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Abstract: 3D printing, regarded as the most popular additive manufacturing technology, is finding
many applications in various industrial sectors. Along with the increasing number of its industrial
applications, reducing its material consumption and increasing the strength of 3D printed objects
have become an important topic. In this paper, we introduce unidirectionally and bidirectionally
stiffened structures into 3D printing to increase the strength and stiffness of 3D printed objects and
reduce their material consumption. To maximize the advantages of such stiffened structures, we
investigated finite element analysis, especially for general cases of stiffeners in arbitrary positions
and directions, and performed optimization design to minimize the total volume of stiffened struc-
tures. Many examples are presented to demonstrate the effectiveness of the proposed finite element
analysis and optimization design as well as significant reductions in the material costs and stresses
in 3D printed objects stiffened with unidirectional and bidirectional stiffeners.

Keywords: 3D printing; unidirectional and bidirectional stiffened objects; minimum material
consumption; finite element analysis; optimization design

1. Introduction

It has been argued that the digitization of manufacturing, characterized by additive
manufacturing, is bringing along a new era of the fourth industrial revolution. 3D printing
plays a dominant role in additive manufacturing.

Currently, many different materials have been used for 3D printing. Apart from ap-
plications of 3D printing in our daily life, it is also being applied in industries. Enormous
industrial applications require high strength and low material costs for 3D printed objects.
Current research studies have proposed several new structures to reduce material costs
and increase the strength of 3D printed objects. Wang et al. [1] proposed a support-free
hollowing framework to overcome the difficulty of fabricating voids inside a solid and to
reduce the volume of material. Wang et al. [2] introduced a space truss structure to sup-
port hollow 3D objects and optimized the number of struts in the space truss structure to
reduce the material costs. Lu et al. [3] provided another effective way to reduce material
costs and achieve an optimal strength-to-weight ratio by using an optimized hollowing
algorithm based on the concept of honeycomb-like structures.

In addition to skin-frame and honeycomb-like structures, which can be found in
many nature and man-made structures, stiffened structures, including stiffened plates
and stiffened shells, are much more frequently seen in nature and engineering structures.
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Plant leaves (Figure 1a), fly wings (Figure 1b), and human rib-skin (Figure 1c) are excel-
lent examples found in nature and the human body that use stiffeners to support skin
surfaces.

(b)

Figure 1. (a) Rib-skin structures in a plant leaf (Photo by Daniel Hodgkins on Unsplash
(https://unsplash.com/photos/I7sNoicir_I, accessed on 07 September 2021)), (b) fly wing (Photo by
Martin Hauser Phycus (https://commons.wikimedia.org/wiki/File:Wing_D_suzukii_female.jpg, ac-
cessed 27 October 2021)), and (c) the human body (Photo by Bernhard Ungerer (https://com-
mons.wikimedia.org/wiki/File:3D_Female_Skeleton_Anatomy.png, accessed on 10 September
2021)).

Apart from stiffened structures in nature, many engineering structures are stiffened
to raise strength and stiffness and reduce material costs. These stiffened structures include
buildings (Figure 2a—c), and gas holders (Figure 2d).

(d)
Figure 2. (a) Stiffened structures in the Salisbury cathedral (Photo by Tony Hisgett on Flickr
(https://www flickr.com/photos/hisgett/5690722283/, accessed on 8 September 2021)), (b) Yama-
nashi fruit museum (Photo by scarletgreen on Flickr (https://www.flickr.com/pho-
t0s/9160678@N06/620307455/, accessed on 8 September 2021)), (c) garden at Marina South (Photo
from eVolo (https://www.evolo.us/worlds-largest-climate-controlled-glasshouse-wilkinson-eyre-
architects/, accessed on 8 September 2021)), and (d) gas holder (Photo by Richard Rogerson
(https://commons.wikimedia.org/wiki/File:Gas_Holder_by_Battersea_Railway_Station_-_geo-
graph.org.uk_-_1820717.jpg, accessed on 10 September 2021)).

