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ABSTRACT

Ensuring accurate estimation of evaporation isweighty for effective planning and judiciousmanage-
ment of available water resources for agricultural practices. Thus, this work enhances the potential
of support vector regression (SVR) optimized with a novel nature-inspired algorithm, namely, Slap
Swarm Algorithm (SVR-SSA) against Whale Optimization Algorithm (SVR-WOA), Multi-Verse Opti-
mizer (SVR-MVO), Spotted Hyena Optimizer (SVR-SHO), Particle Swarm Optimization (SVR-PSO), and
Penman model (PM). Daily EP (pan-evaporation) was estimated in two different agro-climatic zones
(ACZ) in northern India. The optimal combination of input parameters was extracted by apply-
ing the Gamma test (GT). The outcomes of the hybrid of SVR and PM models were equated with
recorded daily EP observations based on goodness-of-fit measures along with graphical scrutiny.
The results of the appraisal showed that the novel hybrid SVR-SSA-5 model performed superior
(MAE = 0.697, 1.556, 0.858mm/day; RMSE = 1.116, 2.114, 1.202mm/day; IOS = 0.250, 0.350, 0.303;
NSE = 0.0.861, 0.750, 0.834; PCC = 0.929, 0.868, 0.918; IOA = 0.960, 0.925, 0.956) than other mod-
els in testing phase at Hisar, Bathinda, and Ludhiana stations, respectively. In conclusion, the hybrid
SVR-SSA model was identified as more suitable, robust, and reliable than the other models for daily
EP estimation in two different ACZ.
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1. Introduction

Evaporation is defined as the conversion of liquid water

to water vapor due to the pressure difference between the

earth-atmosphere system (Kim et al., 2015). Generally,

the term evaporation states the loss of water in the form

of vapors from the soil’s surface. Pan-evaporation (EP)

is an essential component of the hydrological cycle and

is extensively used in scheming irrigation projects and

provincial water resources (Azorin-Molina et al., 2015;

Burn & Hesch, 2007). The evaporation rate is extremely

high in arid and semiarid regions. Therefore, the accu-

rate estimation of EP is vital for sustainable planning

andmanagement of water resources, particularly for irri-

gation practices, lakes and reservoir operations, water

CONTACT Anurag Malik anuragmalik_swce2014@rediffmail.com

budgeting, and studies related to hydrological modeling

(Kisi &Heddam, 2019;Malik et al., 2017, 2020a;Moazen-

zadeh et al., 2018; Rezaie-Balf et al., 2019; Seifi& Soroush,

2020). In addition, the system of agricultural practices

like crop planning/ simulation and irrigation scheduling

largely depends on the exact assessment of evaporation.

Generally, two approaches, (i) direct (i.e. pan-

evaporimeter) and (ii) indirect (i.e. empirical or semi-

empirical equations), are used for measuring the evap-

oration (Malik et al., 2020c). The direct EP estimation

using Class A pan-evaporimeter has limited spatial cov-

erage because of practical and instrumental problems

(Shiri et al., 2014; Wang, Kisi, et al., 2017). In contrast,

the application of the indirect EP estimation method,
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based on the relationship of ET with various climatic

parameters, is often restricted due to data availability

and climate variability (Ghaemi et al., 2019; Majidi et al.,

2015). Considering the limitation of both the methods,

the machine learning (ML) technique has been used

in recent years as an alternative, such as SVR (support

vector regression), MARS (multivariate adaptive regres-

sion splines), M5T (M5Tree), ELM (extreme learning

machine), RF (random forest), MLP (multi-layer percep-

tron), GEP (gene expression programming), & ANFIS

(adaptive neuro-fuzzy inference system). Besides, their

hybrids with numerous algorithms enthused from nature

have been effectively employed in pan-evaporation mod-

eling (Ashrafzadeh et al., 2019; Guan et al., 2020; Seifi

& Soroush, 2020; Shabani et al., 2020; Wu et al., 2020;

Yaseen et al., 2020a).

Ghorbani et al. (2018) evaluated hybrid MLP-QPSO

(quantum-behaved particle swarm optimization

algorithm) against the hybridMLP-PSO and simpleMLP

to forecast the daily EP rate at Talesh station of Iran.

Results demonstrate that the hybrid MLP-QPSO pro-

vides better estimates than the other models. Feng et al.

(2018) estimated monthly EP in temperate continental,

temperate monsoon, mountain plateau, and subtropical

monsoon zones of China utilizing ELM, ANN-PSO (arti-

ficial neural network), and ANN-GA (genetic algorithm)

models. Results reveal that the ELMmodel outperformed

the other models in all four climatic zones. Keshtegar

et al. (2019) explored the potential of the SVR-RSM

(response surface method) against the RSM, SVR, and

MLP models for modeling monthly EP at six places in

northeast Algeria. They found a better performance of

the hybrid SVR-RSM model over other models. Allawi

et al. (2020), Patle et al. (2020), Majhi et al. (2020), and

Sebbar et al. (2019) applied various SCT (soft comput-

ing techniques) in different regions for predicting pan-

evaporation. Their results endorse the feasibility of SCT.

Previous studies endorsed the feasibility of SCT in

estimating EP from climate data. The studies also high-

lighted the scope of improvement of EP estimationmeth-

ods. Evaporation is one of the most vital but complex

meteorological variables. EP depends on several climatic

factors, including temperature, solar radiation, humidity,

sunshine hour, wind velocity, vapor pressure deficit, and

albedo (Majhi & Naidu, 2021; Yaseen et al., 2020a). The

influencing factors also depend on each other and var-

ious external factors (Wang et al., 2015). For example,

vapor pressure deficit depends on air moisture content

and air moisture-holding capacity, which again depends

on air temperature. Therefore, the periodic variations

and complexities of all influencingmeteorological factors

are integrated with EP (Wang et al., 2017). The dynam-

ics of these meteorological variables and their complex

interactions make ET highly complex and nonlinear. The

EP data often show high randomness and many outliers

due to the large fluctuation of climatic variables (Su et al.,

2015). Owing to the nonlinearity, complexity, and ran-

domness in EP data, still need improvement inML-based

methods for precise estimation of ET.

