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 ABSTRACT 

 
 Despite being the lightest structural metal, magnesium alloys exhibited poor 
workability at low temperatures due to their hexagonal closed-packed crystal 
structure, consequently required them to be processed at elevated temperature. 
Their highly affinity to oxygen lead them to an easy oxidation. Moreover, they 
are poor corrosion resistance, poor creep resistance as well as fatigue failure but 
these can be improved by various techniques of surface treatments and alloying 
additions. Commercial wrought magnesium alloy grades, its mechanical 
properties as well as its workability at elevated temperatures are presented. 
Recent literatures showed that the workability of these alloys is increased at 
temperatures ranging from 100 to 3500C, 200 to 400 to 300 to 5000C and for AZ, 
ZK and WE alloy systems, respectively. The purpose of this paper is to review 
and reveal the issues in processing of wrought magnesium alloys. 
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INTRODUCTION 

 
In recent years the interest in magnesium alloy has grown dramatically in 

research community to identify new manufacturing technology via near-net-
shape manufacturing technology and extending the areas of their applications. 
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For its lightness and recyclability, many researches has push to the limit to 
explored the potential of magnesium and its alloys as replacement for plastics, 
aluminum and steel technology especially in highly demand in automotive sector 
(Gerald, 2003; Schumann and Freidrich, 2003; Alan, 2003; Tadakata and 
Masami, 2003). In natural resources magnesium is plentiful element on earth’s 
crust and seawater in most countries makes this inherited material considerably 
inexhaustible and recyclable (Mordike and Ebert 2001). However, its application 
was limited mainly due to its poor workability at cold working temperatures, 
weak corrosion resistance, and poor thermal effects at elevated temperature, 
highly chemical reactivity and considerably high cost of material. The processing 
techniques of magnesium alloys is considerably challenging due to its low 
melting point, their atomic arrangements of hexagonal close-packed (HCP) 
crystal structure (William and David 2008) and their well known as natural 
corrosion behavior in air.  Viewing the literatures published in the academic 
journals, it can be seen that the research on wrought magnesium alloys mainly 
focused on the plastic deformation behavior and the effects of deformation 
conditions on microstructure and its mechanical properties. This report is intent 
to discuss the issues of processing magnesium alloys in air at elevated 
temperatures. Subjects will includes its mechanical properties, the effect of 
temperature on its workability as well as thermal and corrosive aspects. In the 
present study, some of wrought magnesium alloys of AZ, ZK and WE alloy 
systems were presented in order to find out the issues relating to their workability 
on various deformation conditions. 

 
 

MAGNESIUM AND ITS ALLOYS 
 
 Magnesium (Mg), its atomic number is 12, is the lightest among the metals for 
structural application. It has density 1.74 g/cm3, which is 2/3 of that of aluminum 
and a quarter of that of steel. It also has considerably low melting temperature of 
6490C, slightly lower than that of aluminum. Mg alloys, like other alloys with 
hexagonal closed-packed (HCP) crystal structures (William and David 2008), are 
much more workable at elevated temperatures than at room temperature. The 
advantages of Mg, among other, tougher than plastic, better damping capacity as 
compared to cast iron and aluminum, electromagnetic interference (EMI) 
shielding than that of plastic, heat dissipation much higher than that of plastics, 
absorb vibration energy effectively and recyclability (Mordike and Ebert 2001).  
 Their mechanical properties varies depends on alloys composition and its 
weight percentages constitute in the alloying system. Table 1 shows the 
mechanical properties for a selection of wrought Mg alloys at room temperature. 
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Table 1 Room temperature mechanical properties of selected wrought Mg alloys 
(Czerwinski 2008, Toros et. al. 2008, Yang et. al. 2008) 

 

Alloy 
grade Temper 

Specific 
density,  
g/cm3 

UTS, 
MPa 

Tensile 
YS, MPa 

Compres
-sive YS, 

MPa 

Elonga-
tion % 

Hard-
ness HB 

AM1A rolled 1.77 240 180 76 7 48 
ZM21 forged 1.80 200 124  9  
AZ31 extruded 1.77 250 180 97 15 49 
AZ61 forged 1.80 300 220 125 12 55 
AZ80 forged 1.80 330 230 170 12  
ZK21 rolled 1.80 260 195 135 4  
ZK40 extruded 1.83 275 250 140 4  
ZK60 extruded 1.83 340 260 230 11 80 
WE43 extruded 1.85 270 195  15  
WE54 extruded 1.85 315 215  10 85 

 
 The selection of appropriate commercial alloy grade is significantly important 
for certain process being used because the chemical contents represent the 
process capabilities and final product microstructure. A selected alloys grades 
and key features of Mg alloys for wrought alloy were summarized by Czerwinski 
2008 as exhibited in Table 2. 