Stiffened structures can be divided into single- and double-sided structures. Single-
sided stiffened structures have all of the stiffeners on one side of the skin’s surfaces (Figure
3a). Double-sided stiffened structures have the stiffeners on both sides of the skin’s sur-
faces (Figure 3b). Due to the requirement of aesthetics, 3D printed objects should be stiff-
ened on one side. Therefore, we only investigated single-sided stiffened structures in this

paper.
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According to the distribution of stiffeners, stiffened structures can be divided into
unidirectional, bidirectional, and arbitrary structures. Unidirectional structures are stiff-
ened with stiffeners in one direction, bidirectional structures are stiffened with stiffeners
in two different directions, and arbitrary structures are stiffened in any direction with
straight or curved stiffeners.

(a) (b)

Figure 3. (a) Single-sided structures in an F-16 (Photo from (https://commons.m.wiki-
media.org/wiki/File:Cutaway_drawing_of_an_F-16.jpg, accessed on 27 October 2021)) and (b) dou-
ble-sided stiffened structures.

The main functions of stiffeners are to increase the strength and stiffness and reduce
material costs. In addition, well-designed stiffened structures can achieve aesthetic satis-
faction. In addition to the above functions, stiffened structures have two advantages com-
pared with skin-frame structures:

(1) The frames of skin-frame structures occupy a much larger space. In contrast, the
space required by stiffened structures is much smaller, since all of the ribs are closely
attached to the skin’s surfaces;

(2) Unlike skin-frame structures where only the ends of the truss members are in contact
with the skin’s surfaces, leading to a small contact area and large stress concentra-
tions between the frame and skin’s surface, stiffened structures have a much larger
contact area to significantly reduce stress concentrations, since the inner faces of all
stiffeners are in contact with the skin’s surface.

Compared to honeycomb-like structures, stiffened structures have the following ben-
efits:

(1) Stiffened structures can place stiffeners on skin surfaces more efficiently and effec-
tively, since the placing of stiffeners follows finite element calculation results of a
hollow object. However, honeycomb-like interior structures carve porous cells fol-
lowing finite element calculation results of a solid object. The finite element calcula-
tion results of a solid object are completely different from the finite element calcula-
tion results of a hollow object to be made;

(2) The carved cells of honeycomb-like structures fill the whole volume. However, the
stiffeners of stiffened structures only occupy a very small part of the whole volume.
Therefore, stiffened structures can greatly reduce the volume over honeycomb-like
interior structures;

(3) The internal space of honeycomb-like interior structures is fully occupied by the cells.
Conversely, the internal space of stiffened structures is not occupied. Therefore, stiff-
ened structures are especially suitable for situations where an unoccupied internal
space is required.

In order to tackle the above problems, Li et al. [4] used a rib-reinforced shell structure
to release internal space and optimized the topology of the rib network. The work in [4]
did not consider structures stiffened using unidirectional and bidirectional stiffeners,
which are most widely applied in engineering. In addition, [4] placed stiffeners along the
edges of finite elements, which applied a serious limitation on placing stiffeners in the
most appropriate positions and directions to maximize the potential of the stiffeners. The
current paper tackles these problems and makes the following contributions:
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e Introduces unidirectionally and bidirectionally stiffened structures that are widely
applied in engineering into 3D printing of geometric models to effectively stiffen
thin-walled 3D models for maximum strength and minimum material costs;

e Investigates the finite element analysis of stiffened structures with stiffeners not on
the edges of finite elements and performs finite element calculations of unidirection-
ally and bidirectionally stiffened 3D printed objects;

e Integrates finite element calculations into optimization design and formulates the
mathematical model of optimization design to minimize material costs and maximize
the strength of 3D printed objects.

2. Related Work

The work proposed in this paper is related to 3D printing, finite element analysis,
and structural optimization. We briefly review existing work on these aspects.

2.1. 3D Printing

3D printing has become an active research field and has attracted much research at-
tention. There are many publications on the various aspects of 3D printing. In this subsec-
tion, we briefly review some of them.