One of the major challenges in EP estimation from

meteorological variables using the ML algorithm is

selecting input variables. The EP influencing variables

significantly with time due to annual, seasonal, and ran-

dom fluctuations of different meteorological variables

(Pour et al., 2020). Thus, selecting the most appropriate

variable for reliable EP estimation is a difficult task. The

practice of the GT (Gamma test) for the selection of best

inputs for ML models has received extensive attention in

recent years (Ashrafzadeh et al., 2020; Das et al., 2019;

Malik et al., 2018, 2020a, 2020c; Mohammadi et al., 2018;

Singh et al., 2018). Rashidi et al. (2016) forecasted daily

suspended sediment load (SSL) by optimizing the SVM

(support vector machine) model with two kernel func-

tions i.e. Radial Basis Function (RBF), and Polynomial

in conjunction with GT in Korkorsar river (Iran). The

GT and correlation analysis was performed to nominate

the optimal combination of input for SSL modeling. The

results of the investigation show that the GT-SVM with

RBFkernel outperformed the othermodels. Choubin and

Malekian (2017) applied ANN and ARIMA (autoregres-

sive integrated moving average) models for predicting

monthly groundwater level in the Shiraz basin, Iran. The

optimal input combination and length of training and

testing phases were decided by employing GT and M-

test. They found better feasibility of the ARIMA model

than the ANNmodel. They also reported that the GT can

identify the most significant input variables with mini-

mum effort and time for evaporation and SSL modeling.

The SVR has good generalization capability than

many other ML algorithms (Malik et al., 2020d; Panahi

et al., 2020). It is also highly robust to outliers (Borji et al.,

2016; Qasem et al., 2019). Therefore, it is expected that

SVR can provide a better estimation of pan-evaporation,

which is highly complex and contains a large number of

outliers.However, the performance of SVR, like otherML

algorithms, depends on the optimization of its hyperpa-

rameters (Guan et al., 2020). The Salp swarm algorithm

(SSA) is a recently developed metaheuristic optimizer

conceptualized following the salps swarmingmechanism

(Mirjalili et al., 2017). The SSA has a powerful neighbor-

hood search capability, making it highly efficient in find-

ing global optima in a wide search space (Yaseen et al.,

2020b). Therefore, a hybrid SVRmodel coupledwith SSA

was proposed for the enhancement of daily EP prediction

capability in this research. The performance of the SVR-

SSA was compared against the SVR-WOA, SVR-MVO,



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1077

SVR-SHO, SVR-PSO, and Penman model to evaluate the

pan-evaporation prediction accuracy enhancement using

the newly proposed algorithm. According to the authors’

knowledge, so far, no study attempts to estimate pan-

evaporation using the SVR model hybridized with the

state-of-the-art metaheuristic optimization algorithm,

SSA. The attempt to improve the prediction accuracy of

pan-evaporation, one of the most complex but crucial

hydrological variable, would contribute to the operation

management of agricultural water resources in the con-

text of growing water stress in agriculture due to global

environmental changes.

2. Study location and climatic data collection

Three meteorological stations i.e. Hisar, Bathinda, and

Ludhiana situated in two different agro-climates zones

(ACZ) were considered under the present study. The

detailed specification of geographical coordinates and

climatic characteristics of study locations are listed in

Table 1. The Bathinda and Ludhiana stations are placed

in Punjab State, while Hisar station is located in Haryana

State, India (see Figure 1). The mean annual rainfall is

about 470, 436, and 660mm at Hisar, Bathinda, and Lud-

hiana, respectively. The daily recorded climatic param-

eters of 4-years for Bathinda, Ludhiana, and Hisar Sta-

tions include pan-evaporation (EP, mm), solar radiation

(Rs, MJ/m2/d), wind speed (Us, km/h), maximum and

minimum relative humidity (RHmax & RHmin, %), and

minimum and maximum temperatures (Tmin and Tmax,

°C) were obtained from meteorological observatories set

up on Punjab Agricultural University-Regional Research

Station (PAU-RRS), Bathinda, School of Climate Change

and Agro-meteorology, PAU, Ludhiana, and Chaudhary

Charan Singh Haryana Agricultural University, Hisar.

The statistical summary i.e. standard deviation

(XSTD), skewness (XSKW), kurtosis (XKUR), minimum

(XMIN), maximum (XMAX), and average (XAVG) of Tmin,

Tmax, RHmax, RHmin, Us, Rs and EP for entire period

are given in Table 2. It can be seen from Table 2, the

climatic parameters ranges from Tmin = 0.8–32.0 °C,

Tmax = 9.2–47 °C, RHmax = 20.0–100%, RHmin = 6.0–

97.0%, Us = 0.0–16.6 km/h, Rs = 4.9–28.0 MJ/m2/d,

and EP = 0.0–20.0mm/day at Bathinda, Tmin = 0.6–

34.5 °C, Tmax = 8.0–45.8 °C, RHmax = 22.0–100%,

Table 1. Location specifications and climatic characteristics for
study locations.

Station Latitude, N Longitude, E
Eelvation,

m
Agro-climatic

zone Period

Hisar 29° 10′ 00′′ 75° 46′ 00′′ 215 Semi-arid 2011–2014
Bathinda 30° 17′ 00′′ 74° 58′ 00′′ 211 Semi-arid 2016–2019
Ludhiana 30° 54′ 00′′ 75° 48′ 00′′ 247 Sub-humid 2016–2019

Table 2. Statistics ofmeasured daily climatic parameters at study
stations.

