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Abstract: A tunable spacing dual-wavelength Q-switched fiber laser is experimentally demonstrated
based on a fiber Bragg grating tunable device incorporated in an erbium-doped fiber laser (EDFL). The
system utilizes two identical fiber Bragg gratings (FBGs) at 1547.1 nm origin to enable two laser lines
operation. The wavelength separations between two laser lines are controlled by fixing one of the
FBGs while applying mechanical stretch and compression to the other one, using a fiber Bragg grating
tunable device. The seven steps of wavelength spacing could be tuned from 0.3344 to 0.0469 nm
spacing. Pulse characteristics for both close and wide spacing of dual-wavelength Q-switched fiber
laser are successfully being recorded. The findings demonstrate the latest idea of dual-wavelength
fiber laser based on FBG tunable device, which offers a wide range of future applications.

Keywords: Q-switched fiber laser; erbium-doped fiber laser; dual-wavelength; tunable spacing; fiber
Bragg gratings; carbon nanotubes

1. Introduction

Dual-wavelength fiber lasers, which are versatile light sources capable of providing
more than single discrete laser emission lines, have sparked considerable interest in a
wide range of applications, including remote sensing instruments [1,2] and fiber-based
sensors [3–6], optical communication systems, microwave photonics [7–10], millimeter-
wave [11] and terahertz waves [12,13], spectroscopy [14] and biomedical research [15].
Until now, many approaches for generating dual-wavelength lasing that implementing
various techniques have been proposed, including utilization of comb filters with specialty
fiber [16–18], phase modulator [19,20], nonlinear optical effects [21,22] and hybrid-gain
schemes [23]. Having these techniques in a passively Q-switched fiber laser mechanism
will generate dual laser lines with pulsed output. By using a tunable FBG device for
Erbium-doped fiber (EDF) laser in this experiment, a new potential of dual-wavelength by
passive optical devices can be introduced at the 1.55 µm telecommunication window.

Saturated absorbent (SA) is an essential component of passive pulse lasers. They are
traditionally classified as artificial or natural SA. Natural SA has been in the spotlight for
being able to beat the widely used semiconductor saturated absorber mirror (SESAM) prior

Photonics 2021, 8, 524. https://doi.org/10.3390/photonics8120524 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0003-1577-4773
https://orcid.org/0000-0002-2061-0549
https://doi.org/10.3390/photonics8120524
https://doi.org/10.3390/photonics8120524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8120524
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics8120524?type=check_update&version=1


Photonics 2021, 8, 524 2 of 11

to the discovery of the material as SAs. Carbon nanotubes were among the first materials
used as SA because they are cheap, easy to assemble and used, when compared to the
conventional saturable absorber, SESAM. Furthermore, CNT is an ideal SA because of
its pulse characteristics, such as low saturation power, fast optical response, high energy
pulse yield, and having a good stability performance when incorporated in the fiber laser
cavity [24]. Until now, CNT is yet the most encouraging and economical SA to be used to
maintain a robust pulsed laser performance as well as being cheap and easy to fabricate
compared to other materials. In addition, CNTs have been widely used in a variety of ways,
ranging from the most basic, which involves inserting a thin film of CNT between two
fibers [25], to the most advanced, which involves spraying a CNT solution or coating it onto
D-shaped fibers [26] and micro tapered fibers [27]. In this project, we retain the sandwich
technique of CNT thin films in our cavity design to maintain good stability performance
from Q-switched output and focusing on the wavelength tunability of the dual-wavelength
output which is still not much explored by other researchers.