Table 2 Classification of selected wrought Mg alloys (Czerwinski 2008) 

Alloy 
group 

Alloy 
grade 

Al Mn Zr Zn Other 
Solid to 
liquid, 

°C 
Key features 

Mg–
Mn–

Al–Zn 

AZ10 1.2 0.2  0.4  630–645 
Low cost extrusion alloy 
with moderate strength and 
high elongation 

AZ21 2.0 0.15  1.2  
Liquid 

645 
Extrusions 

AZ31 3.0 0.3  1.0  605–630 
General purpose alloy with 
moderate strength 

AZ61 6.5 0.3  1.0  525–620 
General purpose extrusions 
with good properties and 
moderate cost 

AZ80 8.5 0.12  0.5  490–610 
Extruded products and press 
forgings, heat treatable 

Mg–
Zn–Zr 

ZK21   0.45 2.3  626–642 
Moderate strength extrusion 
alloy with good weldability 

ZK40   0.45 4.0   
High yield extrusion alloy, 
lower strength than ZK60 

ZK60   0.45 5.5  520–635 

Extruded products and press 
forgings 
with high strength and good 
ductility 

Mg–
Y–RE 

WE43   0.7  
4.0Y, 
3.4RE 

540–640 

High temperature creep 
resistance up 
to 3000C, long term 
exposure up to 2000C 

WE54   0.7  
5.2Y, 
3.0RE 

545–640 
High strength, fully heat 
treatable, application to 
3000C 
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THE EFFECTS OF WORKING TEMPERATURES AND STRAIN RATES 
 
 The principle in processing Mg alloys is temperature (ASM Handbook  
1993). In order to achieve favourable mechanical properties, one must really 
understand the Mg alloys behaviour at different deformation conditions namely 
temperature and strain rate. It also extremely important for researcher able to 
correlate the effect of changing these deformation conditions on the resulting 
microstructure and its mechanical properties. Zhang et. al. (2006) studied the 
formability of AZ31 Mg alloy sheets on mechanical properties during hot-rolling 
process. They observed that the mechanical properties of the rolled AZ31 Mg 
alloy changed with temperature, as temperature increased, tensile strength 
decreased while elongation increased. The relationship was illustrated in Figure 
1, showing the mechanical properties of AZ31 Mg alloy changed as a function of 
temperature at a constant strain rate.  On the other hand, the elongation decreased 
with the increased of strain rates at constant temperature. These properties also 
demonstrated that the AZ31 Mg alloys was softening and enhanced its ductility 
with temperatures.  

 
 

 
 Figure 1 Influence of strain rate on tensile strength (a) and elongation (b) of 

AZ31 Mg alloy. (Zhang et al. 2006) 
 
 The effects of working temperatures and strain rate on workability of 
selected wrought Mg alloy systems were illustrated in Table 3-5. From the 
literatures reviewed, most investigation of AZ alloy system processing at 
temperatures higher than 1000C but below 3500C. Cold working temperature is 
limited to prevent cracking while creep failure occurred during hot working. The 
workability of drawing process is slightly lower than 2000C. Iwanaga et. al. 
(2004) has reported that AZ31 Mg alloy can achieved good deep drawability at 
temperature as low as 1750C by applying M0S2 lubricant. While, Xia et. al. 
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(2005) reported AZ31 Mg alloy can be processed smoothly as low as 1000C 
owing to the ultra fine grain size of 0.2~0.5µm. For ZK alloy system, the 
workability deformation temperatures in the range of 200 to 4000C while WE 
alloy system in the range of 300 to 500oC. In comparison, AZ and ZK alloy 
systems are softer than that of WE alloy system. Morever, WE alloy system 
exhibits the better creep resistance than that of  AZ and ZK alloy system.   