Climatic parameters

Station/
dataset

Statistical
factors

Tmin

(°C)
Tmax

(°C)
RHmax

(%)
RHmin

(%)
Us

(km/h)
Rs

(MJ/m2/d)
EP

(mm)

Hisar

Entire
(2011–2014)

XMIN −1.500 8.000 25.000 9.000 0.000 5.000 0.200

XMAX 32.000 46.100 100.000 98.000 22.100 41.100 19.800

XAVG 16.789 30.768 83.029 46.666 4.851 17.378 4.445

XSTD 8.652 7.786 15.459 18.685 3.033 5.443 3.076

XSKW −0.193−0.437 −1.151 0.597 1.213 −0.200 1.084

XKUR −1.273−0.473 0.603−0.263 1.645 −0.574 1.084

Bathinda

Entire
(2016–2018)

XMIN 0.800 9.200 20.000 6.000 0.000 4.900 0.000

XMAX 32.000 47.000 100.000 97.000 16.600 28.000 20.000

XAVG 17.211 31.048 79.778 49.819 2.372 15.816 6.623

XSTD 8.185 7.662 14.595 17.554 2.515 5.874 4.490

XSKW −0.251−0.431 −1.084 0.002 2.052 −0.135 0.700

XKUR −1.334−0.529 0.858−0.442 5.182 −0.942 −0.354

Ludhiana

Entire
(2016–2018)

XMIN 0.600 8.000 22.000 5.000 0.000 4.800 0.000

XMAX 34.500 45.800 100.000 98.000 18.000 29.200 16.000

XAVG 18.062 30.076 80.979 46.618 3.637 16.723 4.327

XSTD 8.072 7.467 16.068 18.914 2.551 6.602 2.968

XSKW −0.198−0.421 −1.249 0.285 1.561 −0.013 0.993

XKUR −1.323−0.521 0.641−0.434 3.264 −0.974 0.292

where, XMIN , XMAX , XAVG , XSTD , XSKW , XKUR are the minimum, maximum, average,
standard deviation, skewness, and kurtosis of climatic parameters.

RHmin = 5.0–98.0%, Us = 0.0–18.0 km/h, Rs = 4.8–

29.2 MJ/m2/d, and EP = 0.0–16mm/day at Ludhi-

ana, and Tmin = −1.5–32.0 °C, Tmax = 8.0–46.1 °C,

RHmax = 25.0–100%, RHmin = 9.0–98.0%, Us = 0.0–

22.1 km/h, Rs = 5.0–41.1 MJ/m2/d, and EP = 0.2–

19.8mm/day at Hisar, respectively. Also, the XSKW was

noted negative, and positive, while platykurtic and lep-

tokurtic feature were recorded through XKUR at study

places.

The obtained daily climatic data of 4-years was

separated into two groups (i) training group (75%:

01–01–2016–31–12–2018 for Bathinda and Ludhiana

stations, and 01–01–2011–31–12–2013 for Hisar sta-

tion), and (ii) testing group (25%: 01–01–2019–31–12–

2019 for Bathinda and Ludhiana stations, and 01–01–

2014–31–12–2014 for Hisar station) to enhance the

proposed models.

3. Methodology

3.1. Gamma test

The GT was employed to identify the most appropriate

input combinations that influence the evaporation rate

at three study locations. GT compute the MSE (mini-

mum square error) in continuous nonlinear models with

unseen observations and was first introduced by Stefáns-

son et al. (1997). Present-day, the extensive application of

GT has been found in water resources engineering (Borji

et al., 2016; Choubin & Malekian, 2017; Malik et al.,
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Figure 1. Geographical specifications of study stations, India.

2020c, 2020a; Seifi & Riahi, 2020; Singh et al., 2018). The

association among the inputs (x) and output (y) variables

is defined by Eq. (1):

y = Gx + Ŵ (1)

In which, G and Ŵ represent the gradient and intercept

of the line of regression (x = 0), and y defines the out-

put. For model development, the output of Eq. (1) is

very appreciated. G and Ŵ with small values designate

the more appropriate input variables. One more, indica-

tor i.e. V-Ratio (VR = Ŵ/(σ 2(y)), here, Ŵ is the gamma

function, and σ 2(y) is the output variance, employed

widely for nominating the optimal input parameters. In

the present work, the appropriate input combination for

hybrid SVRmodels was finalized based on the minimum

value ofŴ, G, andVR (Malik et al., 2017; Piri et al., 2009).
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Figure 2. Illustration of (a) individual salp, and (b) Chain of salps (Yaseen et al., 2020b).

3.2. Support vector regression

Usually, two versions of SVM, i.e. SVR and SVC (sup-

port vector classifier) are available to solve the multi-

optimization problems. SVR, a new artificial intelligence

technique, was proposed by Vapnik (1995), employed

minimization of structural risk code from statistical

learning theory. SVM can reduce error during all model-

ing stages to obtain a functional dependency that has the

most deviation of all training data from the original tar-

get vectors and should be as linear as possible (Smola &

Scholkopf, 1998). The accuracy of SVR depends greatly

on the correct selection of three hyperparameters (i)

penalty constant (C), (ii) kernel function (γ ), and (iii)

tube size (ǫ). The parameter C controls the complexity of

themodel ormanage themarginmaximization and error

minimization during the training stage. The small value

of the C parameter means the maximized margin with-

out overfitting (Keerthi & Lin, 2003; Rashidi et al., 2016).

The ǫ parameter refers to the insensitivity, i.e. the num-

ber of deviations tolerated by the SVR during the process

of regression (Jajarmizadeh et al., 2015; Kakaei Lafdani

et al., 2013). The γ is the kernel function parameter and

panels the classification accuracy of themodel, or in other

words, control the overfitting and underfitting in the net-

work (Tharwat & Hassanien, 2018). Thus, a small value

of γ leads to underfitting and vice-versa (Cui et al., 2020;

Rashidi et al., 2016). Therefore, several experimentsmust

be carried out to obtain optimal results.

