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ABSTRACT 

 

 

 

 

Semiconductor clusters have occupied the centre of scientific interest because 

of their unique electronic nature. Among the group III-V compound clusters, the 

gallium arsenide clusters have been the focus of this research due to their importance 

in constructing fast microelectric devices. The electronic structures of gallium 

arsenide clusters were studied. The simulations were carried out by using VASP 

(Vienna Ab-Initio Software Package) which utilizes the method of density functional 

theory (DFT) and plane wave basis set. Gallium arsenide clusters with surface 

passivated by hydrogen, GaxAsyHz were simulated to obtain the density of states 

(DOS) as well as bandstructure for each cluster. From the DOS graphs, discrete 

spectrum was observed instead of bulk-like continuous DOS which is the evolvement 

from bulk to nano-size. Bandstructure graphs also showed the discrete energy level 

in consistence with the discrete energy spectrum from DOS. It was found that the 

bandgaps for hydrogenated gallium arsenide clusters increases with the decrease in 

size. Bare gallium arsenide clusters, GaxAsy were also simulated (x + y ≤ 15) gallium 

arsenide atoms. Optimization was performed to obtain the ground state structure. The 

bandgaps for the ground state gallium arsenide clusters do not show a decreasing 

trend with the increment of cluster size as that of hydrogenated gallium arsenide 

cluster. The electronic structures of optimized clusters are affected by the surface 

orientation of the clusters. Comparison of the bandgap values for GaxAsyHz and 

GaxAsy was made.  
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ABSTRAK  

 

 

 

 

Semikonduktor kluster menjadi matlamat kajian dalam bidang sains 

disebabkan oleh sifat elektronik semulajadinya. Antara gabungan kluster kumpulan 

III-V, kluster gallium arsenida menjadi tumpuan dalam kajian ini kerana 

kepentingannya dalam pembuatan alat-alat mikroelektrik yang lebih pantas. Struktur 

elektronik kluster gallium arsenida telah dikaji. Simulasi kajian telah dijalankan 

dengan menggunakan perisian VASP (Vienna Ab-Initio Software Package) yang 

menggunakan teori fungsian ketumpatan dan set basis gelombang satah.  Simulasi ke 

atas kluster gallium arsenida  yang permukaannya dipasifkan dengan hidrogen, 

GaxAsyHz  telah dilakukan untuk mendapatkan  ketumpatan keadaan dan juga  

struktur jalur untuk setiap kluster. Daripada  graf  ketumpatan  keadaan,  spektrum 

diskrit  telah   diperolehi. Perubahan ketumpatan keadaan daripada selanjar bagi 

struktur pukal ke spektrum diskrit bagi struktur nano merupakan evolusi nano. 

Struktur jalur juga menunjukkan aras tenaga diskrit yang selaras dengan spektrum 

diskrit daripada ketumpatan keadaan. Jurang jalur untuk gallium arsenida 

terhidrogenasi semakin berkurang apabila saiz kluster meningkat. Simulasi ke atas 

kluster gallium arsenik tulen (tak terhidrogenasi), GaxAsy yang mempunyai bilangan 

atom (x + y ≤ 15) juga dilakukan. Optimasi dilaksanakan untuk mendapatkan 

struktur keadaan dasar. Jurang jalur bagi struktur keadaan dasar kluster-kluster itu 

tidak mempunyai aliran yang menurun dengan peningkatan saiz kluster seperti yang 

berlaku pada kluster gallium arsenida terhidrogenasi. Struktur elektronik kluster-

kluster optimum dipengaruhi oleh orientasi permukaan kluster. Perbandingan nilai 

jurang jalur bagi GaxAsyHz dan GaxAsy  telah dilakukan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1       Background of Research 

 

 

In recent years, the structure and properties of microclusters of pure and 

compound semiconductors have received much attention and have been the subject 

of great interest both for experimental and theoretical studies. The structure and 

electronic properties of clusters can be dramatically different from those of the bulk 

due to the high surface area to volume ratio. The addition of a few atoms to a cluster 

can also result in major structural rearrangement [1].  

 

 

Studies of clusters become important also because bulk and surface effects 

can be modeled using only a few atoms or a supercell of a typical cluster size. 