Table 3 Summary of workabilty of AZ alloying systems on different routes 

References Processed Temp., 0C 
Strain 

 Rate, s-1 Remarks 

AZ31 Mg alloy 

Vespa et. al. (2008) as-hot rolled 400 
0.1 to 
10-3 

Dynamic recrystallization 
(DRX) at  lower strain rates 

Zhang et. al. 2006) extruded  350 5 
DRX grain grows up rapidly 
as temp. elevates to 3500C 

Spigarelli et. al. 
2007) 

as-extruded  300 
5 and 
0.05 

Fully recrystallized structure 
when grain size is fine 

Zhang et. al. (2006) hot-rolling 240 1.4x10-2  
Zhang et. al. (2006) Drawing 200 1.4x10-3 Drawing ratio, DR2.6 

Iwanaga et al. (2004) Drawing 175 2.8x10-3 M0S2 lubricant 
Yoshihara et al. 

(2003) 
Drawing 400  

DR5.0. Demonstrate AZ31 
softening with temp. 

Chen and Huang 
(2003) 

Drawing 300  elongation of 58% at 4000C 

Watanabe et al. 
(2007) 

Drawing 200  Elongation of 5 % 

Yang et. al. (2009) 
hot 

compression 
250 to  

400 
0.01 and 

10 
 

Zhang et. al. (2008) Extrusion 350  
Enhanced ductility but 
decreased tensile strength 

Liang et. al. (2008) 
Cold-

extrusion 
RT 1x10-3 

2µm. Improved strength but 
doesn’t  improve elongation 

Xia et. al. (2005) ECAP 100 1x10-3 Using back pressure and UFG 
of 0.2~0.5µm  

Kang et. al. (2008) ECAP 200 to 350 
10-4 to 

10-1 

3µm. Improved the fracture 
elongation but decreased 
strength 

Zuberova et. al. 
(2007) 

hot-rolled+ 
ECAP 

400, 200 10-3 improvement in  mechanical 
properties 

Mallick et. al. (2009) 
Cold-

compaction + 
tensile  

RT, 250 4x10-4 
PM-AZ31, sintered 4500C in 
an argon 

AZ61 Mg alloy 

Niu et. al. (2007) 
Warm 

compression 
200 to 400 

0.01 to 
10 

DRX at higher temp., 
plasticity increased 

Skubisz et. al. (2006) forged 350  
Showing cracks formation at 
lower temperature 

Yamin et al. (2007) Extrusion 350  
Good plasticity with colorless 
lubricant. 

Chandrasekaran and 
John (2004) 

Forward 
extrusion 

200, 300  
AZ31 at 2000C while AZ61 
and  ZK60 at 3000C 

Valle et. al. (2003) Hot rolling 375  85% thickness reduction 
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Valle et. al. (2005) 
accumulative 
roll bonding 

300  
50% thickness reduction 

Doege and  Droder 
(2001) 

Drawing 

200 
(AZ31), 

250 
(AZ61) 

 

AZ31 have better ductile 
behavior than AZ61.  

Huang et al. (2009) Rolled 250  
Exhibits a superior stretch 
formability 

AZ80 Mg alloy 

Haroush et. al. 
(2008) 

Extrusion 350 

 Exhibits cracks due to 
corrosion attacks at 300 
and 3500C. 

Shahzad and 
Wagner (2009) 

Extrusion 175 to 350 
 Lower extrusion ratio 

exhibits superior in 
strength  

Huang et. al. 
(2009) 

Rolling 430 

 Exhibited high strength of 
329 MPa and improved 
25% ductility 

 
Table 4 Summary of workability of ZK alloy systems on different routes 

 

References Processed Temp., 0C 
Strain 

Rate, s-1 Remarks 

Wang et. al. (2007) squeeze cast 375 0.001 smooth cast 

Yang et. al. (2009) deformation 
200 and 

400 
10 and 
0.01 

without fractured 

Chandrase-karan 
and John (2004) 

Forward 
extrusion 

300  Smooth extruded 

 
Table 5 Summary of workability of WE alloy systems on different routes 

 