In the present research, several trials were led to attain-

ing the finest values of C, γ (with radial basis function), ǫ

parameters computed using nature-inspired algorithms.

More details about the theory and formulation of SVR

can be obtained from Vapnik (1995), Gunn (1998), and

Panahi et al. (2020).

3.3. Nature-inspired algorithms

3.3.1. Salp swarm algorithm

Recently, a new optimization algorithm, i.e. SSA, was

created by Mirjalili et al. (2017). The SSA algorithm

simulates the behavior of marine animals known as salps.

In deeding oceans, salps generally form a swarm called

Salp series or Salp chains. The Salp chains are fragmented

into (i) leader and (ii) follower. The leader should be

at the front of the chain and the other salp will follow

the leader in the chain shape, as mentioned in Figure 2

(Yaseen et al., 2020b). Just like other optimization algo-

rithms, SSA balances capabilities between exploration

and exploitation to achieve an optimal solution and avoid

trapping in the optimal local solution using the following

equations:

Z1
n =

{

Pn + r1((un − ln)r2 + ln r3 ≥ 0

Pn − r1((un − ln)r2 + ln r3 < 0
(2)

where, Z1
n denotes the location of the leader in the nth

dimension, Pn denotes the location of food exporter in

the nth dimension, un denotes the upper limit of nth

dimension, ln denotes the lower limit of nth dimension,

r1, r2, r3 are random coefficients (0, 1). The coefficient r1
is the most crucial in SSA balances the abilities of the

exploration and exploitation using Eq. (3):

r1 = 2e−
(

−
4a

A

)2

(3)



1080 A. MALIK ET AL.

Here, A and a express the maximum and current

iterations. The supporters are transferred from the first

location to another one using Eq. (4):

Zm
n =

1

2
ce2 + v0e (4)

In which,m ≥ 2, Zm
n describes the position of the ith fol-

lower salp in jth dimension, e outlines time, v0 states the

initial speed, and c =
vfinal
v0

where, v =
Z−Z0

e .

3.3.2. Particle swarm optimization

PSO is one of the most swarm intelligent algorithm

exploited to solve optimization problems (Kennedy &

Eberhart, 1995). It enthused their basic concept from the

behaviors of bird flocks. The PSO could be used in differ-

ent fields of optimization, such asmultiple-objective opti-

mization, nonlinear and stochastic problems (Malik et al.,

2020d; Tikhamarine et al., 2019, 2020). The working

assembly of PSO could be summarized in the following

steps:

(1) Firstly, the searching area should be specified using

a group of possible stochastic solutions.

(2) Estimate the feasibility of each particle in the swarm.

(3) In each iteration, make a comparison between the

expediency of each particle with their expediency

obtained in the previous iteration.

(4) Compare the expediency of particles with each other

and obtain the global best position with the super

expediency.

(5) Update the velocity of all particles according to their

expediency.

(6) Repeat Steps 2–5 until the design criteria are

achieved.

More information, including theories and applications

about using the PSO algorithm, can be found in Kennedy

and Eberhart (1995).

3.3.3. Spotted hyena optimizer

Dhiman and Kumar developed the Spotted Hyena Opti-

mizer (SHO) algorithm (2017), simulating the social

behavior of spotted hyenas in nature and how they hunt

the prey. The hunting mechanisms are based on four

main steps (i) encircling, (ii) hunting, (iii) attacking prey,

and (iv) research for prey. Readers, for more details, the-

ories, and applications of SHO refers to Dhiman and

Kumar (2017, 2019).

3.3.4. Whale optimization algorithm

Mirjalili and Lewis (2016) presented WOA (whale opti-

mization algorithm), one of the modern meta-heuristic

techniques inspired by the chase method followed by

humpback whales to hunt prey. The WOA employs a

community of exploring agents to find the optimum solu-

tion for optimizing problems. As in most optimization

algorithms, the searching procedure begins with several

random solutions for the specific problem. Then these

random solutions are iteratively improved until the opti-

mum solution is obtained. For further about the theories

and applications of theWOA algorithm, readers can refer

to Mirjalili and Lewis (2016), Al-Zoubi et al. (2018),

Elaziz and Mirjalili (2019), Heidari et al. (2020), and

Mirjalili et al. (2020).

3.3.5. Multi-verse optimizer

Mirjalili et al. (2016), based on WH (white hole), BH

(black hole), and WH (wormhole) concepts, presented

the MVO (multi-verse optimizer) algorithm to describes

three phases viz. exploration, exploitation, and local

search, respectively. For more details about the theory,

and application of the MVO algorithms, obtain from

Mirjalili et al. (2016) and Aljarah et al. (2020).

3.4. Penmanmodel

Penman model (Penman, 1948) was utilized for deter-

mining the rate of evaporation by using climatic variables

at three study locations in this study, and expressed as:

EP =
∆Rn + γEa

∆ + γ
(5)

In Eq. (5) EP (mm/day) = evaporation rate, ∆ (kPa/°C)

= slope of saturation vapor pressure-air temperature

curve, Rn (MJ/m2/day) = net radiation, γ = psychro-

metric constant (kPa/°C), and Ea = aerodynamic func-

tion (mm/day), and calculated as Ea = f (u) × (es − ea),

in which es and ea are the saturation and actual vapor

pressure (kPa), and f (u) is the theoretically derived

aerodynamic wind function and computed as f (u) =

0.263(aw − bwus), in which aw and bw are empirical coef-

ficients (aw = 0.5 and bw = 0.537) proposed for open

water bodies by Penman (1956), and us = wind speed at

2 elevation (m/s). TheRn,∆, γ , es and ea are computed by

using the method given by Allen et al. (1998) in FAO-56

(Food and Agriculture Organization) manual.