Moreover, with the rapid advancement in science and technology, electronic devices 

have been reduced in size and the behavior of semiconductor surface properties has 

thus gained more attention. The relation between the geometry and the electronic 

structure plays a critical role in dictating the properties of a material.  
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In the case of semiconductors, this evolution is remarkable. Semiconductor 

clusters have been shown to exhibit exotic properties quite different from those in 

molecules and solids. Compared to homogeneous clusters such as carbon and silicon, 

heterogeneous semiconductor clusters like gallium arsenide are more attractive 

because their properties can be controlled by changing the composition, in addition 

to the size. For these reasons, theoretical studies on clusters are critical to the design 

and synthesis of advanced materials with desired optical, electronic, and chemical 

properties. 

 

 

 However, theoretical studies of heterogeneous semiconductor clusters have 

been limited due to computational difficulties arising from the large number of 

structural and permutational isomers formed due to multiple elements. On one hand, 

sophisticated computational method such as self-consistent quantum mechanical 

calculation is required to make reliable prediction on the properties of these clusters, 

in the absence of comprehensive experimental results. On the other hand, the amount 

of computational work is enormous in order to find all the stable isomers for a given 

cluster size and composition. A number of theoretical and experimental attempts 

[2-14]  have been made to determine the structure and properties of small GaxAsy 

clusters. Most of the theoretical studies have been focused on clusters of a few atoms 

due to the above mentioned difficulties. 

 

 

 

 

1.2    Atomic and Molecular Clusters 

 

 

Study of physical and chemical properties of clusters is one of the most active 

and emerging frontiers in physics, chemistry and material science. In the last decade 

or so, there has been a substantial progress in generation, characterization and 

understanding of clusters. Clusters of varying sizes, ranging from a few angstroms to 

nanometers, can be generated using a variety of techniques such as sputtering, 

chemical vapor deposition, laser vaporization, supersonic molecular beam etc. Their 
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electronic, magnetic, optical and chemical properties are found to be very different 

from their bulk form and depend sensitively on their size, shape and composition.  

 

 

Thus, clusters form a class of materials different from the bulk and isolated 

atoms/molecules. Looking at the mass distribution of clusters, some are found to be 

much more abundant than others. These clusters are therefore more stable and are 

called magic clusters. They act like superatoms and can be used as building blocks or 

basis to form a cluster assembled solid. It is these kinds of developments that add 

new frontiers to material science and offer possibilities of designing new materials 

with desirable properties by assembling suitably chosen clusters. The Table 1 show 

the schematic classification of clusters according to the number N of atoms. 

 

 

Table 1.1: Schematic classification of clusters according to the number N of atoms. 

 

Observable Very small 

clusters 

Small clusters Large clusters 

Number of atoms N 2 ≤ N ≤ 20 20 ≤ N ≤ 500 500 ≤ N ≤ 107

Diameter d d ≤ 1 nm 1 nm ≤ d ≤ 3 nm 3 nm ≤ d ≤ 100 nm 

Surface fraction  f undefined 0.5 <  f < 0.9 f ≤ 0.5 

 
 

 

It should be recognized that if we are to harness full technological potential of 

clusters, we have to gain a fundamental scientific understanding of them. This 

involves, for example, understanding why clusters are different from atoms and bulk, 

what is their geometry and structure and how it evolves with size, the evolution of 

their electronic, optical, magnetic and chemical properties with size and the high 

stability of some clusters.  

 

 

Such an understanding will teach us how we can modify the cluster structure 

to get a desired property. These are difficult research problems because clusters are 
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species in their own right and do not fall into the field of atoms or solid state. Thus 

many techniques of atomic or solid state physics are just not applicable to clusters. 

New techniques of applying quantum mechanics have to be developed to handle 

clusters. Similarly, thermodynamics of clusters is of great importance. Many 

thermodynamical relationships which are derived for the bulk form are not applicable 

to clusters. Thus one requires new approaches to concepts of melting, freezing and 

phase changes in dealing with finite clusters and their dependence on size. An 

understanding of these concepts is important for developing technologies based on 

clusters.  