References Processed Temp., 0C 
Strain 

Rate, s-1 Remarks 

Gao et. al. (2008) 
hot 

compression 
340-

4600C 
0.01-1 

Dynamic recrystallization 
during softening 

Sanchez et al. 
(1996) 

extrusion 300 
3.5x10-

5 to 
7x10-3 

WE43 and WE54 
exhibited better creep 
resistance 

 
 This studies has eventually reveals that AZ alloys are ductile material than 
ZK and WE Mg alloys. Currently, Mg-RE-Zr alloys are said to be the best 
mechanical properties both at ambient and elevated temperature. From the 
literatures reviewed, WE alloy is recommended for use up to 3000C. Moreover, 
the effect of rare earth elements such as gadolinium, dysprosium and yittrium  on 
the microstructure and mechanical properties have been found to give increased 
yield strength and creep resistance (Yang et. al. 2008).  
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 In case of superplasticity behavior, Yin et. al. (2005) reported that apart 
from temperature and grain size, strain rate is also play an important role 
influencing superplasticity in AZ31 Mg alloy. Their studies showed that 
maximum elongation of about 360% is achieved at 4000C under lower strain rate 
of 0.7x10-3s-1. Watanabe and Fukusumi (2008) found that high temperature 
deformation of 5000C with lower strain rate 1x10-5s-1 exhibited higher ductility 
and lower strength. Yang et. al. (2008) reported that the key of getting 
superplasticity in an Mg alloy is to obtain uniform fined grained microstructure. 
Therefore, from the literatures, to behave in a superplasticity manner, Mg alloys 
should be processed at high deformation temperatures, lower strain rates range 
and relatively coarse grain size. However, superplasticity can be achieved at high 
strain rates with ultra fine grain size (Lin et. al. 2005). To get pictorial 
explanation of plasticity behavior of AZ Mg alloy, the influence of strain rate as 
function of temperature on elongation is illustrated in Figure 2.  
 

 

 Figure 2 Influence of temperature on elongation at various strain rates (Yin et. 
al. 2005) 

 The effects of elevated temperatures and strain rates on superplasticity for 
selected wrought Mg alloys were illustrated in Table 6. Viewing from these 
literatures, it has eventually reveals that AZ and ZK alloy systems are ductile 
material than that of WE alloy systems. For WE alloy systems to have ductile 
behavior, they required higher temperature as low as 4000C. 
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Table 6 Summarized of superplasticity characteristic for selected wrought Mg 
alloys 

References 
Alloy 
Grade 

Proces
sed 

Grain 
size, µm 

Deforma-
tion 

Temp., 0C 

Strain 
Rate, s-1 

Elonga-
tion, % 

Lin et. al. (2005) AZ31 
EX + 
ECAP 

0.7 300, 200 1.0x10-4 460 

Watanabe and 
Fukusumi (2008) 

AZ31 EX 40 500 1x10-5 596 

Yin et. al. (2005) AZ31 EX 4.5 400 0.7x10-3 360 

Valle et. al. (2003) AZ61 
Hot 

rolling 
15.2 250  >T 

Miyahara et. al. (2006) AZ61 
EX + 
ECAP 

 200 3.3x10-4 1320 

Watanabe et. al. (1999) AZ61  20 375 3x10-5 460 
Huang et. al. (2009) AZ80 rolled 7 300  25 

Yakubtsov et. al. 2008 AZ80 HT   420 1.5x10-4 >T 
Figueiredo and 
Langdon (2006) 

ZK60 ECAP 0.8 200 2.0x10-4 1310 

Lapovok et. al. (2005) ZK60 ECAE 1 220 3x10-4 2040 

Watanabe et. al. (2003) ZK60 
EX+E
CAE 

1.4 200 1x10-5 1083 

Bussiba et. al. (2001) 
AZ31, 
ZK60 

EX 
15, 

2+25 
450 

10-5 to 10-

1 
ZK60>AZ

31 
Watanabe et al. (1999) ZK60 PM 0.05  200 1x10-5 283 
Nieh and Wadsworth 

(1995) 
ZK60/Si
C/17p 

PM 0.3 450 1.3 360 

Liu et. al. (2008) 
PM-

WE54 
EX+E
CAE 

4.4 400 1x10-3 600 

Garces et. al. (2006) 
PM-

WE54 
EX 0.65 400 10-1 450 

Nakashima et. al. 
(2000) 

PM-
WE54 

EX 0.5 500 1.7x10-1 346 

 
  

OXIDATION, CREEP AND FATIGUE FAILURE. 
 