There are now various approaches using specialty fibers as fiber filters to generate
tunable spacing dual-wavelength lasing in their configuration, either with a presence of
pulse or without pulse [28]. They obtained specific wavelength spacing between two
controllable laser lines. In this study, we focus on prior work utilizing fiber Bragg grating
as a wavelength filter, which may be classified into two types, one involving just one
FBG and the other including two FBGs for dual-wavelength output design. Recently, Gao
et al. proposed a tunable dual-wavelength fiber ring-cavity laser based on an FBG and
DFB laser injection, a stable tunable dual-wavelength lasing with a wavelength spacing of
2.08 nm and a tuning range from 2.08 to 5.34 nm has been achieved [29]. Luo et al. and
Feng et al. proposed dual-wavelength ring-cavity continuous-wave fiber lasers without
pulse outputs, as compared to our proposed setup, where stable dual-wavelength laser
outputs were achieved by changing the operating temperature of the FBGs [30] and by
using a single FBG, exploiting its birefringence characteristic for the dual-wavelength
output [31]. Ibarra et al. proposed a tunable dual-wavelength operation of an all-fiber
thulium-doped fiber laser based on tunable fiber Bragg gratings, a stable dual-wavelength
lasing with a wavelength spacing from 0.54 nm to 9 nm was achieved [32]. Another
configuration of tunable dual-wavelength is demonstrated by Wang et al. [33], whereby
a switchable and tunable wavelength-emitting status was achieved by a Bragg grating
written in polarization-maintaining- fiber Bragg grating (PM-FBG) with a tuning range
from 0.02 to 0.52 nm. On the other hand, Zalkepaly et al. also reported a dual-wavelength
fiber laser, whereby the dual-wavelength output offered capable to be switched between
two wavelengths only, which are at 1532 and 1533 nm, without a dual-wavelength tuning
mechanism applied to the optical cavity [34]. We grasped the concept from previous works
by designing our metal block model to manually control the strain given to the FBG. In
this study, we achieved an ultranarrow pulse laser for dual-wavelength output utilizing
the easiest approach to adjust the FBG at ambient temperature. We designed our metal
block utilizing FBG and offer a simpler approach to manage the wavelength tunability by
employing this configuration.

By using a specific method, these outputs need to be manipulated to meet the re-
quirement for specific applications, especially for tunable dual-wavelength by controlling
the wavelength separation between them. Two fiber Bragg gratings (FBG) at the same
central wavelength are used to produce dual-wavelength in the cavity. The FBG acts as a
wavelength selector due to its narrow band reflection. In this experiment, the wavelength
for one of the FBG, which is denoted as FBG 1, is fixed, while another FBG, which is
denoted as FBG 2, is tuned using superimposed FBGs by applying the FBG 2 with some
mechanical stretch and compression. However, EDF is a homogeneous gain medium at
room temperature and makes it difficult to generate more than one laser line due to strong
mode competition happens in the cavity. To encounter this mode competition, cavity losses
are created to allow more than one laser to be operated by adjusting different losses for two
FBGs, which cover from 1547.12 to 1547.45 nm with seven steps of wavelength separations.
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In this paper, we propose a new simple tunable dual-wavelength Q-switched fiber
laser by using carbon nanotubes (CNT) as a saturable absorber (SA). The dual-wavelength
tuning capability is successfully demonstrated with the presents of two FBGs incorporated
together in the cavity configuration. The wavelength separation is controlled by using the
loss control method for two FBGs with the help of a tunable FBG device. A tunable dual-
wavelength fiber laser is successfully achieved with seven steps of wavelength separation
with wavelength spacing from 0.0469 to 0.3344 nm is attained.

2. Carbon Nanotubes/Polyvinyl Alcohol Blends Preparation

Carbon nanotubes/polyvinyl alcohol (CNT/PVA) thin film was prepared via a simple
polymer casting approach by referring to H. Ahmad et al. [35]. First, 1 g of PVA (Fluka,
Mw = 61,000) was immersed into 25 mL of deionized water. The mixture was then heated
to 60 ◦C under stirring conditions for an hour until the PVA was completely dissolved.
Meanwhile, 5 mg of CNT (Nanostructured and Amorphous Materials Inc., Los Alamos,
NM, USA, 95%) was dissolved into 20 mL of deionized water. The solution was sonicated
for 30 min and then stirred for another 30 min. Then, the CNT solution was poured into
the PVA solution and stirred for 10 min. A total of 1 mL of the mixture was then poured
into a petri dish immediately and placed in a clean environment for 24 h. Finally, the
homogenous CNT/PVA thin film was peeled off from the petri dish and was ready to be
used as the saturable absorber.

