GAS CHROMATOGRAPHIC DETERMINATION OF STYRENE AND OTHER VOLATILE ORGANIC COMPOUNDS IN POLYSTYRENE FOOD PACKAGING

SUSIE LU LING

UNIVERSITI TEKNOLOGI MALAYSIA

Specially dedicated to my beloved husband, kids, and family members

ACKNOWLEDGEMENTS

First and foremost I would like to thank God for His mercy and grace. His love and guidance has strengthened me through the good and tough times of my study.

I would like to thank my supervisor, Professor Dr. Mohd Marsin Sanagi, for his supervision, encouragement and thoughtful guidance throughout the project. I am indebted to his faith in me which motivated me to proceed and persist to complete my thesis.

I also wish to extend my sincere gratitude to my co-supervisors, Assoc. Prof. Dr. Wan Aini Wan Ibrahim and Assoc. Prof. Dr Ahmedy Abu Naim for their kindness and support. I would like to thank my post-graduate friends and all the members of the research group for their advice and support.

I would also like to thank the Ministry of Health and Public Service Department (JPA) for financial support and a studentship for myself. Many thanks should be given to the Public Health Laboratory of Johor Bahru (PHLJB) for providing laboratory facilities to make this research feasible. I am particularly grateful to the technical staffs of the Food Packaging Unit, PHLJB for their technical assistance.

I wish to extend a heartfelt appreciation to all of my family members who have given me encouragement and motivation, and have the utmost confidence in my endeavour. Last but not least, I must emphasize that I could not have persisted without my husband, Jimmy, for his love, support and understanding.

ABSTRACT

Testing of food packaging materials with reliable method gives consumers the assurance to the safety of the products. In this study, material and migration tests of styrene and other volatile organic compounds (VOCs) (toluene, ethylbenzene, iso-propylbenzene and n-propylbenzene) for polystyrene food packaging, using gas chromatography-flame ionization detection (GC-FID) are presented. In the material test, dissolution technique using dichloromethane was used to extract the analytes from the samples. The developed method was validated for specificity, detection limits, linearity, precision and accuracy. The applicability of the method to determine the targeted analytes in a number of commercial polystyrene food packaging was demonstrated. The results show that the dissolution technique with direct injection using GC-FID is effective for simultaneous analysis of five analytes in polystyrene food packaging. This direct injection method with limit of quantification (LOQ) of 8 mg/kg was lacking in sensitivity for migration study. Hence, headspace-solid phase microextraction (HS-SPME) technique was applied for migration test using water as food simulant. The effects of extraction variables including sample volume, elutropic strength, extraction temperature, extraction time, desorption time, sample agitation, and salt addition on the amounts of the extracted analytes were studied and optimal conditions were obtained for HS-SPME extraction. The method was validated, and the LOQ obtained at ppb and sub-ppb level was sensitive enough to detect the VOCs in the migration test. The optimized method was applied to test the analytes migration from polystyrene bowls and cups at storage temperatures ranging from 24°C to 80°C for 30 min. ethylbenzene were observed to migrate from the samples into the food simulant. The migration of analyte was found to be strongly dependent upon the storage temperature. The maximum observed migration was from the polystyrene cup at simulating condition of 80°C for 30 min. The HS-SPME is useful as an alternative method to determine the migration of VOCs from food packaging material into food simulant.