 Another major obstacle in processing magnesium is their high affinity of 
magnesium to oxygen makes them easy to oxidation. The oxidation spontanously 
formed a thin layer on the surface of magnesium and its alloys upon exposed in 
air. Commonly processing stages such as casting, injection molding, powder 
metallurgy and etc. were directly associated with elevated temperatures exposed 
them to oxidation. This may refers to feedstock preparation, service temperatures, 
molding pressures, heat treatment, sintering and etc. Norbert and Martin 2008 
reported oxidation is one of the major obstacle in processing magnesium in 
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powder injection molding. They found that the lower volume of magnesium 
oxide compared to the base material created blisters and crack easily. Moreover, 
the thin oxide layer formed on the surface of Mg will act as retention to the 
smooth process of densification during sintering. Besides air, contact with water 
vapor leads also to an oxide growth, but the rate of reaction is much slower 
because the oxide layer contains large amounts of hydroxide species (Czerwinski 
2002). Their poor corrosion resistance materials, however, can be improved by 
coating and surface modification techniques. One of the most effective ways, or 
maybe the simplest, to prevent corrosion is to coat the Mg alloys from contact 
with environment. The types of corrosion in magnesium alloys were reviewed 
and discussed in detailed by Zeng et. al. 2006. The corrosion types are galvanic 
corrosion, pitting corrosion, intergranular corrosion, fillform corrosion, crevice 
corrosion, stress corrosion cracking and corrosion fatigue. Gray and Luan 2002 
reviewed comprehensively the typical type of coating and surface modification 
techniques. The review discussed, among others, such as anodizing, 
electrochemical plating, physical evaporation, cladding and organic coatings. Wu 
et. al. (2008) reported that a loose oxide film was spontanuously formed on the 
surface of as-polished AZ31 Mg alloy. To overcome this problem, they applied 
aluminium PVD-coating on a mechanically polished AZ31 Mg alloy as the 
barrier to corrosion resistance. The studies, however, does not fully react as 
corrosion resistance as the aluminium coating still suffered from severe 
corrosion. Yue et. al. (1997) reported that surface treatment on PM-ZK60/SiC 
composite by using KrF excimer laser as well as the refinement of the surface 
microstructure can significantly improved the corrosion resistance. 
 Reviewing from the literatures, most of the processing techniques of Mg 
alloy were exceeded 0.4Tm, whereby Tm is melting tempertaure, creep occurance 
is unavoidable. In forming, creep failure is the clear factor for cracking defects. 
However, thanks to the development of highly creep resistant Mg alloys of rare 
earth additions such as yittrium, gadolinium and dysprosium, the operation at 
temperatures above 2500C is feasible (Yang et. al. 2008). Mordike (2001) has 
developed highly creep resistant Mg alloys that operated at temperatures of 
3000C. He suggested the additions Sc, Gd, Mn, Ca and Ce in WE alloy systems 
have infuences to creep resistance.  Apart from poor corrosion resistance and poor 
creep resistance, Mg alloys were also has low fatigue resistance (Lin et. al. 2008, 
Zeng et. al. 2009). However, the low fatigue strength can be improved by 
mechanical surface treatments (Zhang and Lindermann 2005) and   by an 
addition of appropriate ratio of manganese contents (Sabrina et al. 2006). 
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CONCLUSION 

 In this paper, the workability issues in wrought Mg alloys were reviewed. The 
principle of processing wrought Mg alloys is temperature. The workability at 
elevated temperature, strain rate and grain size on mechanical properties were 
investigated and they were dependent variables. Summarizing the literatures 
published in the academic journals, the workability deformation temperature for 
wrought Mg alloys were justified. The requirements for wrought Mg alloy to 
become superplastic includes a fine grain size, typically below 10µm, low strain 
rate as well as maintain the fine grain structure at the high temperature. Their 
corrosion resistance can be improved by various surface modification techniques. 
Their creep failure can be reduced and/or eliminated by using highly creep 
resistance Mg alloys. Their fatigue strength can be improved by an appropriate 
addition of manganese contents. The finding of this paper is very useful for the 
selection of wrought Mg alloy and their feasible for potential near-net-shape 
manufacturing technology. 
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