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Abstract: Due to the expensive operation of the activated sludge process and more stringent effluent requirements of 
wastewater treatment plant (WWTP), the wastewater treatment operator has been forced to find an alternative to improve the 
current control strategy, especially for those operating using an activated sludge system. The study aims to reduce the energy 
usage of a WWTP and to increase the effluent quality to meet the requirements of state and national laws by using the aeration 
control technique. The goals are achieved by varying the dissolved oxygen concentration in the benchmark plant's fifth tank 
according to the real ammonium measurement, a technique known as Ammonium-based aeration control (ABAC), which 
produced less nitrogen, resulting in better effluent and lower energy consumption. The simulation model Benchmark 
Simulation Model No. 1 (BSM1) was used to analyze ABAC in this study. The neural network (NN) model is used to design 
the ABAC controller, and simulation results were compared to the Proportional Integral (PI) controller of the BSM1 and PI 
ABAC control configurations. A dropout layer was added during the training process to improve neural network generalization. 
The dropout layer in the NN ABAC has improved the performances in terms of total nitrogen effluent violations by 4 percent 
less than the PI-ABAC and by 36 percent less than the PI. The NN ABAC LM dropout has been proven to be more effective 
in terms of energy efficiency by significantly reduced by 25 percent, effluent quality by successfully improved by 1 percent, 
and successfully reduced the total overall cost index by 5 percent when compared to PI-ABAC control. The study has illustrated 
that the NN ABAC could be used to improve the performance of the activated sludge system.  
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1. INTRODUCTION 
Wastewater treatment plant (WWTP) is the key 
infrastructures for protecting public health by preserving 
water resources and protecting the environment for a 
sustainable future. It is frequently defined as a complex 
system with nonlinear dynamics and has strong 
interactions with the multivariable system [1]. The influent 
of the WWTP exhibits oscillating behavior which subjects 
to large disturbances in the flowrate and uncertainties 
concerning the composition of the influent, thus making 
them hard to control [2]. 

Studies have shown that the energy consumption in 
biological systems such as the ASP, biological trickling 
filters, and membrane bioreactors can be curbed through 
good control of the aeration system. The issue of energy 
consumption has been investigated by various researchers 
and the findings suggest that the aeration section which is 
needed in the WWTP to detract nitrogen and natural or 
inorganic carbon in the biological process, contributes to 
50-90% of the overall energy requirement of the WWTP 
[3]–[5].  

In the last decade, there have been various studies 
investigating the effectiveness of various controller 
designs utilizing dissolved oxygen (DO) control in 

lowering the aeration cost. This control configuration is the 
highlight during that time due to the availability of a DO 
sensor probe that can continuously measure the DO 
concentration in the tank. The fundamental of using the 
DO sensor probe is to control the DO supply according to 
the oxygen demand of the microorganism in the tank. 
However, this solution has weakness due to the difficulty 
in getting the exact value of the actual oxygen demand by 
the microorganism at a specific time, thus, most of the 
proposed DO control strategies implemented an elevated 
DO set point to avoid nitrification failure. The DO control 
strategy has been extensively studied and many viable 
solutions have been developed and proposed, for example, 
model predictive control (MPC) [6], [7], Proportional 
Integral Derivative (PID) [1], [8], [9], fuzzy and neural 
network (NN) control [10].  

However, even with the DO control strategy, the 
aeration cost issues persist as DO control requires aerators 
and turbines which are operated by electrically powered 
motors that add extra cost to the system. This calls for a 
paradigm shift in the choice of methodology to solve the 
problems of energy consumption and the cost of aeration 
control. This issue was explored and it is suggested that the 
aeration process can be regulated either using the aeration 
concentration control or tweaking the DO setpoint level 
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corresponding to the ammonium (SNH) concentration in the 
effluent [11]. During the last ten years, the ion-selective 
electrodes (ISEs) SNH sensor probe has become available 
for online process. This is developing technology and has 
led to the introduction of ammonium-based aeration 
control (ABAC). 

ABAC is an approach that utilizes the SNH concentration 
level in the effluent flow to decide on the DO set point for 
the controller of the aerated zone. The ABAC has a 
variation of the DO concentration based on the ammonia 
(SNH) concentration in the effluent and the aeration 
intensity is changed according to the process requirement 
which helps to lessen the energy consumption without 
raising the effluent SNH load. 