ABSTRAK

Pengujian bahan pembungkus makanan dengan kaedah yang berkeyakinan boleh memberi jaminan kepada pengguna berkenaan keselamatan produk itu. Dalam kajian ini, ujian bahan dan ujian migrasi untuk stirena and sebatian mudah meruap (VOCs) yang lain (toluena, etilbenzena, iso-propilbenzena dan npropilbenzena) bagi pembungkus polistirena dengan menggunakan kromatografi gas-pengesanan ion nyala (GC-FID) dibentangkan. Dalam ujian bahan, teknik pemelarutan menggunakan diklorometana telah digunakan untuk mengekstrak analit Keadah yang dibangunkan telah disahihkan bagi ketentuan, had pengesanan, lineariti, kejituan dan ketepatan. Penggunaan keadah tersebut bagi mengesan analit dalam beberapa jenis pembungkus makanan polistirena komersial telah diterangkan. Keputusan menunjukkan teknik pemelarutan dengan suntikan terus menggunakan GC-FID adalah berkesan untuk menganalisis lima jenis analit dengan serentak dalam pembungkus makanan polistirena. Kaedah suntikan terus mempunyai had kuantiti (LOQ) 8 mg/kg adalah kurang sensitif untuk ujian migrasi, jadi, teknik ruang kepala-pengekstrakan mikro fasa pepejal (HS-SPME) telah digunakan untuk ujian migrasi dan air digunakan sebagai makanan simulasi. Kesan pembolehubah pengekstrakan termasuk isipadu sampel, kekuatan elutropik, suhu pengekstrakan, masa pengekstrakan, masa nyahjerapan, pengacauan sampel, dan penambahan garam ke atas amaun analit terekstrak telah diuji dan keadaan optimum yang diperolehi telah digunakan untuk pengekstrakan HS-SPME. Kaedah ini telah disahihkan, dan LOQ yang didapati pada tahap ppb dan sub-ppb yang cukup sensitif untuk mengesan VOCs dalam ujian migrasi. Kaedah yang optimum telah digunakan untuk menganalisis analit yang berpindah dari mangkuk dan cawan polistirena pada suhu penyimpanan dengan julat dari 24°C ke 80°C. Stirena dan etilbenzena didapati telah berpindah dari sampel ke dalam makanan simulasi. Migrasi analit didapati bergantung kepada suhu penyimpanan. Migrasi yang maksimum telah didapati dari cawan polistirena pada keadaan simulasi 80°C selama 30 min. HS-SPME adalah berguna sebagai kaedah alternatif bagi penentuan migrasi VOCs dari pembungkus makanan ke dalam makanan simulasi.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
		LE PAGE	1
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST OF TABLES LIST OF FIGURES		xiii
			xvi
	LIST	OF SYMBOLS/ABBREVIATIONS/	
	NOTATION/TERMINOLOGY		xviii
	LIST	T OF APPENDICES	xxi
1	INTI	RODUCTION	1
	1.1	Food Packaging	1
	1.2	Research Background	2
	1.3	Statement of Hypothesis	3
	1.4	Research Aim	4
	1.5	Research Objectives	4
	1.6	Scope of Study	4
	1.7	Outline of the Thesis	5

2	LITE	RATUR	E REVIEW	6
	2.1	Styren	e	6
	2.2	Physic	al and Chemical properties	6
	2.3	Source	s	7
	2.4	Routes	of Exposure	8
		2.4.1	Styrene in Food	8
	2.5	Uses o	f styrene	9
		2.5.1	General Purpose Grade Polystyrene (GPPS)	10
		2.5.2	Expandable Polystyrene (EPS)	10
		2.5.3	High Impact Grade Polystyrene (HIPS)	11
		2.5.4	Glass Reinforced Plastic (GRP)	11
		2.5.5	Styrene Copolymers	11
	2.6	Additiv	ves Used in Polystyrene Food Packaging	12
	2.7	Health	Effects	12
		2.7.1	Styrene and Its Metabolite	13
		2.7.2	Other Volatile Organic Compounds (VOCs)	14
	2.8	Chemi	cal Residues in Food Packaging Materials	15
	2.9	Migrat	ion Studies	16
	2.10	Legisla	ation Control for Polystyrene Food Packaging	17
		2.10.1	European Food Contact Regulations	18
		2.10.2	U.S. Food and Drugs Administration (FDA)	
			Regulations	19
		2.10.3	Japan Food Sanitation Law	20
	2.11	Analyt	ical Methodology	21
		2.11.1	Method Application in Food Packaging Analysis	22
	2.12	Evalua	tion of Sample Preparation Techniques	23
	2.13	Solid-I	Phase Microextraction (SPME)	25
		2.13.1	SPME Sampling Techniques	25

