DW 

RUPE Phase 1 – Final Report, Houston, Texas. 

 

Taylor L.D. (1974), Probability and Mathematical Statistics. Harper and Row Publishers.  

 

Thiruvengadam, A. (1972), Corrosion Fatigue at High Frequencies and High Hydrostatic 

Pressures. Stress Corrosion Cracking of Metals-A State of the Art, Philadelphia: 

ASTM Special Technical Publication.  

Thoft-Christensen P. (2002), Deterioration of Concrete Structures, First International 

Conference on Bridge Maintenance, Safety and Management, IABMAS 2002, 

Barcelona, 14-17 July. 

 

Tiratsoo J.N.H. (1992), Pipeline Pigging Technology, 2nd Edition: Gulf Publishing Company 

and Scientific Surveys Limited,   

 

Vajo J. J., Wei R., Phelps A.C., Reiner L., Herrera G.A., Cervantes O., Gidanian D., 

Bavarian B. and Kappes C.M. (2003), Application of extreme value analysis to crevice 

corrosion, Corrosion Science, Vol. 45, Issue 3, March 2003, pp 497-509. 

 

Vu K.A.T and Stewart M.G. (2000), Structural Reliability of Concrete Bridges Including 

Improved Chloride-Induced Corrosion Models, Structural Safety, Vol.22, Issue 4, 

2000, pp.313-333 

 

Wang G., Spencer J., Elsayed T. (2003), Estimation of Corrosion Rates of Structural 

Members in Oil Tankers, Proceedings of OMAE 2003, 22nd International Conference 

on Offshore Mechanics and Arctic Engineering, Cancun, Mexico 

 

West J.M. (1986), Basic Corrosion and Oxidation, 2nd  Edition: Ellis Harwood Limited.  

 



 139

Williamson III G.C. and Bohon W.M. (1994), Evaluation of Ultrasonic Intelligent Pig 

Performance , Inherent Technical Problems as a Pipeline Inspection Tool, Pipes and 

Pipelines International, 39, pp.20-34. 

 

Wolfram J. and Yahaya N. (1999), On the Effect of Some Uncertainties on the Structural 

Integrity Assessment of Corroding Pipelines, St Johns, Newfoundland, Canada: 

Proceedings of 17th International Conference Offshore Mechanics and Arctic 

Engineering. Paper OMAE-99-6032,  11-16th July, pp.1-10. 

 

Worthingham R.G., Fenyvesi L.L., Morrison T.B. and Desjardin G. (2002), Analysis of 

Corrosion Rates on A Gas Transmission Pipeline, Pipeline And Gas Technology 

Magazine, Nov/Dec 2002 issue, pp. 45-51. 

Worthingham R., Morrison T. and Desjardins G. (2000), Comparison of Estimates from a 

Growth Model 5 Years after the Previous Inspection, ASME Pipeline International, V, 

pp.895-900. 

 

Yahaya N. (1998), Through-Life Reliability of Corroded Pipelines. Edinburgh, United 

Kingdom: Presented at the Health and Safety Executive (HSE) Offshore Engineering 

Research Seminar and Exhibition. 21 August. 

 

Yahaya N. (1999), The Use of Inspection Data in the Structural Assessment of Corroding 

Pipelines, Heriot-Watt University, Edinburgh: PhD Thesis. 

 

Yahaya, N. (2000), Risk-Based Method in Pipelines Maintenance Optimisation. Hanover, 

Germany: Proceedings of the Global Dialogue World Exposition (EXPO2000), Science 

and Technology, Thinking the Future. July 11-13. 

 

Yahaya N. and Wolfram, J. (1999 ), The Application of Peaks-Over-Threshold Approach on 

the Structural Reliability of Corroding Pipeline, Jurnal Teknologi, 30,  pp.51-68. 

 

 


	LIST OF CONTENTS
	TITLE
	PAGE
	ABSTRACT
	CHAPTER 2

	STATISTICAL ANALYSIS OF PIGGING DATA
	CONCLUSION
	6.1 Conclusions
	LIST OF FIGURES
	The flow chart of statistical analysis on matched defects
	Corrosion rate exceedance distribution
	Corrosion rate, CRC98-2000 plotted against defect depth dC-2000 for current data with linear regression line
	LIST OF TABLES
	A typical presentation of pigging data
	Comparison of absolute distance
	Example of matched data from Pipeline C
	Corrosion growth rate for defect depth
	Corrected corrosion growth rate for defect depth using Zero-defect correction method