3.5. Integrated hybrid SVRmodels and

goodness-of-fitmeasures

The SVR constraints are required to determine wisely

to achieve the robust performance of SVR models. Five

nature-inspired algorithms, including SSA, SHO, PSO,

WOA, and MVO, were integrated with the SVR model

to define the three responsible parameters (i.e. C, γ ,

and ǫ) for SVR performance. The accuracy of these
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Figure 3. Topology of proposed hybrid SVR models for daily EP estimation at study stations.

hybrid SVRmodels largely depends on the choice of three

responsible parameters, i.e. C, γ , and ǫ, which help find

the global optimal solution by counting the minimum

possible error within the expected and target variable

quantity. The lowest value of RMSE during the training

state was considered for the assessment of these algo-

rithms. The search range for SVR parameters (i.e. C, ǫ,

and γ ) are examined in the exponential planetary [C ∈
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(10–5, 105), γ ∈ (0, 101) and γ ∈ (0, 101)] for this study.

Figure 3 demonstrates the flowcharts of the constructed

hybrid SVR models coupled with five nature-inspired

algorithms, i.e. WOA, SHO, SSA, PSO, MVO in semiarid

and sub-humid regions for daily EP estimation.

The performance of constructed hybrid SVR and

PM were evaluated through goodness-of-fit measures

(i.e. NSE: Nash-Sutcliffe efficiency, MAE: mean absolute

error, PCC: Pearson correlation coefficient, RMSE: root

mean square error; IOA: index of agreement, & IOS:

index of scattering), and by pictorial examination (i.e.

Taylor diagram, radar-chart, temporal plots). The MAE

(Elbeltagi et al., 2020; Rehamnia et al., 2021), RMSE

(Abba et al., 2021;Malik et al., 2021a; Pandey et al., 2020),

IOS (Malik et al., 2019; Tao et al., 2018), NSE (Nash

& Sutcliffe, 1970), PCC (Malik et al., 2020b, 2021b),

and IOA (Tikhamarine et al., 2020; Willmott, 1981) are

stated as:

MAE =
1

N

N
∑

i=1

|EPest,i − EPobs,i|

(0 < MAE < ∞) (6)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(EPobs,i − EPest,i)
2

(0 < RMSE < ∞) (7)

IOS =

√

1
N

∑N
i=1 (EPobs,i − EPest,i)

2

EPobs

(0 < IOS < ∞) (8)

NSE = 1 −

[

∑N
i=1 (EPobs,i − EPest,i)

2

∑N
i=1 (EPobs,i − EPobs)

2

]

(−∞ < NSE < 1) (9)

PCC =

∑N
i=1(EPobs,i − EPobs) (EPest,i − EPest)

√

∑N
i=1 (EPobs,i − EPobs)

2

×
∑N

i=1 (EPest,i − EPest)
2

(−1 < PCC < 1) (10)

IOA = 1 −

⎡

⎢

⎢

⎢

⎣

∑N
i=1 (EPest,i − EPobs,i)

2

∑N
i=1(|EPest,i − EPobs|

+|EPobs,i − EPobs|)
2

⎤

⎥

⎥

⎥

⎦

(0 < IOA ≤ 1) (11)

Note: N defines the number of observations, EPobs,

andEPest outlines i
th observations of recorded (observed)

and estimated daily EP. EPobs and EPest explain the mean

of daily EP for recorded and estimated values. The best

model was nominated based on least MAE, RMSE, IOS

values, higher NSE, PCC, and IOA values in testing for

daily EP estimation at study locations.

4. Results

4.1. Nomination of optimal inputs with GT

The assortment of an optimal set of inputs is impor-

tant for the performance of the prediction model. Dif-

ferent combinations of inputs were used in hybrid-SVR

models for the selection of an optimal set of inputs. In

this study, five combinations of six input variables (Tmin,

Tmax, RHmax, RHmin, Us, Rs) were tested, as elaborated

in Table 3. The GT was employed to assess the relative

performance of different input combinations to select

the best combination for developing the EP prediction

model. The obtained results in three study locations are

presented in Table 4. The values of three GT statistics

(Ŵ, G, and VR) for all the five input combinations at all

three locations are provided in Table 4. The Mask (the

last column of Table 4) is used to show the input com-

bination. As six variables were considered in this study

Table 3. Input parameters of hybrid SVR models optimized by
five nature-inspired algorithms for study stations.

Optimized SVR model by
WOA, SHO, SSA, PSO, and MVO algorithms

Climatic parameters 1 2 3 4 5

Tmin (°C)
√ √

Tmax (°C)
√ √ √ √ √

RHmax (%)
√ √

RHmin (%)
√

Us (km/h)
√ √ √

Rs (MJ/m
2/d)

√ √

Table 4. GT results on different input combination at study
stations.

GT statistics

Model Combination Ŵ G VR Mask

Hisar
1 Tmax 0.062 0.628 0.249 010000
2 Tmax , Us 0.040 0.368 0.160 010010
3 Tmax , RHmax , Us 0.041 0.045 0.166 011010
4 Tmin , Tmax , Rs 0.046 0.548 0.183 110001
5 Tmin , Tmax , RHmax, RHmin, Us, Rs 0.036 0.019 0.144 111111

Bathinda
1 Tmax 0.076 0.742 0.306 010000
2 Tmax , Us 0.064 0.493 0.254 010010
3 Tmax , RHmax , Us 0.052 0.110 0.207 011010
4 Tmin , Tmax , Rs 0.062 0.170 0.249 110001
5 Tmin , Tmax , RHmax, RHmin, Us, Rs 0.039 0.046 0.156 111111

Ludhiana
1 Tmax 0.057 0.446 0.228 010000
2 Tmax , Us 0.039 0.245 0.156 010010
3 Tmax , RHmax , Us 0.036 0.036 0.143 011010
4 Tmin , Tmax , Rs 0.041 0.316 0.165 110001
5 Tmin , Tmax , RHmax, RHmin, Us, Rs 0.027 0.030 0.110 111111
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to select inputs, the Mask is presented using six digits

correspond to six variables, Tmin, Tmax, RHmax, RHmin,

Us, Rs. Digit ‘1’ indicates the input is used while ‘0’ indi-

cates the input is not used. Therefore, ‘010000’ indicates

only Tmax is used as input while ‘111111’ indicates all the

meteorological variables are used as input.