		2.13.2	Parameters which Effect the Absorption	
			Process	26
			2.13.2.1 Selection of Fiber Coatings	26
			2.13.2.2 Time and Temperature of the Extraction Process	27
			2.13.2.3 pH Modification and Addition of Salt	27
			2.13.2.4 Addition of Solvent	27
			2.13.2.5 Agitation of the Sample	28
			2.13.2.6 Volume of the Sample	28
			2.13.2.7 Matrix Effects	28
			2.13.2.8 Derivatization	29
		2.13.3	Interfaces to Analytical Instrumentation	29
		2.13.4	SPME Applications	30
		2.13.5	Advantages of SPME	31
3	EXPI	ERIMEN	TTAL	32
	3.1	Experi	mental Layout	32
	3.2	Analyte	es and Chemicals	32
	3.3	Instrum	nentation	34
	3.4	Sample	es	34
	3.5	Identifi	cation of Packaging Materials	35
	3.6	Materia	al Test Procedure	35
		3.6.1	Standard Preparation	35
		3.6.2	Sample Preparation – Dissolution Technique	36
			3.6.2.1 Material Test	36
			3.6.2.2 Migration Test	36
		3.6.3	Gas Chromatographic Conditions	37
		3.6.4 A	Analysis and Quantification	37
		3.6.5	Quality Control Measures	38

	3.7	HS-SI	PME Method	39
		3.7.1	Standard Preparation	39
		3.7.2	Food Simulant and Leaching Conditions	39
		3.7.3	Sample Preparation	40
		3.7.4	HS-SPME Extraction	41
		3.7.5	Instrumental Conditions	41
		3.7.6	Analysis and Quantification	41
		3.7.7	Optimization of SPME parameters	42
	3.8	Metho	od Validation	42
		3.8.1	Specificity	42
		3.8.2	Limit of Detection (LOD) and Limit of Quantification (LOQ)	43
			3.8.2.1 Signal-to-noise (S/N)	44
			3.8.2.2 Blank Determination	44
			3.8.2.3 Linear Regression	44
			3.8.2.4 Checking a Predetermined Limit of Quantification (LOQ)	45
		3.8.3	Linearity Study	46
		3.8.4	Accuracy	46
		3.8.5	Precision	47
			3.8.5.1 Instrument Precision	47
			3.8.5.2 Method Precision	47
	3.9	Data A	Analysis	48
4	DETE COMI	RMIN. POUNI	EVELOPMENT IN THE ATION OF VOLATILE ORGANIC DS IN POLYSTYRENE FOOD G BY DISSOLUTION METHOD	49
	4.1	Identi	fication of Packaging Materials	49
	4.2	Mater	ial Test	50
		4.2.1	Sample Preparation	52
		4.2.2	Chromatographic Conditions	54
		4.2.3	Quantification Method	55

	4.2.4	Method	Validation	57
		4.2.4.1	Specificity	57
		4.2.4.2	LOD and LOQ	59
			(a) Signal-to-noise (S/N)	60
			(b) Blank Determination	61
			(c) Linear Regression	62
			(d) Comparison of LOD and LOQ of Different Approaches	64
			(e) Checking a Predetermined Limit of Quantification (LOQ)	65
		4.2.4.3	Linearity Test	67
			(a) Inspection of y-Residual Plot	67
			(b) Validation of Assumption	69
		4.2.4.4	Accuracy	70
		4.2.4.5	Precision	72
			(a) Instrument Precision	72
			(b) Method Precision	73
	4.2.5		tion of Method to the Analysis of ene Food Packaging	74
		4.2.5.1	Quality Assurance	75
		4.2.5.2	Analyte Concentration in Samples	75
4.3	Migra	tion Test		76
	4.3.1	Selection	n of Control Sample	77
	4.3.2	Sample	Homogeneity	78
	4.3.3	Migration Temper	on of Analyte at Different ature	79