Skouras et al. [5] presented a method for combining finite element analysis, sparse
regularization, and constrained optimization for fabrication-oriented design of actuated
deformable characters. This allows a user to automatically create physically fabricated
prototypes using rapid manufacturing technologies. Cali et al. [6] designed an intuitive
workflow that can automatically fit novel 3D printable and posable joints to a rigged 3D
model with user specified rotational constraints. This method is able to convert 3D models
into printable, articulated, and posable models with internal friction and without the need
for manual assembly. Zhu et al. [7] introduced a new method to synthesize mechanical
toys from input motions. With designer supplied geometry and a time-varying motion,
the algorithm automatically selects parts from a parameterized set and optimizes the po-
sitions and parameters for these parts; then, it generates a mechanism assembly to pro-
duce specified motion. Similarly, Coros et al. [8] presented an interactive design system
to design a wide range of animated mechanical characters that can be fabricated using 3D
printing. The system takes an articulated character and user created motion curves as in-
puts and generates an optimized mechanism that approximates motion curves as closely
as possible. To manufacture physical objects with the desired translucent appearance,
Done et al. [9] presented a complete solution for automatically fabricating a material vol-
ume with a desired surface bidirectional subsurface scattering reflectance distribution
function. To overcome the problem of computing an object’s material composition from a
functional description, Chen et al. [10] provided a process called specification to fabrica-
tion translation. This process allows for 3D printing of complex objects with spatially var-
ying appearance, optical characteristics, and mechanical properties.

2.2. Finite Element Analysis

Finite element analysis (FEA) originated from the need to solve complex elasticity
and structural analysis problems in civil and aeronautical engineering. It has become the
most effective numerical method widely applied in scientific research and engineering
calculations. There are many publications on finite element analyses in these fields. Here,
we only review some representative finite element analyses in engineering structures, es-
pecially focusing on plates and shells.

Zienkiewicz et al. [11] introduced the finite element method for solid and structural
mechanics. Rao et al. [12] and Samanta and Mukhopadhyay [13] investigated finite ele-
ment analysis of stiffened plates and shells with large displacements, respectively. Sa-
manta [14] used FEA to analyze the vibrations of stiffened shells. Ojeda et al. [15] devel-
oped a new approach for stiffened composite plates. Cui et al. [16] presented a smoothed
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FEA to deal with geometrically linear and nonlinear problems of plates and shells. Ngu-
yen-Van et al. [17] considered mesh distortions in the FEA of plates and shells.

2.3. Structural Optimization

Structural optimization of 3D printing using a single material is an active topic. It has
been investigated by some researchers.

To guarantee structurally sound prints that can survive cleaning, transportation, or
handling, Stava et al. [18] presented a system with automatic detection and correction.
The areas with high structural stress are detected by combining a lightweight structural
analysis solver with 3D medial axis approximations. The model is corrected by combining
three approaches: hollowing, thickening, and strut insertion.

To fabricate shell objects with variable thicknesses, Zhao et al. [19] presented a two-
step technique to optimize thickness parameters according to the given boundary surface
and user specified external forces. They first developed a patch-based simulation tech-
nique to efficiently support the static simulation. Afterwards, the derivative of the stress
required in the sensitivity analysis was computed to turn the optimization into sequential
linear programming,.

For the purpose of reducing the cost of the materials used in 3D printing, Wang et al.
[2] proposed an automatic solution to design a skin-frame structure. The frame structure
was designed by an optimization scheme that significantly reduces materials and guaran-
tees that the optimized structure is physically stable, geometrically approximate, and
printable. The number of struts is minimized by solving a sparsity optimization problem.

Similarly, Lu et al. [3] introduced a hollowing optimization algorithm based on the
concept of a honeycomb-cell structure to reduce the material of 3D models by carving
porous cells in solids. The yielding honeycomb-like interior structure provides an optimal
strength-to-weight ratio and relieves the overall stress.

Hollowing and thickening without internal supports release the internal space but it
does not use materials optimally, since shell structures are weak in structural strength and
stiffness. Skin-frame and honeycomb-like structures occupy the internal space that is to
be used in many situations. To tackle the above problems, this paper used stiffened struc-
tures with unidirectional and bidirectional stiffeners, widely used in engineering, for 3D
printing to release the internal space, investigated the finite element analysis to deal with
stiffeners at arbitrary positions and in arbitrary orientations, which was not addressed in
[4], and carried out optimization design to improve structural strength and stiffness and
minimize material consumption of single material 3D printing.