3. Saturable Absorption of CNT Material

The twin detector method was used to obtain the results for material saturable ab-
sorption as in the previous work [36]. This method is a characterization technique that is
used to obtain saturable absorption properties for all saturable absorber materials. In our
work, CNT was the SA material utilized in the experiment. The experimental data of the
material saturable absorption are shown in Figure 1, where the dotted mark represents
the experimental value for the modulation depth of CNT thin film, while the linear line
represents the fitting curve based on the characterization of the modulation depth for the
twin detector method. The calculated values of the modulation depth (α0), the saturation
intensity (Isat) and the non-saturable absorption loss (αns) can be obtained after fitting the
formula in Equation (1) based on the modulation depth numerical study [37]:

α(I) =
α0

1 + I
Isat

+ αns (1)

where α(I) is the intensity-dependent absorption coefficient obtained from calculated values
based on the plotted graph. From the fitting, the modulation depth, saturation intensity,
and non-saturable absorption loss of the device are estimated to be 16.4%, 0.025 MW/cm2

and 83.6%, respectively. This indicates that CNT thin film has a robust saturable absorption
property and is comparable to other materials [38–40].
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Figure 1. Measured saturable absorption data and its corresponding fitting curve for the CNT thin
film as SA.

4. Experimental and Operation Principles

The experimental setup of tunable dual-wavelength Q-switched fiber laser by using
CNT thin film is shown in Figure 2. The configuration setup had a laser diode (LD), a
wavelength division multiplexer (WDM), a 3 m erbium-doped fiber (EDF) from Fibercore
M-12 (with the absorption of about 18 dB/m), an isolator (ISO), a circulator, two optical
couplers, and a CNT thin film as a saturable absorber (SA) working in the ring cavity. The
EDF used in the experiment had a mode field diameter of 6.6 µm and a cut-off wavelength
at 911 nm. The LD used was a Fiber Bragg Grating Stabilized LD, which acts as a 980 nm
pump source with a maximum power of 400 mW. The LD pump source was injected into
the laser cavity through a 980/1550 nm WDM through a forward pumping scheme. The
injected light by the LD was then absorbed by a 3 m erbium-doped fiber which works
as the gain medium of the cavity. The isolator ensures that the signal only propagates in
one direction without reflecting back in the cavity. The SA consisted of two fiber ferrules
sandwiched together with the CNT film attached between the two fiber ferrules. The
circulator functioned to allow the signals to circulate and reflected back at port 2 where
the two FBGs were located, as in Figure 2. The two FBGs were connected to a circulator
function as a filter to the wavelength selection that was chosen to be emitted. The group
velocity dispersion (GVD) of EDF in this cavity was 64 ps2 km−1, whereas the remainder of
the SMF fiber (SMF-28) with a length of 7.01 m had an anomalous GVD of −24 ps2 km−1.
The total net dispersion of this cavity was 0.024 ps2. A 90:10 coupler was utilized to tap
10% of the lasing for further analysis, while the remaining 90% was connected back into
the cavity. An OSA (Yokogawa AQ6370C Optical Spectrum Analyzer), an oscilloscope
(RTM3002 Oscilloscope), an RFSA (FPC-1000 Radio-Frequency Spectrum Analyzer) and an
optical power meter (OPM) were used to examine the 10% output. The oscilloscope was
used to measure the laser pulses from the fiber laser and OSA as an analyzer to monitor
the spectrum from the cavity.