5	MIC MIG FOO	LICATION OF SOLID-PHASE ROEXTRACTION TO THE STUDY OF THE RATION OF VOCS FROM POLYSTYRENE DD PACKAGING INTO WATER AS FOOD ULANT	81
	5.1	Preamble	81
	5.2	Instrumental Conditions	81
	5.3	Optimization of SPME Parameters	82
		5.3.1 Fiber Coating Selection	83
		5.3.2 Sample Volume Studies	83
		5.3.3 Elutropic Strength Studies	84
		5.3.4 Extraction Temperature Studies	85
		5.3.5 Extraction Time Studies	87
		5.3.6 Desorption Time Studies	88
		5.3.7 Sample Agitation	89
		5.3.8 Addition of Salt	90
	5.4	Performance of the Method	91
		5.4.1 LOD and LOQ	91
		5.4.2 Linearity	93
		5.4.3 Precision	95
		5.4.4 Accuracy	96
	5.5	Application of the Method	97
6		ICLUSIONS AND SUGGESTIONS FOR FURTHER DIES	101
	6.1	Conclusions	101
	6.2	Suggestions for Further Studies	103
REFERENC	ES		104
Appendix A			115

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Four common classes of food simulants	17
2.2	Japanese specification for polystyrene food contact materials: (a) Material test; and (b) Migration test	21
3.1	Description of analytes and internal standard	33
3.2	Description of chemicals	33
3.3	Migration conditions used for testing of polystyrene cups	37
3.4	Preparation of calibration standard for migration test	39
3.5	Evaluation of SPME parameters	42
4.1	Characteristic wave numbers obtained from polystyrene samples	50
4.2	Comparison of the extraction efficiencies for different sample extraction techniques	53
4.3	Mean concentration of analytes in samples obtained by internal standard method and standard addition method	56
4.4	Comparison of precision and accuracy using internal standard and sample addition method	56
4.5	Concentration recovered from ten different types of spiked samples	58
4.6	Evaluation of specificity for the targeted analytes	59
4.7	Concentration of analytes and number of replicates used for determination of LOD and LOQ	59
4.8	Data obtained for each test compound based on signal-to- noise approach	60

4.9	obtained using blank determination approach	61
4.10	Parameters of linear ordinary least-squares regression for the five test compounds at seven different levels of concentration	62
4.11	Results of the statistical evaluation of the linear regression curve	63
4.12	Summary of estimated LOD by different approaches	64
4.13	Summary of estimated LOQ by different approaches	64
4.14	Check for predetermined LOQ of 0.2 µg/mL	65
4.15	Check for predetermined LOQ of 0.4 µg/mL	66
4.16	Results of regression test and lack-of-fit test	69
4.17	Summary of findings of linearity tests for the five analytes	70
4.18	% recovery of the analytes at different spiking levels: (a) 10 mg/kg; (b) 200 mg/kg; and (c) 400 mg/kg	71
4.19	Intra-day and inter-day precisions for the five analytes	73
4.20	Precision of method based on different sample matrices	74
4.21	Categories of PS samples and number of replicates used for the analysis	75
4.22	Concentrations of the five analytes found in different PS samples	76
4.23	Concentration of ethylbenzene and styrene in control samples	77
4.24	Concentration of ethylbenzene and styrene in samples	78
4.25	Estimation of ethylbenzene and styrene migrated from polystyrene cup using dissolution method	80
5.1	Data obtained for each test compound based on signal-to- noise approach	92
5.2	Results for regression test and lack-of-fit test	95

5.3	Summary of findings for linearity testing using HS-SPME	95
5.4	Three different concentration levels applied for precision testing	95
5.5	Intra-day and inter-day precision for migration test method	96
5.6	Evaluation of method accuracy by extraction recovery, $p=3$	97
5.7	Mean concentration of analytes migrated from samples into water solution	99