3. Finite Element Analysis

Zienkiewicz et al. [20] presented a method to treat curved shells as an assembly of
flat shell elements. This treatment enables us to analyze both curved and flat skin surfaces.
We applied the same deformations at the junctions of stiffeners and skin surfaces so that
the same displacement functions were applied to both beam and flat shell elements. There
are two types of flat shell elements: the constant strain triangle (CST), which deals with
in-plane deformations, and the discrete Kirchhoff triangle (DKT), which tackles the lateral
bending deformations. The beam elements can be placed within the shell elements in any
place with arbitrary orientations. The large deflection problem is addressed by applying
the von Karman'’s large deflection theory. An iterative procedure is introduced to solve
the geometric nonlinearity. For the sake of completeness, this finite element analysis is
introduced in the following subsections.

3.1. Flat Shell Element

The basic flat shell element employed here was a combination of CST and DKT ele-
ments. Figure 4 shows a typical triangular element. Its nodes are arranged in an anticlock-
wise direction. Each node contains two translational degrees of freedom. In Figure 4, the
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X- and Y-axes define a global coordinate system, x- and y-axes define a local coordinate
system, and the &- and n-axes define a skew coordinate system. The stiffness matrix of the
element presented in [21] can be written as:

KY = f f f BT DB,,d = BT, DB, hA 1)
N

K :fﬂn BT DB,dn )

where Q denotes the element volume.

X

Figure 4. Local coordinate system of a stiffener within a flat shell element.

3.2. Finite Element Formulation of Stiffeners

The stiffeners considered in [4] are on the edges of the flat shell finite elements. This
limitation seriously prevents stiffeners from being placed at arbitrary positions and in ar-
bitrary directions that cannot maximize the potential of stiffeners in stiffening shell struc-
tures. In this subsection, we considered placing stiffeners at any position and in any ori-
entation to tackle general situations of arranging stiffeners so that the potential of stiffen-
ers could be maximized.

We first present the element stiffness of the stiffener so that we can accumulate the
contributions of stiffeners to skin surfaces. As shown in Figure 4, the displacement field
of the stiffener in the skew coordinate system has three translations and two rotations [15]:

us=[us vS w® 6 eg]T @)

Let the middle plane of the shell be the reference plane for the stiffener, the coordi-
nate transformation from the skew coordinates (§,71) to the local coordinates (x,y) is
defined as:

&= (x—x0)cosP + (y — yo)sind

1= —(x = xg)sind + (y — yo)cos @
Solving Equation (4) for x and y, the following equation is obtained:
x = xo + écos@ — nsin®
0t¢ n G)

Yy =y, + ésin® — ncos®
By applying same shape functions to both stiffener and flat shell elements, we can
guarantee the deformation compatibility between these two elements. The local displace-
ments of stiffeners can be represented in local displacements of flat shell elements as:
u® = ucos@ + vsin®
0 = 0,cos® + 0, sind (6)
05 = —0,sin® + 0,,cos®
where u and v represent the displacements in the reference plane of the flat shell ele-

ments, and 6, and 8, are the rotations of the flat shell elements around the x — and y-
axes, respectively.
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The generalized strain vector, €°, inthe ¢ — 1 stiffener skew coordinate system:

ous 06y 96,
FF T

S =

@)
can be transformed into that in the x —y shell elemental local coordinate system using
the following transformation:

&S =TS&P 8)

where T? is the transformation matrix that relates the strain vector in the & —n stiffener
skew coordinate system to that in the x —y shell elemental local coordinate system:

cos’@ sin’@ 0.5sin2@ 0 0 0 0
TS=| o 0 0 cos?’@ sin¢  0.5sin2@ 0.5sin20 9)
0 0 0 —0.5sin2@ 0.5sin2@  —sin’@ cos?@

The strain vector, &P, in the shell elemental local coordinate system can be defined
as:

,_[0u 0v du_ 9v 36, 06, 26, 96,]"