Two FBGs were used in the experiment. Both of the FBGs were identical, reflecting
at the central wavelength of 1547.12 nm in the ambient temperature (before applying
any stretch and compressions). The wavelength reflectivity of the FBGs was 98%, with
0.32 nm of 3 dB reflection bandwidth. One of the FBGs, denoted as FBG 2, was connected
to a tunable FBG device, as in Figure 3. The adjustable screws were turned to push the
movable metal block to bend the flexible plate where the FBG was attached by using epoxy
glue. At the same time, there some mechanical stretch and compressions were applied to
the FBG. The FBG deformation lead to a displacement of the Bragg wavelength, which
allowed for tuning of the wavelength of the generated laser line [41]. In this case, one of
the FBGs was stationary, while the other one was being tuned by a tunable FBG device.
The spacing wavelength was controlled by adjusting the tunable FBG device from wide to
close spacing between two laser lines. The filtered dual-wavelength and that pulsed from
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the cavity were generated simultaneously. The tunable dual-wavelength covered from
1547.1156 to 1547.4500 nm with seven steps of wavelength separations. However, EDF
was a homogeneous gain medium at room temperature, thus made it difficult to generate
more than one laser line due to strong mode competition occurring in the cavity [42].
To encounter this mode competition, cavity losses were created to allow more than one
lasing emission to be operated by adjusting different losses for two FBGs [43,44]. The
goal of producing losses is to minimize competition by adjusting intra-cavity losses. In
our experiment, the intra-cavity losses were done by giving a sufficient bending loss at
the fiber of the two FGBs to create the individual loss at the reflection of the FBGs. This
technique reduced the dominant power that came from one of the dominant FBG’s lasing,
thus solving the mode competition issue.
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5. Results and Discussion

Figure 4 depicts the spectra of the ring cavity erbium-doped fiber laser when both
FBGs are applied in the complete circuit. With the proposed configuration, a balance
dual-wavelength laser output operation can be achieved effectively by adjusting the cavity
losses to both FBGs used in the design.

The dual-wavelength Q-switched fiber laser output, as illustrated in this Figure 4,
was initiated from the two FBGs that are being manipulated using the tunable FBG device.
The red colour line at a shorter wavelength originated from the actual FBG’s wavelength
at 1547.12 nm (FBG 1). In contrast, the blue colour line at a longer wavelength is the
wavelength that was tuned using the tunable FBG device at 1547.45 nm (FBG 2). The
blue colour lasing represents the maximum wavelength tunability, since the stretch and
compression of the FBG reached their limit. The dual-wavelength spectrum, represented by
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the black line in the figure, appears from the combination of two laser lines, represented in
the figure by the red and blue colour spectra. It was ensured that both FBGs were monitored
at room temperature with no substantial temperature fluctuation. The dual-wavelength
spectrum, indicated by the black line in the spectrum, results from the combining of two
laser lines (red and blue). The distance between two lasing lines can be increased by
regulating both FBGs with two metal blocks. The 3 dB line widths of the dual-wavelength
output are 0.028 nm at 1547.12 nm (shorter wavelength) and 0.031 nm at 1547.45 nm (longer
wavelength), coming from FBG 1 and FBG 2, respectively. The optical signal-to-noise ratio
(OSNR) values of the dual-wavelength are 56.0 and 57.5 dB for the shorter wavelength and
longer wavelength peaks, respectively.
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A stable spacing tunability of the dual-wavelength fiber laser is achieved by adjusting
the tunable FBG device, as shown in Figure 5. The spacing wavelength is tuned continu-
ously in seven steps increment from 0.0469 to 0.3344 nm at the maximum pump power of
90.88 mW. The maximum wavelength separation is limited by the damage of FBG under
stretching conditions, but can be enhanced by improving the construction robustness of
FBG, such as using good recoating material technology [45].
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fiber laser.

