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Lattice Boltzmann method is used to solve inside a cylindrical cavity with convective 
boundary condition is highlighted in this paper. Because of its simple, stable, accurate, 
efficient and ease for parallelization, we use the thermal Single Relaxation Time 
Bhatnagar Gross Krook (SRT BGK) mesoscopic approach in order to solve the energy 
equation. Thermal fields are simulated using D2Q9 scheme. We introduce and 
demonstrate numerically some usual cases (Dirichlet, Newmann) of Boundary 
conditions (Bcs). After validation, we extend the present work to the convective case. 
At the wall of the cavity, the unknown Thermal Distribution Functions (TDF) are 
exposed to the bounce back concept which is determined consistently by one of the 
imposed BCs. An in-house Fortran 90 code is used to analyze a variety of BCs inside a 
two-dimensional cavity. In validation, obtained results highlight a good agreement 
with literature. The present study is extended to deal with convective boundary 
condition for conduction transfer problems inside an axisymmetric cylindrical media 
subjected to heat generation and Newman boundary conditions. 
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1. Introduction 
 

Countless physical models in the engineering applied science are simulated using nonlinear 
boundary conditions (BCs) value problems where it is usually difficult to obtain the exact analytical 
solution. Due of this difficulty, most of the researchers in the engineering and the applied sciences 
directly resort to the numerical codes in order to solve their physical models [1]. However, many 
other authors investigated their physical models by using analytical or semi-analytical methods [2-7]. 
Unfortunately, the accuracy of the numerical solutions derived from these analytical or semi-
analytical methods cannot be checked without addressing the convergence issue. 

In this paper, we use LBM to simulate convective boundary condition inside a cylindrical media. 
In fact, nowadays LBM is considered as bright numerical technique for simulating thermal and fluid 
flows associated with complex boundary conditions [8-20]. it is known that conventional numerical 
methods (CFD) discretize the macroscopic equations. However, LBM is based on simplified kinetic 
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models integrating physics of microscopic processes where macroscopic properties obey the desired 
equations. 

In the last decade, LBM was used to simulate heat transfer in different engineering applications 
such as thermal insulation, heat pipes, cooling of electronic components cooling, solar collectors (SC), 
heat exchangers, solar dryers air heating systems, storage technology, passive solar heating [21-26]. 
Owing to their accuracy and simplicity for studying confining cavities with mixed BCS, LBM is the 
suitable numerical choice when dealing with complex BCs. 

In literature, few publications deal with LB studies that consider mixed Boundary conditions as 
Dirichlet, Newman, convective Boundary conditions. In validation, we consider two test cases for the 
solution of conduction problems in Cartesian geometry involving Dirichlet BCs and volumetric heat 
generation effect. For validation, two test benchmark problems are studied and good agreement is 
obtained. The present numerical approach can cope with more complex geometry and, thus, it will 
be particularly efficient in resolving transient conduction in axisymmetric cavity in the presence of 
heat generation effect with mixed boundary condition. 
 
2. Numerical Approach 
 

Heat transfer inside rectangular and axisymmetric enclosure is considered. Thermo-physical 
properties of the medium are assumed constant. For the problem under consideration, and in the 
absence of convection and radiation, the energy equation is given by 
 

QT
t

T
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because the LBM is based on the discrete Boltzmann kinetic equation, heat transport problems are 
solved using the internal energy evolution equation of the nine-speed (D2Q9) Lattice Boltzmann 
model is given by [27-29] 
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where, 
b is the number of directions in a D2Q9 lattice  

i is the collision operator defined as 
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if  is the particle distribution function denoting the number of particles at the lattice node r  at time 

t moving in direction i with velocity ie  along the lattice link ter i connecting the nearest 

neighbours (Figure 1). 
 
The temperature ),( trT  is defined as 
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where the observed flux is expressed by 
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In BGK model, the discrete evolution equation is given as 
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if is the equilibrium distribution function. 

 
Based on SRT model, the relaxation time can be related with the thermal diffusivity , the lattice 

velocity C  and the time step t  by the following relation [29] 
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The nine velocities 
ie  in the D2Q9 (Figure 1) and their corresponding weights iw  are the following 
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In the presence of volumetric heat generation, Eq. (6) can be written as 
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where, 

*Q is the non-dimensional heat generation. 

 
For heat conduction problems, the equilibrium distribution function is given as 
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In LBM boundary condition, BCs properties of the known and unknown populations on each side 
as shown on Figure 1. 