ABAC is a control strategy that uses SNH as a response 
variable in addition to or in place of DO. ABAC has been 
introduced to overcome some of the inherent limitations of 
the DO control strategy and it is used mainly to restrict 
aeration and shrink effluent SNH peaks. Several techniques 
have been recently proposed regarding ABAC, ranging 
from a conventional Proportional Integral (PI) ABAC 
control [11]–[15] to advanced MPC ABAC [16]–[18]. 
From the literature, it is observed that most pilot or real 
plants are using the PI control in their ABAC 
configurations. The PI controllers used are of decentralized 
configuration. This configuration is favorable because 
there is no need to deal with the coupling problem in a 
multi-input multi-output (MIMO) system. However, a PI 
controller is notorious for its susceptibility to disturbances 
and/or variations in the state of the operation. 

On the other hand, advanced control scheme like MPC 
is proven to be able to produce better results compared to 
PI controllers but MPC is also known to be 
computationally complex [19] and it is difficult to be 
applied online in a real plant. All the studies in the 
literature indicated that the MPC is implemented in 
Benchmark Simulation Model No. 1 (BSM1) and BSM2. 
Another observation into the recent research trend is the 
emphasis on aeration energy cost problem but less towards 
the pragmatic benefits brought by ABAC control strategy 
on effluent quality which has not been extensively 
explored by researchers. Some of the recent proposals are 
summarized in Table 1. 

Considering the advantages and disadvantages levied 
by these publications, an alternative control strategy that is 
more streamlined with lower complexity is desirable 
especially if the aim is to apply the controller in the real or 
pilot plant. The study aims to develop a direct feedback 
ABAC control of a biological WWTP that focuses on the 
reduction in the number of violations in total nitrogen (Ntot) 
and SNH concentration, which are considered the two most 
important effluent pollutants. Direct feedback 
configuration will only require one controller to control the 
airflow to the basin. With this aim in mind, a new NN-
ABAC is proposed to be applied in the BSM1. NN is 
chosen due to its simplicity and non-linear approximation 
ability. In this study, a two-input single-output (TISO) 
system is used. A strong coupling problem might arise as 
the SNH and DO concentration are applied as separate 
inputs for the system, but the proposed NN method will 
function as a decoupling control of the MIMO system 

because it has a commendable nonlinear approximation 
ability. 

Table 1. Summary of recent research trend using ABAC. 

 Author Methods Results 

PI
 A

B
A

C
 

[13] Feedback PID 
controller for 
ABAC to adjust 
DO in all aeration 
basins and zones 

Decrease in 
supplemental 
carbon used for 
denitrification by 
53% and overall 
decrease in 
energy 
consumption by 
10% 

[14] DO cascade, 
ABAC and 
combination of 
ABAC with the 
control of nitrate 
and return 
activated sludge 
recycles 

ABAC 
combination is 
the most cost-
saving methods 
(reduction of 
about 43%) 

M
PC

 A
B

A
C

 
[17] Fuzzy Control and 

MPC 
(Feedforward 
ABAC) 

Total Nitrogen 
(Ntot) violations 
reduced by 
11.04% and 
100% elimination 
of SNH violations  

[18] Risk detection of 
the effluent 
violation using 
artificial NN, fuzzy 
controller to 
improve 
denitrification / 
nitrification and 
MPC to improve 
DO tracking. 
 

Ntot violations 
reduced up to 
97.63% and SNH 
violations 
reduced up to 
68.29% (Ntot 
violation 
strategy) 
Ntot violations 
reduced up to 
78.81% and 
100% elimination 
of SNH violations 
(SNH violation 
strategy) 

 

2. METHODOLOGY  
One proposed method of using NN in nonlinear dynamic 
process control is to adjust the NN structure. The structure 
can be the number of hidden neurons and the parameters 
like node weights. In the previous section, the NN structure 
is fixed. Whereby in this section, the dropout layer is added 
to the NN architecture during training phases so that the 
NN structure can be adjusted. The literature study has 
confirmed that the non-fixed structure of NN has better 
performances in terms of computation time and testing 
error.  

Figure 1 shows the flowchart of the NN training process 
with the additional dropout layer. From this flowchart, the 
dropout layer algorithm is added before the weight and 
input multiplication. Dropout lets the NN learn only a 
fraction of the weights in the network in each training 
iteration. What happened in the dropout layer is the 
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dropout mask is generated which is according to the 
probability set by the user and then applied to the input. 
Finally, a multiplication between input and weight is based 
on this new layer configuration. The other steps after the 
multiplication process are the same as in the previous 
section. 