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Structure of styrene	7
3.1	Polystyrene cup with 1 cm rim mark	40
4.1	Resin identification code for styrene	49
4.2	FTIR spectra of (a) reference styrene; (b) PS bowl; and (c) PS container	51
4.3	Comparison of the analyte response using different sample extraction techniques, $p=6$	52
4.4	GC-FID separation of analytes at 10 μ g/mL on a DB-WAX column, 30 m, 0.25 mm I.D., 0.25 μ m film thickness. GC conditions as described in 3.6.3. Peaks: 1 = Toluene; 2 = Ethylbenzene; 3 = iso-Propylbenzene; 4 = n -Propylbenzene; 5 = Styrene and 6 = 1,4-Diethylbenzene (ISTD)	54
4.5	GC chromatogram of an expanded polystyrene cup by using GC conditions as described in 3.6.3. Peaks: 1 = Ethylbenzene; 2 = Styrene and 3 = 1,4-Diethylbenzene (ISTD)	54
4.6	Residual plots for (a) Styrene; (b) Toluene; (c) Ethylbenzene; (d) iso-Propylbenzene and (e) n -Propylbenzene with limits $\pm t(0.05, np-2).S_{res}$	68
4.7	Mean recovery of the analytes based on different concentration levels of spiking	72
5.1	GC chromatogram of analyte mixture using HS-SPME method. Peak: 1 = Toluene (45 ppb); 2 = Ethylbenzene (15 ppb); 3 = iso-Propylbenzene (5 ppb); 4 = n-Propylbenzene (5 ppb); 5 = Styrene (10 ppb); and 6 = 1,4-diethylbenzene (ISTD, 5 ppb)	82

		xvii
5.2	Effect of sample volume on extraction efficiency of analytes	84
5.3	Studies of elutropic strength effect on the targeted analytes	85
5.4	Effect of extraction temperature on analyte extraction efficiency	86
5.5	Extraction time profile for the five analytes	87
5.6	Desorption time profile for the five analytes	88
5.7	Effect of sample agitation rate on the extraction efficiency of analytes	90
5.8	Salting out effect on the five analytes	91
5.9	Residual plot of the targeted analytes (a) Toluene; (b) Ethylbenzene; (c) iso-Propylbenzene; (d) n -Propylbenzene; and (e) Styrene with limits $\pm t(0.05, np-2).S_{res}$	94
5.10	GC chromatogram showing the analytes migrated from a polystyrene cup. Peaks: 1 = Ethylbenzene; 2 = Styrene; and 3 = 1,4-diethylbenzene (ISTD)	98