The performance of an input combination is consid-

ered better if it provides lower values of GT statistics. The

results presented in Table 4 show a gradual decrease of Ŵ

andVR values with the increase of inputs at all three loca-

tions. A fluctuation ofG values with the increase of inputs

was noticed. However, it also showed the lowest values

at all the stations for the fifth input combination where

all the meteorological variables were considered as input.

The results indicate the influence of all the meteorologi-

cal variables on EP in the study area. Thus, information

of all the variables is required for reliable estimation of EP

in the study area.

4.2. Daily EP estimation in two different

agro-climatic zones

The EP estimation models were developed by hybridiz-

ing the SVR with five optimization algorithms, WOA,

SHO, SSA, PSO, MVO. The models were termed as

SVR-PSO-5, SVR-WOA-5, SVR-SSA-5, SVR-SHO-5, and

SVR-MVO-5 in this study, where 5 indicates the fifth

input combination (presented in Table 3). The models

were calibrated with 75% of daily observed data and vali-

dated for the rest 25% data. The act of the hybrid models

was compared with the PM, which is most widely used

globally to estimate EP. The performance of the models

was evaluated using both goodness-of-fit measures (or

statistical metrics) and graphical presentations.

In terms of six statistical indices, the model’s perfor-

mance during validation is presented in Table 5. The

statistical metrics are also presented using the radar chart

in Figure 4(a-c). All five hybrid models performed much

better than the Penmanmethod in estimating EP in terms

of all the six statistics at all three locations. The rela-

tive performance of the hybrid models revealed their

similar performances. The radar chart shows that the

performance lines of all five models overlap each other,

indicating the close performance of the models with

each other. However, a closer observation of the statis-

tics revealed a bit better performance of the SVR-SSA-5

model than the other applied models. The performance

measures i.e. MAE, RMSE, IOS, NSE, PCC, and IOA

values for SVR-SSA-5 were 0.697, 1.116, 0.250, 0.861,

0.929 and 0.960 at Hisar, 1.556, 2.114, 0.350, 0.750, 0.868

and 0.925 for Bathinda, and 0.858, 1.202, 0.303, 0.834,

0.918 and 0.956 for Ludhiana. The low values of MAE,

RMSE, and IOS and near to ideal NSE, PCC, and IOA

values at all three locations indicate an excellent con-

cert of the SVR-SSA-5 model in the estimation of daily

EP from meteorological variables. The performance of

SVR improved with SHO, WOA, PSO, and MVO cor-

responding to input combination 5 and Penman model

was found inconsistent at different locations. For exam-

ple, SVR-WOA-5 showed better performance at Hisar

and Ludhiana, while SVR-SHO-5 showed better per-

formance at Bathinda. Therefore, it was not possible

to rank these two models based on the used statistical

indices.

Table 5. Goodness-of-fit measures of hybrid SVR models during testing at study stations.

Optimal parameters Goodness-of-fit measures

Station/model γ C ǫ MAE (mm/day) RMSE (mm/day) IOS NSE PCC IOA

Hisar
SVR-WOA-5 2.676E-04 122.901 1.180E+02 0.699 1.121 0.252 0.859 0.928 0.960
SVR-SHO-5 4.275E-03 2.623 2.539E-03 0.750 1.266 0.284 0.821 0.907 0.948
SVR-SSA-5 1.028E-04 999.876 1.000E-01 0.697 1.116 0.250 0.861 0.929 0.960
SVR-PSO-5 1.896E-07 998.148 4.684E-02 0.937 1.493 0.335 0.751 0.870 0.920
SVR-MVO-5 1.246E-08 997.578 1.693E-02 1.114 1.762 0.395 0.652 0.829 0.870
Penman / / / 1.726 2.261 0.507 0.428 0.727 0.690

Bathinda
SVR-WOA-5 2.382E-08 986.726 9.867E-02 1.693 2.258 0.374 0.715 0.849 0.912
SVR-SHO-5 9.403E-04 0.154 1.047E-03 1.610 2.179 0.361 0.735 0.862 0.916
SVR-SSA-5 4.587E-03 0.441 1.255E-06 1.556 2.114 0.350 0.750 0.868 0.925
SVR-PSO-5 1.742E-07 235.024 2.901E-02 1.691 2.256 0.374 0.716 0.849 0.912
SVR-MVO-5 1.470E-08 998.246 2.291E-02 1.808 2.348 0.389 0.692 0.844 0.889
Penman / / / 2.913 4.161 0.689 0.032 0.598 0.562

Ludhiana
SVR-WOA-5 5.862E-07 996.125 2.146E-01 0.925 1.250 0.315 0.820 0.909 0.951
SVR-SHO-5 1.524E-04 0.121 6.920E-03 0.936 1.317 0.332 0.801 0.898 0.938
SVR-SSA-5 5.001E-06 994.252 1.526E-01 0.858 1.202 0.303 0.834 0.918 0.956
SVR-PSO-5 1.756E-07 996.246 5.481E-02 0.951 1.290 0.325 0.809 0.902 0.947
SVR-MVO-5 2.457E-08 997.543 6.286E-02 1.002 1.357 0.342 0.788 0.893 0.932
Penman / / / 1.993 2.559 0.645 0.247 0.500 0.575
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Figure 4. Radar charts display the goodness-of-fit measures of SVR-WOA-5, SVR-SHO-5, SVR-SSA-5, SVR-PSO-5, SVR-MVO-5, and PM
models during testing at (a) Hisar, (b) Bathinda, and (c) Ludhiana stations.