——t— -—= 2 = __Z (10)
Ox Jdy 0Jdy O0x ox dy dy Ox

The strain vector, &P, in the elemental local coordinate system can be related to the
displacement vector, &, through the following strain—displacement relationship:

&P = B°T§ (11)
and the B® matrix is given bellow:
B;, 0
s m
wo[t 2]
where
rON,, 1
dx 0 I
0Ny,
s —| o
B, 3 | (13)
ON,, Ny |
| dy dx
and
[ON, 1
— 0
dx |
Bs =] 0 aNbI 14
b — ay I ( )
| dy  Ox J

The stress—strain relationship of the stiffener in the local coordinate system can be
expressed as:

o, = [Nss MSS Tss]T = DS¢gS (15)

where

DS = |ESSS  ESI® 0

0 0 GY°

ESAS ESSS 0
] (16)

In Equations (15) and (16), N*° is the axial force, M*® is the bending moment, and
T*S isthe torsion in the stiffener. E¥ is the Young’s modulus of the stiffener material, and
A® is the cross-sectional area of the stiffener. S and IS are the first and second moment
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of the stiffener’s cross-sectional area about the reference axis, respectively, G° denotes
the modulus of rigidity, and J° denotes the polar moment of inertia of the stiffener’s
cross-sectional area.

The element stiffness of the stiffener is given by:

Ks = j TT (B5)(T5)TDSTSBSTd¢ (17)
Ls

Finally, the overall stiffness matrix for the stiffened structures can be calculated by
adding individual stiffness from CST, DKT, and stiffener elements through the following
equation:

K? = Kb, + Kb + KS (18)

4. Optimization Design

For 3D printed objects and structures, the wall-thickness of shell structures is usually
set to the minimum printable wall thickness to reduce material consumption. The struc-
tural strength and stiffness are satisfied by stiffening shell structures with stiffeners. Since
the wall-thickness of shell structures is the minimum printable thickness, minimizing the
material consumption of 3D printed objects and structures becomes the minimization of
the total volume of all stiffeners.

Stiffeners with different types of cross-sections are available in engineering applica-
tions. In this paper, stiffeners with rectangular cross-sections were used to demonstrate
the optimization design model.

Let w and h represent the width and height of the stiffener cross-section. The goal
was to minimize the overall volume of stiffeners while satisfy the strength requirement.
The objective function for the optimization design can be formulated as finding the mini-
mum of the total stiffener volume:

<G (19)

where V; is the volume of the i** stiffener; n is the total number of the stiffeners; g,

is the allowed maximum von Mises stress for both shell elements and stiffener elements;
o is the material yield strength; w and h are the design variables; and w, w, h, and h
are the lower and upper bounds of the stiffener width and height.

Several optimization methods, such as the genetic algorithm [22-24] and particle
swarm optimization [25-27], can be used to solve the above minimization problem. In this
paper, the nonlinear constrained problem formulated in Equation (19) was solved with
the interior point method in the MATLAB Optimization Toolbox, where the gradients are
estimated using finite differences. That approach aims to solve the constrained minimiza-
tion through a sequence of approximate minimization problems [28]. To that purpose, the
interior point optimization algorithm takes the original constrained minimization prob-
lem in Equation (19) and converts it into a new system (20) where the inequality con-
straints are removed:
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(20)

Let f;,j = 1,2,-+,5, represents the five inequality constraints in Equation (19), s =
(s1, 52,+*,55) is a vector of slack variables, s;, associated with the inequality constraints,
fj, and the scalar u >0 is a multiplier (called barrier parameter) of the expression
Z?zl In(s;) as described in [29]. Note that the boundedness of the expression ln(sj) re-
quires all s; to be positive. Equation (20) is then solved iteratively through a series of
Newton steps and conjugate gradient steps [30,31] as follows. At each iteration, the
method selects one of the following steps:

e A direct step in (w, h, s), also called a Newton step. In this step, the Karush-Kuhn-
Tucker (KKT) equations V,,,L(w,h, 1) = 0 are solved, where L(w,h,2) is the La-
grangian function described as:

n 5
Lk ) = Vit > 4 (21)
=1 =

and A= (44,4,,,4s) is the Lagrange multiplier vector;

e A conjugate gradient step which determines (w,h) and s in order to solve Equa-
tion (20). To this aim, the method considers a quadratic approximation using a trust
region [30]. The procedure uses an approximation around a given point (w, h) of the
function Y-, V; subjected to minimization by using a simpler function describing
accurately the behavior of the target function in the neighborhood of such a point,
called the trust region [29]. Thus, if R denotes the radius of the trust region, the
method solves the KKT equations:

n 5
i=1 j=1

through least squares to determine the Lagrange multipliers. Then, the algorithm
minimizes the norm of linearized constraints inside the region of radius R (we refer
the interested reader to [29,31] for details).

The value of the barrier parameter u is reduced after each iteration to enable the
final value to converge to the target result [31] (see also [32]).

5. Numerical Examples and Experimental Results

The integrated finite element analysis and optimization design were implemented in
MATLAB on a desktop PC with an Intel Xeon E5 CPU and 32 GB of memory. As the FEA
was computationally expensive, the CST, DKT, and stiffener elements were implemented
in C++ but compiled as MEX functions for speed reason.

The material for both shell and stiffeners is acrylonitrile butadiene styrene (ABS). The
Young’'s modulus (E), Poisson ratio (v), and yield strength () of the shell and stiffener
material, and the stiffener limiting dimensions w, w, h, and h are given in Table 1.
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Table 1. Material properties and stiffener limiting dimensions.
E (MPa) v G (MPa) w(mm) w(@mm) h(mm) h (mm)
2000.0 0.3 40.0 1.0 4.0 1.0 4.0

In this section, two stiffening methods are presented to place stiffeners along the skin.
Unidirectional stiffeners mean that all the stiffeners go in the same direction (Figure 5a),
and bidirectional stiffeners mean the stiffeners go in two different directions (Figure 5b).

(a) (b)

Figure 5. Two ways of slicing of geometries: (a) unidirectional slicing; (b) bidirectional slicing.

Unidirectional stiffeners: Here, we discuss how to optimally stiffen a curved shell
with unidirectional stiffeners.

Figure 6 presents optimized supporting structures in the same radial direction. The
total number and the total volume of the stiffeners for the optimized unidirectional stiff-
eners are shown in Figure 6 and given in Table 2, where (a) means Figures 6a and 7a, (b)
means Figures 6b and 7b, and (c) means Figures 6c and 7c. As shown in Table 2, Figure 6a
has four stiffeners that reach the upper limits of the dimensions with a total volume of
3710.55 mm?3, but the stiffened shell still fails to satisfy the strength requirement. Figure
6b has the best output within the feasible domain, which has a total volume of 1301.65
mm?3. Figure 6¢c shows that more stiffeners are used than in Figure 6b, and the total volume
1658.35 mm?® was slightly larger than Figure 6b.

< N
| \ / ‘\\\
(a) (b) (c)

Figure 6. Optimized unidirectional stiffeners from the algorithm: (a) 4 stiffeners; (b) 9 stiffeners; (c)
10 stiffeners.

Table 2. Stiffener number and volume.

() (b) (c)
NoS* VoS**(mm?®) NoS* VoS**(mm?®) NoS* VoS **(mm?)
Figure 6 4 3710.55 9 1301.65 10 1658.35
Figure 7 6 7068.91 12 6780.97 14 7200.96

Nos *: number of stiffeners; VoS **: volume of stiffeners.

Bidirectional stiffeners: To find out the balance between maintaining object sound-
ness and reducing printing material, all possible combinations of stiffeners in orthogonal
directions are iterated to search for an optimized result.
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(a) (b) (c)

Figure 7. Optimized bidirectional stiffeners from the algorithm: (a) 6 stiffeners; (b) 12 stiffeners
and (c) 14 stiffeners

Figure 7 presents some of the optimized results with different numbers of stiffeners.
The total number and the total volume of the stiffeners for the optimized bidirectional
stiffeners shown in Figure 7 are given in Table 2. For the case shown in Figure 7a, fewer
stiffeners were used in both directions leading to a smaller volume of stiffeners, 7068.91
mm?. However, the stress constraint ¢ < & could not be satisfied even when the size of
the stiffeners reached the upper limits of the dimensions. Figure 7b was the best output
from the algorithm with a total volume of 6780.97 mm?3. In Figure 7c, though the stress
constraint was satisfied, the use of more stiffeners caused the largest total volume of
7200.96 mm?.