 

 

Since many cluster properties such as geometry and structure of a cluster are 

not directly measurable from experiments, theoretical models and computation play 

an important role in the study of clusters. In this respect, the Density Functional 

Theory (DFT) which is designed to handle a large number of electrons quantum 

mechanically, has been found to be extremely useful. Using this theory one can 

calculate very accurately the total energy and other properties of a many electron 

system in its ground state ( ground state energy is the lowest energy of a system; 

lately, the DFT has also been developed to calculate excited states).  

 

 

 

 

1.3 Applications of Clusters 

 

 

Clusters are an important state of matter, consisting of aggregates of atoms 

and molecules that are small enough not to have the same properties as the bulk 

liquid or solid. Quantum states in clusters are size-dependent, leading to new 

electronic, optical, and magnetic properties. Clusters offer attractive possibilities for 

innovative technological applications in ever smaller devices, and the ability to 

"tune" properties, especially in semiconductors, may produce novel electronic and 

magnetic capabilities.  
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Semiconductors are one of the most active areas of cluster research. Many of 

their properties are very dependent on size; for example, optical transitions can be 

tuned simply by changing the size of the clusters. Alivisatos [15] describes current 

research on semiconductor clusters consisting of hundreds to thousands of atoms--

"quantum dots." These dots can be joined together in complex assemblies. Because 

of the highly specific interactions that take place between them, a "periodic table" of 

quantum dots is envisioned. Such coupled quantum dots have potential applications 

in electronic devices.  

 

 

The magnetic properties of clusters are of fundamental interest and also offer 

promise for magnetic information storage. Shi et al. [16] describe recent 

developments in the study of magnetic clusters, both isolated and embedded in a host 

material. Such clusters can behave like paramagnets with a very large net moment--

superparamagnets. Superparamagnetic particles can be embedded in a metal and 

show dramatic field changes in electrical conduction. Ion implantation has generated 

ferromagnetic clusters embedded in a semiconductor host, which can be switched 

individually.  

 

 

The constituents of clusters can be arranged in many different ways: Their 

multidimensional potential energy surfaces have many minima. Finding the global 

minimum can be a daunting task, to say nothing of characterizing the transition states 

that connect these minima. Wales [17] describes the fundamental role of the potential 

energy surface in the understanding of the structure, thermodynamics, and dynamics 

of clusters. In a Report accompanying the special section, Ball et al. [18] analyze 

Ar19 and (KCl)32 clusters and illustrate how potential energy surface topography (the 

sequences of minima and saddles) governs the tendency of a system to form either 

amorphous or regular structures. 

 

 

Water is essential to life and to a great number of chemical processes. 

Hydrogen bonding, the source of many of water's most interesting properties, 

requires at least two water molecules. Far-infrared laser vibration-rotation tunneling 
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experiments on supersonically cooled small clusters allow characterization of 

geometric structures and low-energy tunneling pathways for rearrangement of the 

hydrogen bond networks. Liu et al. [19] describe how these and other recent 

experiments on water clusters give insight into fundamental properties of water.  

 

 

Simple aggregates of carbon atoms, especially C60, are remarkably stable. 

Determination of their actual physical and electronic structures is a formidable task 

because of the large number of electrons and the many possible isomeric 

arrangements involved. Scuseria [20] reviews the status of the field, including recent 

advances and current challenges in ab initio algorithms. 

 

 

 

 

1.4 Introduction to Modeling and Simulation 

 

 

Modeling is the technique of representing a real-word system or phenomenon 

with a set of mathematical equations or physical model. A computer simulation then 

attempts to use the models on a computer so that it can be studied to see how the 

system works. Prediction may be made about the behavior and performance of the 

system by changing its variables. In this research, nanostructures are the system 

targets of the modeling and simulation. 

 

 

Simulation is a useful and important part of modeling nanostructures to gain 

insight into the attributes of a structure or a whole system with several structures 

connected. It is a method to predict the behavior transformation for a variable 

changing before performing a practical experiment. The simulation can then be 

proven by the results of experiment. This is also a beneficial approach to test the 

most optimal and the best performance of a device which is built by those 

nanostructures before the real fabrication.  
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Besides, simulation can give detailed theoretical explanation to the 

phenomenon that could not be solely explained by experiment . Among the examples 

are the reconstruction of the small cluster structures and the occupation of the 

electrons. With the 3D graphical viewer and animation, we can view the atomic 

structure models and the process of the structure transformation. With computer 

simulation done prior to experiment, the mastering of the small cluster structures 

principles is improved and ‘trial and error’ could be reduced during experiment. 