The temporal difference of observed and estimated

daily EP values during testing at different stations is pre-

sented in Figures 5–7 (a-f). The time series of observed

and estimated EP by the hybrid models showed a good

match at all the stations. Penman method A showed a

large underestimation of EP values. The hybrid models

also underestimated the extremely high EP values and

overestimated the extremely low values. The under- and

over-estimation were more at Bathinda station, where

data is much noisy. However, all the hybrid models were

able to replicate the seasonal variability and most of the

daily fluctuations of EP reliably.

The scatter plots are presented in the right panel of

Figures 5 (a-f) to 7 (a-f). The best fit lines of the esti-

mated EP by the hybrid models against the observed EP

were very close to the diagonal line of the plots at all

the stations. The determination coefficient (R2) values

for SVR-WOA-5models atHisar, Bathinda and Ludhiana

were 0.862, 0.721 and 0.827, while thosewere 0.823, 0.743

and 0.807 for SVR-SHO-5 model, 0.863, 0.753 and 0.842

for SVR-SSA-5 model, 0.756, 0.721 and 0.813 for SVR-

PSO-5 model, 0.688, 0.713 and 0.798 for SVR-MVO-5

model, and 0.528, 0.358 and 0.250 for Penman model,

respectively. The lower performance of all themodels was
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Figure 5. Observed vs estimated daily EP values by the SVR-WOA-5, SVR-SHO-5, SVR-SSA-5, SVR-PSO-5, SVR-MVO-5, and PM models
during testing at Hisar station.
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Figure 6. Observed vs estimated daily EP values by the SVR-WOA-5, SVR-SHO-5, SVR-SSA-5, SVR-PSO-5, SVR-MVO-5, and PM models
during testing at Bathinda station.
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Figure 7. Observed vs estimated daily EP values by the SVR-WOA-5, SVR-SHO-5, SVR-SSA-5, SVR-PSO-5, SVR-MVO-5, and PM models
during testing at Ludhiana station.
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observed at Bathinda compared to the other two loca-

tions due to noisy data, as mentioned earlier. The lower

R2 values for the Penman method at Hisar, Bathinda,

and Ludhiana stations indicate the very high efficiency

of hybrid models used in this study compared to the con-

ventional EP estimation method. The comparison of the

performance of the hybrid models based on scatter plots

revealed the better performance of hybrid SVR-SSA-5

compared to the other four hybrids and one conventional

model at Hisar, Bathinda, and Ludhiana.

The underestimations of high EP values by all the

hybrid models were also noticed in scatter plots for all

the stations. Overestimations of low EP values were also

clearly visible from the scatter plot at Bathinda station

(Figure 6). Here, it should be noted that EP depends

on complex interactions of multiple meteorological vari-

ables, including wind speed and temperature, which fluc-

tuate very rapidly on a daily scale. This makes the daily

EP time series highly random, which is very difficult to

predict accurately (Majhi & Naidu, 2021; Yaseen et al.,

2020a). The present study revealed that the SVR model

optimized using different nature-inspired algorithms can

estimate the daily EP reliably (Allawi et al., 2020; Guan

et al., 2020).

Finally, the Taylor diagram (Taylor, 2001) was emp-

loyed to evaluate the performance of different hybrid

models and the Penman model. Figure 8(a-c) demon-

strates the results at three stations. In these figures, the

Figure 8. Taylor diagrams of SVR-WOA-5, SVR-SHO-5, SVR-SSA-5, SVR-PSO-5, SVR-MVO-5, and PM models in the testing phase at (a)
Hisar (b) Bathinda, and (c) Ludhiana stations.
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observedEP is characterized by a red-filled circle (x-axis).

Generally, three statistics including correlation coeffi-

cient, standard deviation, and RMSE are comprised in

the polar system for truthful evaluation of the compara-

tive performance of different models (Ashrafzadeh et al.,

2019; Taylor, 2001). The Taylor diagrams show the very

close efficacy of hybrid SVRmodels on Hisar (Figure 8a).

The models were clustered very close to each other and

near the observed point in the Taylor diagram, indicating

the very close performance of the models at this location.

At Bathinda (Figure 8b), SVR-SSA-5 showed a higher

performance compared to the other four hybrid SVR

models and one conventional model. The standard devi-

ation (SD) of the SVR-SSA-5 estimated EP was exactly

the same as the observed EP, indicating a perfect perfor-

mance of the SVR-SSA-5 model. The SVR-SSA-5 model

also performed better than the other four hybrid mod-

els and one conventional model at Ludhiana (Figure 8c).

The SVR-SSA-5 also showed very close to the observed

SD of EP at this station. The performance of the Pen-

man method was found unsatisfactory at all the stations.

It showed a very low SD compared to the observed SD,

whichmeans it cannot estimate the daily variability of EP

in the study area.

4.3. Discussion

In this study, daily pan evaporation was estimated from

six meteorological variables, Tmin, Tmax, RHmax, RHmin,

Us, and Rs. Pan-evaporation is the evaporation from an

open water body. It depends on the integrated effect of

radiation, air temperature, air humidity, and wind on

evapotranspiration (Majhi & Naidu, 2021; Wang et al.,

2017). Solar radiation provides the necessary energy for

water to evaporate. Therefore, it is the most important

factor of EP inmost parts of the world (Muhammad et al.,

2019). The energy needed for evaporation decreases with

the increase of temperature. Low air humidity or less

water vapor in the air allows more evaporation. Higher

wind speed sweeps away more water from the water-

body to the atmosphere (Chu et al., 2012). Therefore, all

these climatic factors significantly influence EP in any

region. Muhammad et al. (2019) used EP as a proxy

of evapotranspiration (ET) to evaluate the performance

of 31 empirical ET models based on different inputs in

peninsular Malaysia. They found only the combination-

based model that considers all climatic variables (maxi-

mum and minimum temperature, humidity, wind speed,

and solar radiation) can reliably estimate ET. This indi-

cates significant impacts of all meteorological factors

on EP. Similar results were also reported from differ-

ent climatic regions of the world (Hounguè et al., 2019;

Rodrigues et al., 2020). The present study also found

that all meteorological variables are required for reli-

able estimation of EP. Therefore, the models were devel-

oped in this study using all the available meteorological

variables.