3D Printed Uni- and Bidirectionally Stiffened Objects

Figure 8 shows all 3D printed models obtained with the proposed optimization algo-
rithm for uni- and bidirectionally stiffened objects. In Figures 9-15, boundaries are indi-
cated with small purple spheres in (a). The applied load was gravity acting in the direction
perpendicular to the plane defined by the boundaries (Figures 10-15) or the plate plane
(Figure 9). Clamped supports were used for all the models shown in Figures 9-15. Figures
9-15 show the change in the stress field of these objects with and without optimized stiff-
eners. The total volume of stiffeners and the maximum von Mises stress in the shell of the
models shown in Figures 9-15 are given in Table 3.

Figure 8. All of the 3D printed models.

Table 3. Total stiffener volume and maximum von Mises stress in the shells with and without stiff-
ening.

Maximum von
Mises Stress with

Maximum von Mises

. Total Stiffener
Stress without

Volume (mm?3)

Stiffening (MPa) Stiffening (MPa)
Figure 9 Flat plate 278.198 22.977 338.530
Figure 10  Square plate 159.268 21.749 481.623
Figure 11 Snail 33.273 27.282 141.645
Figure 12 Botanic 90.927 38.604 346.926
Figure 13 Bridge 94.498 15.785 281.855
Figure 14 Dome 59.028 35.631 689.206
Figure 15 Hemisphere 42.020 36.690 989.145
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y

v
(a) (b) (c) (d)

Figure 9. Unidirectionally stiffened flat plate, from left to right: (a) initial stress without stiffeners; (b) optimized stiffeners;
(c) final stress with stiffeners; (d) 3D print.

Figure 9 shows the stress field, optimized stiffeners, and 3D printed unidirectionally
stiffened plate. As shown in Table 3, the initial stress distribution of the flat plate without
the unidirectional stiffeners, the maximum von Mises stress was 278.198 MPa, but after
introducing two optimized unidirectional stiffeners with a total volume of 338.530 mm?
(Figure 9b), the maximum von Mises stress reduced noticeably from 278.198 MPa (Figure
9a) to 22.977 MPa (Figure 9c). The 3D printed model of the stiffened plate is shown in
Figure 9d.

(@) (b) (c) (d)

Figure 10. Bidirectionally stiffened square plate, from left to right: (a) initial stress without stiffeners; (b) optimized stiff-
eners; (c) final stress with stiffeners; (d) 3D print.

Figure 10 shows the stress field, optimized stiffeners, and 3D printed bidirectionally
stiffened square plate. As shown in Table 3, with the optimized stiffeners of volume
481.623 mm? depicted in Figure 10b, the initial maximum von Mises stress reduced from
159.268 MPa (Figure 10a) to 21.749 MPa (Figure 10c). Figure 10d presents the 3D printed
model.

(@) (b) (c) (d)

Figure 11. Unidirectionally stiffened snail, from left to right: (a) initial stress without stiffeners; (b) optimized stiffeners;
(c) final stress with stiffeners; (d) 3D print.

Another example of a unidirectionally stiffened snail is presented in Figure 11. Figure
11a shows that the initial maximum von Mises stress in the snail without any stiffener was
33.273 MPa. As shown in Table 3, after adding supporting stiffeners with a volume of
141.645 mm?® (Figure 11b), the maximum von Mises stress in the snail dropped from



Mathematics 2021, 9, 2835 13 of 16

33.273 MPa (Figure 11a) to 27.282 MPa (Figure 11c), and Figure 11d shows the 3D printed

model.
= N A -
A2 k f‘«</)("\§‘ 2 |
- _ 0\ '
SV N |
(a) (b) © (d)

Figure 12. Bidirectionally stiffened botanic, from left to right: (a) initial stress without stiffeners, (b) optimized stiffeners,
(c) final stress with stiffeners, (d) 3D print.