 

 

However, there isn’t a comprehensive simulator which can take into account 

every factor that would contribute to the system changes. Many of those only adopt 

the approximation which is the most optimal and closest to the real system for the 

representation. For nanostructures, first principle calculation is an appropriate 

simulation approach for studying the electronic structures and properties.  The 

advantage of this calculation is that, it can be done without any experimental data. 

However, it could be a massive calculation that consumes a very long time to 

accomplish.  

 

 

Computational science becomes an essential tool in modeling and simulation. 

It is the application of computational and numerical technique to solve large and 

complex problem, for example, complex mathematics that involved a large number 

of calculations. Therefore, modeling and simulation are commonly accomplished by 

the aid of computational science and therefore they are always referred to computer 

modeling and computer simulation. Computational science could be defined as an 

interdisciplinary approach that uses concepts and skills from the science, computer 

science and mathematic disciplines to solve complex problems which allow the study 

of various phenomena. It can be illustrated by Figure 1.1. To improve the 

performance and speed of large computation, one of the approaches is parallel 

computing. Parallel computing can reduce the computing time of computational 

costly calculations such as first principle calculations mentioned above, where it 

distributes the calculation to two or more processors or computers. 
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1.4.1   Modeling and Simulation Approach Used in This Research 

 

 

In this research, Vienna Ab-initio Simulation Package (VASP) is used as the 

simulation tools for electronic structures of the gallium arsenide clusters. VASP is 

the leading density functional code to accurately compute structural, energetical, 

electronic and magnetic properties for a wide range of materials including solids and 

molecules. VASP is highly efficient for structural optimizations and ab-initio 

molecular dynamics (MD). It covers all elements of the periodic table of practical 

interest. With its projector-augmented-wave (PAW) potentials, VASP combines the 

accuracy of all electron methods with the elegance and computational efficiency of 

plane wave approaches. 

 

 

 

 

 

 

Computational 
science 

Computer 
Science 

Figure  1.1: Computational science is defined as the intersection of the 
three disciplines, i.e. computer science, mathematics and applied science. 
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1.5      Research Objectives 

 

 

The main interest of this research is to study the electronic structures of 

gallium arsenide clusters. The objectives of this research can be summarized as the 

following: 

 

a) to study the electronic structures of gallium arsenide clusters with variable 

size and structures. 

 

b) to study the relation between the bandgap and the structures size of the 

gallium arsenide clusters.  

 

 

 

 

1.6       Scopes of Study 

 

 

The scopes of this research are as the following: 

 

a) Clusters is simulated as isolated small range nanocluster. 

 

b) Gallium arsenide is adopted as the material of the clusters. 

 

c) Bandstructures and energy spectrum are studied for the electronic structures 

of gallium arsenide clusters. 

 

d) Density functional theory is used to calculate and simulate the electronic 

structures of gallium arsenide clusters. 
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1.7   Outline of Thesis 

 

 

A general background of study and brief introduction to clusters are discussed 

in Chapter 1. This is followed by introduction of modeling and simulation, objective 

and scope of study. There are a lot of approaches to simulate the electronic structures 

of gallium arsenide clusters. Density functional theory (DFT) is a sufficient method 

in doing this. Its theory is discussed in the Chapter 2. The methodology of the 

simulation VASP which is utilized in this study is introduced in Chapter 3. 

Following this, Chapter 4 would be results and discussion. Figures and graphs of  the 

electronic structures of gallium arsenide clusters are showed and the results are 

discussed and interpreted. Finally Chapter 5 which is the conclusion. Theories and 

results discussed in the previous chapters are summarized and concluded here. 

Furthermore, suggestion is given on how to make the simulation  better and more 

complete.   