 
Figure 1. Flowchart of the NN training process with a 
dropout layer 

The feedforward operation of a standard NN is shown 
in Equations (1) and (2). The dropout network is shown in 
Equations (3) to (6). 

 𝑧"
($%&) = 𝑤"

($%&)𝑦$ + 𝑏"
($%&)  (1) 

 y.
(/%&) = f z.

(/%&)   (2) 

 r3
(/)~Bernoulli(p)  (3) 

 𝑦($) = 𝑟($) ∗ 𝑦($)  (4) 

 𝑧"
($%&) = 𝑤"

($%&)𝑦($) + 𝑏"
($%&)  (5) 

 𝑦"
($%&) = 𝑓 𝑧"

($%&)   (6) 

Figure 2 illustrates how the mask is done in the dropout 
layer. It is a random choice, based on Bernoulli(p). 

 
Figure 2. The topological structure of the dropout layer 
feed forward NN 

3. RESULT 
To verify the result, a comparison between NN-ABAC 
with LM dropout algorithm, PI, and PI-ABAC is 
performed. 

The effluent quality limit comparison is illustrated in 
Table 2 for dry weather. In this table, the Ntot limit in NN-
ABAC with the dropout is better by 3 percent when 
compared to PI-ABAC, and by 9 percent better compared 
to PI.  

Table 2. The effluent quality limit in dry weather 

Effluent 
average PI PI-ABAC 

NN-
ABAC 

LM 
Dropout 

SNH  

(gN.m-3)	
2.4783	 2.5481	 2.8869	

TSS 

(gSS.m-3)	
13.0248	 13.0244	 13.0233	

Ntot 

(gN.m-3)	
16.8908	 15.8626	 15.3938	

CODt 

(gCOD.m-3)	
48.2470	 48.2736	 48.2876	

BOD5 

(gBOD.m-3)	
2.7587	 2.7654	 2.7686	

 
The results illustrated in Table 2 can be furthered detail 

up using data on effluent violation as shown in Table 3. 
According to the findings, the NN-ABAC using LM-
dropout reduces the percentage of operating time during 
which Ntot violations occurred by 4 percent less than the 
PI-ABAC, and by 36 percent less than the PI. 
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Table 3. The effluent violations under dry influent 

 

PI 
PI-

ABAC 

NN-
ABAC 

LM 
Dropout 

Ntot violations (% of 
operating time) 

17.86 11.90 11.46 

Ntot violations 
(Occasions) 

7 5 5 

SNH violations (% of 
operating time) 

16.82 16.52 16.67 

SNH violations 
(Occasions) 

5 5 5 

 
The results can be further depicted using effluent 

performances over one week simulation. Ntot violations are 
depicted in Figure 3 and SNH violations are shown in Figure 
4. 

Error! Reference source not found.

 
Figure 3. Ntot performances of one-week simulation 

 
Figure 4. SNH performances of one-week simulation 

Figure 3 clearly illustrates that Ntot violation is 
remarkably reduced in NN-ABAC LM Dropout, despite 
the fact that the number of times Ntot violation exceeds the 
allowable limit is the same as in PI-ABAC. The differences 
are most noticeable between days 12 and 14 of the 
evaluation. The SNH performance is almost identical to the 
PI-ABAC, as illustrated in Figure 4. 

The average effluent quality (EQ), aeration energy 
(AE), and total overall cost index (OCI) consumed in the 

ASP process are displayed in Table 4. 

Table 4. The comparison of EQ, AE, and OCI in dry 
weather 

 
The results reveal that employing the NN-ABAC LM 

dropout increases the EQ marginally over PI-ABAC but 
decreases it by roughly 3 percent when compared to PI. In 
terms of AE, the NN-ABAC LM dropout has the lowest 
score, which is 25 percent lower than PI-ABAC and 23 
percent lower than PI. Finally, as compared to PI, the 
overall OCI has decreased by 4 percent, and by 5 percent 
when compared to PI-ABAC. The best control technique 
is the one with the lowest OCI, which is the NN-ABAC 
LM-Dropout in this study. 

4. CONCLUSION 
The study has illustrated that the NN ABAC could be 
employed to increase the performance of the activated 
sludge system. The NN-ABAC utilizing LM-dropout 
reduces the proportion of operating time during which total 
nitrogen violations occur by 4 percent, and by 36 percent 
compared to the PI-ABAC. When compared to the PI-
ABAC control, the NN ABAC has been shown to be more 
effective in terms of energy efficiency, effluent quality, 
and overall cost index. 
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