Figure 12 presents the application of bidirectional stiffeners in a more complicated
geometry botanic. As shown in Table 3, the initial stress without bidirectional stiffeners
had a maximum value of 90.927 MPa (Figure 12a). The introduction of stiffening struc-
tures with a volume of 346.926 mm? (Figure 12b) reduced the stress from 90.927 MPa to
38.604 MPa (Figure 12c), and Figure 12d shows the 3D printed model.

(a) (c)

Figure 13. Unidirectionally stiffened arch bridge, from left to right: (a) initial stress without stiffeners; (b) optimized stiff-
eners; (c) final stress with stiffeners; (d) 3D print.

The calculated results of the arch bridge are presented in Figure 13 and Table 3. With
the optimized stiffeners with a volume of 281.855 mm? (Figure 13b), the maximum von
Mises stress in the arch bridge reduced from 94.498 MPa (Figure 13a) to 15.785 MPa (Fig-

ure 13c), and Figure 13d shows the 3D printed model.
(@) (b) (c) (d)

Figure 14. Bidirectionally stiffened dome, from left to right: (a) initial stress without stiffeners; (b) optimized stiffeners; (c)
final stress with stiffeners; (d) 3D print.

The calculated results of the dome are presented in Figure 14 and Table 3. Figure 14a
shows that the initial maximum von Mises stress in the dome without any stiffener was
59.028 MPa. After inserting the supporting structures with a volume of 689.206 mm? (Fig-
ure 14b), the maximum von Mises stress in the dome dropped from 59.028 MPa (Figure
14a) to 35.631 MPa (Figure 14c), and Figure 14d shows the 3D printed model.
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(©) (d)

Figure 15. Bidirectionally stiffened hemisphere, from left to right: (a) initial stress without stiffeners; (b) optimized stiff-
eners; (c) final stress with stiffeners; (d) 3D print.

The calculated results of the hemisphere are presented in Figure 15 and Table 3. The
maximum von Mises stress of the initial stress field depicted in Figure 15a without bidi-
rectional stiffeners was 42.020 MPa. Figure 15b shows the optimized bidirectional stiffen-
ers with a volume of 989.145 mm?3. With the optimized stiffeners, the maximum von Mises
stress became 36.690 MPa (Figure 15c), and Figure 15d shows the 3D printed model.

6. Conclusions and Limitations

In this paper, unidirectionally and bidirectionally stiffened structures were intro-
duced to stiffen 3D printed objects for saving material costs and improving structural
strength and stiffness. The finite element analysis of stiffened objects with stiffeners
placed in arbitrary positions and directions was investigated. The optimization of stiff-
ened objects was examined. They were integrated to minimize material consumption. Nu-
merical examples demonstrated obvious improvements brought about by the proposed
approach.

The proposed approach sliced geometries equally to the placed stiffeners. The stress
field was not considered when placing stiffeners. Therefore, the distribution of stiffeners
may not have been optimal. A possible improvement is to find an oriented bounding box
of the areas exceeding the specified stress and to slice the geometry within these critical
areas. Alternatively, we could place stiffeners under the guidance of the stress field. The
distribution optimization and cross-section size optimization of the stiffeners will be inte-
grated into a unified model to further minimize material consumption of 3D printing. The
stiffeners with other types of cross-sectional shapes were not examined in this paper. Their
performance in stiffening thin-walled objects can be investigated and optimized to save
material costs and improve structural strength and stiffness

An improved topology optimization in the future is to dimension each stiffener in-
dependently and exclude some of the stiffeners which have dimensions that reach the
lower bound. After a stiffener network is generated, we will run the cross-sectional shape
optimization to identify stiffeners that have dimensions that are at the minimum bound.
We will then remove one of these identified stiffeners that has the least effect on the net-
work to generate a new stiffener network and repeat the shape optimization on this new
network. The process will be repeated until an optimal stiffener distribution and optimal
stiffener size, which satisfy all constraints, are obtained.
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