Figure 6a,b shows the output spectrum stability of the tunable dual-wavelength
Q-switched fiber laser for a minimum spacing of 0.0469 nm and a maximum spacing of
0.3344 nm, taken at a fixed pump power of 90.88 mW. The stability measurement is taken
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at room temperature for every 5 min in an hour of operating time. The system is capable
of operating effectually, where it was observed that the dual-wavelength laser emission
shows excellent output stability. Meanwhile, the characteristics of the pulses in Figure 6c,d
show no difference, since both pulse trains operate at an equal pump power of 90.88 mW.
These results proved that the behavior of the Q-switched fiber laser is obeyed since the
frequency changes according to the increasing of the pump power [46–48].
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The pulse characteristics of the Q-switched fiber laser, such as pulse repetition rate
and pulse width for both close and wide spacing, are plotted as in Figure 7. The increase
of repetition rate from 18.6121 to 40.0664 kHz depends on the increasing pump power
from 35.30 to 90.88 mW, with corresponding decreasing pulse width from 3.22 to 2.504 µs
for close spacing dual-wavelength output. Whereas the increase of the repetition rate
from 18.58 to 38.21 kHz depends on increasing the pump power from 35.30 to 90.88 mW,
with corresponding decreasing pulse width from 3.29 to 2.31 µs for wide spacing dual-
wavelength output. The nonlinear dynamics of the EDF and the SA are interconnected
according to the dynamics of the energy provided by the pump power. As the pump power
increases, more gain will result to saturate the SA. In addition, the threshold energy stored
in the amplification medium (EDF) can also be reached more quickly to produce pulses.
As a result, pulses are produced quicker. This, thus, brings about a decline in the pulse
width, as the speed of the pulse creation becomes faster. On the other hand, increasing
the pump power increases the repetition rate, as more longitudinal modes can pass the
threshold of the Q-switching process and locked together, producing a higher repetition
rate of the Q-switched output [49]. The pulse width obtained from the experiment could
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be further narrowed by optimizing parameters such as cavity length, modulation depth or
minimize the losses in the cavity [50].
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Table 1 highlights the performance comparison among several tunable dual-wavelength
fiber lasers based on FBG in this experiment. Several studies were being conducted on
continuous-wave (CW) lasers rather than pulsed lasers, such as Q-switched and mode-
locked fiber lasers. Tunable dual-wavelength pulse output designs mentioned in the table
had more advantages as they provide higher lasing quality, which means they have a higher
potential to be used in optical fiber sensors and wavelength converters in optical communi-
cation systems [51,52]. Based on previous work, the dual lasing element illustrated that
tunable dual-wavelength may be created by changing the temperature to obtain tunable
separation between two laser lines [53]. We suggested tunable spacing performance in
room temperature based on strain and stretch application that may be used independently,
since FBGs’ sensitivity is higher towards strain rather than the temperature changes [54].
When assessing other research works previously [32,55], it could be seen that problems
were encountered in terms of unstable dual-wavelength output from the FBGs. In this
experiment, we successfully reported fine-tunable spacing by using the metal block for
easy FBG tuning, with good stability performance, to enhance the tuning stability of the
pulsed dual-wavelength output.

Table 1. Performance comparison of several tunable dual-wavelength fiber lasers based on FBG.

Configuration Laser Type Dual Lasing Element Technique Tuning Range
(nm) Ref.

SOA CW laser
λ1 = FBG Temperature control 2.08 to 5.34 nm [29]

λ2 = DFB laser

SOA CW laser
λ1 = cascaded FBG Temperature control 0.18 to 0.6 nm [30]
λ2 = cascaded FBG

TDFL CW laser
λ1 = tunable FBG Strain application 1.7 to 3.7 nm [32]
λ2 = tunable FBG

TDFL CW laser
λ1 = FBG Stretch application 0 to 5.14 nm [55]

λ2 = translation FBG

YDF Pulsed laser PM-FBG Adjusting polarization
state 0.02 to 0.52 nm [33]

EDFL Pulsed laser
λ1 = FBG Strain application 0.0469 to 0.3344 nm [This work]

λ2 = metal block FBG
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6. Conclusions

A simple, tunable dual-wavelength Q-switched fiber laser with CNT-SA was exper-
imentally demonstrated. The tunable dual-wavelength output capability was tested by
utilizing two mechanically stretched and compressed FBGs that serve as the tunable dual
laser lines output. Dual-wavelength generation requires a fine adjustment of the cavity loss
for both wavelengths. The seven steps of wavelength spacing could be tuned from 0.0469 to
0.3344 nm. The 3 dB linewidths of the dual-wavelength output were 0.028 nm at the shorter
wavelength and 0.031 nm at the longer wavelength, from FBG 1 and FBG 2, respectively.
The increase of repetition rate was in the range of 18.61 to 40.07 kHz for close-spacing
dual-wavelength output and 18.58 to 38.21 kHz for the wide spacing dual-wavelength
output, with a maximum pump power of 90.88 mW. Pulse characteristics for both close and
wide spacing of the dual-wavelength Q-switched fiber laser were successfully conducted
and presented in the proposed design.
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