The influence ofmultiplemeteorological variables and

their interactions makes EP a complex process. Random-

ness is common in EP data due to the random variability

of wind. Besides, outliers are more in EP series due to the

coincidence of high temperature and wind with low air

humidity events, particularly in dry summer and oppo-

site scenarios during wet winter. These noisy outliers are

also often produced by complex interactions of mete-

orological variables and the influence of the surround-

ing environment on meteorological variables. Therefore,

often not predictable using meteorological variables. For

example, the wind speed of an area depends on wind

obstructing land use along the wind direction. There-

fore, any change in wind direction often causes large

variability in localized wind speed and noisy EP. Such

noisy EP values are often difficult to predict using mete-

orological variables. This has been noticed for Bathinda

station, where none of the models could estimate high

EP values.

The results of this study were compared with the pre-

vious studies conducted on modeling pan-evaporation

using several artificial intelligence (AI) techniques opti-

mized by bio-inspired algorithms (Kumar et al., 2021;

Majhi et al., 2020; Qasem et al., 2019; Salih et al., 2019;

Singh et al., 2021). The previous studies reported the

effective utility of hybridAImethods for pan-evaporation

at different locations in varying climates through sta-

tistical metrics and visual investigation. Ashrafzadeh

et al. (2019) estimated the daily evaporation from two

stations situated in the northern region of Iran by

employing themultilayer perceptron-krill herd optimiza-

tion (MLP-KHO), MLP, and SVM models. The results

indicate the better performance of MLP-KHO model

with R2 = 0.907, 0.931, RMSE = 0.725, 0.855mm/day,

IOA = 0.942, 0.950, andNSE = 0.789 and 0.813 for both

study stations than the other models. Wu et al. (2020)

used the two-hybrid ELMs, embedded with flower pol-

lination algorithm (ELM-FPA) and WOA (ELM-WOA),

and evaluated their performance against the differen-

tial evolution algorithm-ELM (DEA-ELM), improved

M5 tree (M5P) and ANN in predicting monthly pan-

evaporation at four weather stations located in the

Poyang lake basin of southernChina. They found that the

hybrid ELM-FPA model attains the highest prediction

accuracy (RMSE = 0.245, 0.283, 0.299, 0.278mm/day,

MAE = 0.123, 0.122, 0.129, 0.126mm/day, R2 = 0.924,

0.908, 0.905, 0.864, and NSE = 0.908, 0.907, 0.903,

0.847) than the others model for all four locations.

Seifi and Soroush (2020) optimized ANN with three
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novel meta-heuristic algorithms, including Grey Wolf

Optimizer (GWO), WOA, and GA, for estimating the

daily pan-evaporation in five agro-climatic zones (i.e.

hyper-arid, semiarid, arid, humid, and sub-humid) of

Iran. The outcomes demonstrate the superior perfor-

mance of the ANN-GA model (R2 = 0.83, 0.79, 0.86,

0.77, 0.69, RMSE = 0.95, 1.39, 1.98, 1.57, 1.43mm/day,

NSE = 0.82, 0.78, 0.86, 0.77, 0.68) over the other models

in all the agro-climatic zones.

The present studies showed better performance of

SVR-SSA compared to that obtained using different

hybrid ML models in different regions. The NSE and R2

values for SVR-SSA atHisar stationwere 0.861 and 0.929,

respectively. It is much higher than that obtained by Seifi

and Soroush (2020) using ANN-GWO, ANN-WOA, and

ANN-GA models in different climatic regions of Iran.

They achieved the highest performance using ANN-

GA in the semiarid region (R2 = 0.79 and NSE = 0.78),

which is much poorer than that obtained using SVR-

SSA in the present study. The SVR-SSA also showed

higher performance in R2 than that found by Wu et al.

(2020) using ELM-FPA, ELM-WOA, DEA-ELM, M5P,

and ANN. They found the highest R2 = 0.924 for ELM-

FPA, which is a bit lower than 0.929, obtained using SVR-

SSA in the present study. The results obtained through

the exploration of the feasibility of the SSA integrated

with SVR for daily pan-evaporation estimation at three

study locations in two different agro-climatic zones (i.e.

semiarid and sub-humid) establish that the newly con-

structed hybrid model, i.e. SVR-SSA stands as a robust,

reliable, and dynamic optimization method for daily EP

estimation.

5. Conclusion

This work aimed to enhance the performance of SVR

embedded with a novel meta-heuristic algorithm, i.e.

SSA, for estimating daily pan-evaporation (EP) in two

different agro-climatic zones of India. The outcomes

obtained by the novel SVR-SSAhybridmodelwere exam-

ined against the four-hybrid SVRmodels (i.e. SVR-MVO,

SVR-WOA, SVR-SHO, & SVR-PSO), and one conven-

tional model (i.e. Penman) using the goodness-of-fit

and graphical inspection. The most influential input

variable combination was demarcated by utilizing the

Gamma test (GT) to calibrate and validate the applied

hybrid SVR and Penman models at study locations.

Evaluation of results demonstrated the superior perfor-

mance of the novel hybrid SVR-SSA model over other

applied models at all study locations. Thus, the SSA

algorithm was highly recommended for optimizing SVR

model efficacy. Also, the results of the hybrid SVR-SSA

approach in conjunction with the Gamma test can help

the hydrologists, agronomists, and environmentalists to

construct a smart intelligent system for agricultural prac-

tices and sustainable management of water resources

for the study locations in two different agro-climatic

zones.
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