LIST OF SYMBOLS/ABBREVIAITIONS/NOTATION/TERMINOLOGY

a – Intercept of regression line

ABS – Acrylonitrile butadiene styrene

ATR – Attenuated total reflection

b – Slope of regression line

BTEX – Benzene, toluene, ethylbenzene and xylene

C – Capacity

CE – Capillary electrophoresis

CFR – Code of Federal Regulations

CS₂ – Carbon Disulphide

CW – Carbowax

CW-TPR – Carbowax – templated resin

DCM – Dichloromethane

DMA – Dimethylacetamide

DMF – Dimethylformamide

DNA – Deoxyribonucleic acid

DVB – Divinylbenzene

EB – Ethylbenzene

EC – European Commission

EPS – Expanded polystyrene

FDA – Food and Drug Administration

FT-IR – Fourier transform infrared spectroscopy

GC – Gas chromatography

GC-FID – Gas chromatography - flame ionization detection

GC-MS – Gas chromatography – mass spectrometry

GPPS – General purpose grade polystyrene

GRP – Glass reinforced plastic

HIPS – High impact grade polystyrene

HPLC – High performance liquid chromatography

HS-SPME – Headspace solid-phase microextraction

IARC – International Agency on Research for cancer

ICH – International Conference on Harmonization

I.D. – Internal diameter

IPB – iso-Propylbenzene

ISTD – Internal standard

IUPAC – International Union of Pure and Applied Chemistry

JHOSPA – Japan Hygienic Olefin and Styrene Plastics Association

KCl – Potassium chloride

LC-MS – Liquid chromatography - mass spectrometry

LLE – Liquid-liquid extraction

LOD – Limit of detection

LOQ – Limit of quantification

MAE – Microwave-assisted extraction

MEK – Methyl ethyl ketone

n – Number of samples or levels of standard solutions

NPB – *n*-Propylbenzene

OML – Overall migration limit

OLS – Ordinary least square regression

p – Number of replicates

PA – Polyacrylate

PAHs – Polycyclic aromatic compounds

PDMS - Polydimethylsiloxane

ppb – Part per billion

ppm – Part per million

ppt – Part per trillion

PS – Polystyrene

PTFE – Polytetrafluoroethylene

PVC – Polyvinyl chloride

QC – Quality control

r – Repeatability

RSD – Relative standard deviation

RT – Retention time

SA – Standard addition

SAN – Styrene acrylonitrile

Standard deviation of blank

 S_{res} – Standard deviation of y-residuals

 S_{y0} – Standard deviation of y-intercepts

SBR – Styrene butadiene rubber

SFE - Supercritical fluid extraction

SML – Specific migration limit

S/N – Signal-to-noise ratio

SPE – Solid-phase extraction

SPME – Solid-phase micorextraction

UV – Ultra violet

VOCs – Volatile organic compounds

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Presentations and Publications	115

CHAPTER 1

INTRODUCTION

1.1 Food Packaging

Food packaging plays an important role to promote safe transportation, delivery and storage of food. Packaging makes food more convenient and gives the food greater safety assurance from microorganisms, biological and chemical changes such that the expensive and time consuming packaged foods can enjoy a longer shelf life [1]. In this modern society, packaging materials are also used for food preparation, and packaged foods are placed in ovens, microwaves, and even in boiling water. As a result, packaging becomes an indispensable element in the food sector.

With the advances in technology, various new packaging materials have been developed for food packaging applications. Plastic packaging technologies have been developing vigorously and some plastic containers have actually succeeded in replacing metal, glass and paper in many applications [2]. The main advantage in using plastics for packaging purposes is that most of the polymers have excellent physical properties such as strength and toughness, low weight and flexibility, as well as resistance to cracking [3].

The polymers used for plastic packaging materials are generally considered to be inert; however a large number of chemical adjuncts may be present in the finished products. These substances either added deliberately during manufacturing and processing or, unavoidably, as residues from polymerization reactions. The

chemicals added include plasticizers, antioxidants, release compounds, heat and light stabilizers, lubricants, antistatic chemicals, adhesives, pigments, and many other compounds. The addition of such substances is essential to assist production processes or to enhance the properties and stability of the final product [3]. However, the use of such a wide range of chemicals inevitably gives rise to concern amongst both legislators and consumers. The problem was of particular concern since packaging can involve a long and intimate contact between the food and its container during storage at wholesale, retail outlets, and in the home.

1.2 Research Background

Among the major polymers used in food packaging, polystyrene (PS) has made up a large volume of the consumption of plastic containers. It is widely used as food service packaging because of its extremely strong yet lightweight, provides excellent insulation, and less expensive than many other food service packaging options. It is used for disposable cutlery, meat trays, yoghurt containers, clear eggs cartons, lids, vending cups and others. With the increasing popularity of convenience foods, polystyrene is most commonly used for packing of take-away foods in some fast-food joints, hawkers and food court outlets.