 
Fig. 1. BGK D2Q9 LBM Basic lattice and known and unknown 
populations in the computational domain  

 
3. Results and Discussion 
 

For validation, we deal with transient heat conduction problems in two-dimensional Cartesian 
enclosure with the four boundaries at isothermal temperatures. Initial and the boundary conditions 
are written as 
 
Initial condition 
 

( , ,0) refT x y T                         (16) 

 
Boundary conditions 
 

e( ,0, ) 0.25 r fT x t T                        (17) 

 
( , , ) (0, , ) ( , , ) refT x Y t T y t T X y t T                        (18) 

 
For this case, 2/t L  is the non-dimensional time and L is the characteristic length.   was 

taken as 410 . Besides, transient and steady state conditions were highlighted. Convergence criteria 
assume that temperature difference between two consecutive time levels at each lattice centre did 
not exceed 610 . The same configuration is simulated, also, using the Finite Volume Method (FVM). 
The two numerical results are compared with literature. Figure 2 display non dimensional centreline 
( x/X=0.5 ) temperature at different instants   and good concordance is highlighted. 
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Fig. 2. Dimensionless mid-plane (x/X=0.5) temperature evolution 
for different dimensionless instants 

 
Then, the effect of volumetric heat generation is studied. With a unity non dimensional 

volumetric heat generation, the four walls of the Cartesian cavity are subjected to a specified 
temperature (Dirichlet boundary condition). We notice that effect of heat generation is very less in 
the beginning compared to steady state because it takes some time to influence the temperature 
profile. 
 

 
Fig. 3. Effect of volumetric heat generation on 
dimensionless mid-plane (x/X=0.5) temperature 

 
This section deals with transient heat conduction equation in cylindrical coordinates. When Heat 

conduction in an infinite solid with a long cylindrical cavity is discussed, axisymmetric treatment is 
investigated. For this case (Figure 4), the system is initially at temperature 
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0( , ,0)T x y T                         (19) 

 
For time t>0, the bottom and top boundaries are at prescribed fluxes, respectively. 
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For the physical problem addressed in this section (Figure 4), the thermal boundary condition at 

the lateral surface is subjected to convective heat flux boundary condition with non dimensional 

volumetric heat generation ( *Q = 2) written as 
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where, 
h  is the convective heat transfer coefficient. 

,x y  is the direction of outward normal to the surface concerned. 

k Thermal conductivity 

 

 
Fig. 4. Cylindrical boundary conditions 

 
In non-dimensional equations model, we define Biot number as 
 

hL
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k
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The distributions of isotherms inside cylindrical media are plotted in the Figure 5 for different 

where the axisymmetric is subjected to a volumetric heat generation condition ( *Q = 2) with Biot 

number of 20 in a 100x100 grid (Figure 5). 
 

  

 

 
Fig. 5. Transient dimensionless isotherms in the presence of non-dimensional volumetric heat 

generation source ( *Q = 2) for different instants  (Cylindrical case) 

 
 
 
 

0.1  0.2 

0.3  0.4 
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In order to analyze the effect of the non-dimensional Biot number, steady state non dimensional 
temperature radial (Figure 6) and axial (Figure 7) is plotted for the case of axisymmetric geometry 
with BCs of Figure 4. We notice that radial and axial are more enhanced in presence of smallest Biot 
number.  
 

 
Fig. 6. Steady state dimensionless radial 
temperatures in the presence of non-
dimensional volumetric heat 

generation source ( *Q = 2) for different 

Biot numbers (Cylindrical case) 

 

 
Fig. 7. Steady state dimensionless axial temperatures in the 
presence of non-dimensional volumetric heat generation 

source ( *Q = 2) for different Biot numbers (Cylindrical case) 
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Because LBM is time varying mesoscopic approach, we highlight in Figure 8, the time evolution 
of the dimensionless temperature at (r/2R, z/2Z). We notice that temperature increases with time. 
The steady state temperature is reached at roughly time=15000. 
 

 
Fig. 8. Time evolution of the temperature at the centerline of 
the axisymmetric cavity 

 
5. Conclusions 
 

After good validation, LBM is extended to simulate numerically a complex geometry with mixed 
BCs in order to solve transient heat conduction problems in cylindrical media in the presence of heat 
generation effect subjected to convective boundary condition in lateral surface. Bottom wall is 
subjected to hot heat flux and top one is at cold heat flux. The present code shows a great stability 
to deal with different sets of mixed BCs; namely constant temperature, flux boundary conditions and 
convective boundary conditions. The effect of volumetric heat source in the cylindrical cavity is 
highlighted. The present numerical code achieves an efficient stability, that make it a crucial future 
tool to predict heat transfer and fluid flow characteristics for convection radiation engineering energy 
problems  
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