The usage conditions of polystyrene food packaging range from low temperatures for periods of days or weeks, for example packaged dairy and meat products, to high temperatures approaching the boiling point of water for short periods of time, for example vending cups and instant noodle bowls. The low molecular weight constituents present in the polystyrene plastic have the potential to migrate into the foodstuff in contact with the plastic especially during extended periods of time, or at the elevated temperatures. The principal classes of substances, which can migrate from polystyrene plastics to foods and beverages, are: residual monomers, low molecular weight components (oligomers) and various additives. Substances migrating to foodstuffs are of concern if they present a possible health

hazard to the consumer, or cause unacceptable changes to the organoleptic properties of the food or beverages.

In Malaysia, food packaging is widely used due to the changing of food consumption patterns and increasing preferences for convenience and fast food. There is still lacking of controlling and monitoring of chemical residues in food packaging available in the market or food service establishment as well as regulatory compliance by packaging industries. Therefore, it is necessary to develop reliable and efficient method for testing of chemicals in food packaging materials in order to provide assurance to consumers about the safety of the product.

1.3 Statement of Hypothesis

The most tedious, labour intensive and important task encountered in the analytical laboratory is the sample preparation. Techniques to improve sample preparations are necessary in order to isolate the components of interest from the matrix prior to separation, identification and quantification. In the case of food packaging, the complexity and diversity of contaminants present in food packaging materials have resulted in the development of various analytical techniques for their extraction and analysis including microwave-assisted extraction (MAE), supercritical fluid extraction (SFE) and others. Numerous studies have focused on styrene monomer in polystyrene resins or specific foods and its migration to food or food simulants. However, only limited information is available on other volatile organic compounds (VOCs) in polystyrene food packaging and their migration. Based on the existing techniques available, it is expected that a simple, fast, reproducible and efficient analytical method could be developed for the determination of styrene and other volatile organic compounds simultaneously in polystyrene food packaging, and also their migration into food simulant.

1.4 Research Aim

The aim of this study is to develop a gas chromatographic method to determine residual styrene and other VOCs including toluene, ethylbenzene, isopropylbenzene and *n*-propylbenzene in polystyrene food packaging and to study their migration into food simulant.

1.5 Research Objectives

The objectives of this research are as follows:

- (i) To develop a simple extraction technique for residual styrene and other VOCs in polystyrene food packaging.
- (ii) To apply solid-phase microextraction (SPME) technique to determine migration of styrene and other VOCs from polystyrene packaging into food simulant (water).
- (iii) To study the performance characteristics of the developed method.
- (iv) To apply the developed method for the determination of styrene and other VOCs in polystyrene food packaging samples and their migration into food simulant.

1.6 Scope of Study

The scope of research covers method development, method validation and applicability of method for sample testing. Analytes of interest were styrene and four other VOCs, namely toluene, ethylbenzene, iso-propylbenzene and *n*-propylbenzene. Method development includes material test and migration test of the analytes for polystyrene food packaging. In the case of material test, the analytes were extracted using dissolution method and detection using gas chromatography (GC). SPME with GC was used for migration study and water was chosen as food

simulant. Experimental SPME conditions, which include sample volume, absorption and desorption time, temperature, stirring speed and ionic strength were optimized. Quantification of the analytes were achieved by internal standard calibration using 1,4-diethylbenzene as internal standard. The developed method was evaluated with different performance characteristics including limit of detection (LOD), limit of quantification (LOQ), linearity, precision and accuracy. The method was applied to the analysis of various kinds of commercially available polystyrene food packaging.

1.7 Outline of the Thesis

This thesis consists of six chapters. Chapter 1 introduces the research background, research aim, research objectives and scope of this study. Chapter 2 compiles the literature reviews including general information regarding styrene, its application in food packaging, and testing and legislation control of food packaging. Chapter 3 describes the experimental set up and the procedures applied in this study for testing of food packaging. Chapter 4 explains the development, validation and application of the method for determination of VOCs in polystyrene food packaging. Chapter 5 reports and discusses the results of SPME application to study the migration of VOCs from polystyrene food packaging into water as food simulant. The final chapter concludes the findings of this study and suggests areas for further research.