 

 

 

 

 

 

 



 
 
 
 
 

CHAPTER 2 

 

 

 

 

COMPUTATIONAL METHOD 

 

 

 

 

Electronic structure and stability of gallium arsenide clusters were investigated in 

detail by several theoretical studies based on Hartree-Fock (HF) [21,22], density 

functional theory (DFT) [6,23], configuration interaction theory (CI) [24,25] and the 

ab initio molecular dynamics Car-Parrinello method [5]. For this research, gallium 

arsenide clusters GaxAsy (x+y≤15) are investigated using the density functional 

theory. Density functional theory is the computational method used in the simulation 

tool. This chapter gives a basic understanding on the relevant theorem used, although 

it had been well developed for the simulation tool. The next chapter will describe the 

simulation tool itself. 

 

 

 

2.1      Computational Materials Science ( CMS)  

 

 

Computational materials science (CMS) is an interdisciplinary research area 

of physics, chemistry and scientific computing [26]. It can bring a microscopic 

understanding of the interrelationship between structure, composition, and various 

materials properties through classical and quantum mechanical modeling. As 

discussed above, we are dealing with quantum theory when the structures are in 
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nano-scale. Therefore, solution of Schrödinger equation, which model molecules in 

mathematics, brings understanding of the properties of nanostructures. By using 

Schrödinger equation, one can implement the following tasks:  

i. electronic structure determinations  

ii. geometry optimizations  

iii. electron and charge distributions 

iv. frequency calculations  

v. transition structures  

vi. potential energy surfaces (PES)  

vii. chemical reaction rate constants   

viii. thermodynamic calculations e.g. heat of reactions, energy of 

activation  

Theoretical techniques of CMS with regards to Schrödinger equation can be 

generally categorized into three methods: molecular mechanics, semi-empirical or 

empirical, and ab-initio methods.  

 

 

 Molecular mechanics is referred to the use of Newtonian mechanics to model 

molecular systems. It is a mathematical formalism which produces molecular 

geometries, energies and other features by adjusting bond lengths, bond angles and 

torsion angle to equilibrium values that are dependent on the hybridization of an 

atom and its bonding scheme. The potential energy of the system is calculated using 

force field. In molecular mechanics, a group of molecules is treated as a classical 

collection of balls and springs rather than a quantum collection of electron and nuclei. 

Hence, each atom is simulated as a single particle with assigned parameters as radius, 

polarizability, net charge, ‘spring’ length (bond length). These parameters are 

generally derived from experimental data or ab-initio calculations beforehand. In 

many cases, large molecular systems can be modelled successfully with molecular 

mechanics, avoiding quantum mechanical calculations entirely. 
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Semi-empirical is defined as ‘partly from experiment’. Semi-empirical and 

empirical methods are based on the Hartree Fock formalism that is simplified using 

empirical data derived from experimental, to make approximations and consequently 

to improve performance. They are important in treating large molecules where the 

full Hartree Fock method without approximations is too costly. Electron correlation 

is included in this method with the use of empirical parameters. In this method, one 

of the approximations is that two-electron integrals involving two-center charge 

distributions are neglected or parameterized and only valence shell electrons are 

considered. The rationale behind this approximation is that the electrons involved in 

chemical bonding or other phenomena are those in the valence shell. 

Parameterization is done to correct the loss, that the results are fitted by a set of 

parameters, normally in such a way as to produce results that best agree with 

experimental data, but sometimes to agree with ab-initio results. Empirical tight 

binding (ETB), empirical pseudopotential method (EPM), and k · p approximation or 

its equivalent form of effective mass approximation (EMA) are those among semi-

empirical electronic structure methods [27]. Semi-empirical calculations are faster 

than their ab-initio counterpart. 

 

 

 The next level is ab-initio method which means ‘from the beginning’ in Latin. 

As opposed to semi-empirical, ab-initio do not include any empirical or semi-

empirical in their equation but being derived directly from theoretical principles 

without inclusion of experimental data.  It could be also known as first principle. 

This does not imply that Schrödinger equation have to be solved exactly, but 

reasonable approximation to its solution is made by choosing a suitable method and a 

basis set that will implement that method in a reasonable way is selected. Usually the 

approximations made are mathematical approximations. The time-dependent, non-

relativistic Schrödinger equation can be written as  

( ) ( )AiAi R,rER,rH ψψ =    ,                                           (2.1) 

where H is the Hamiltonian operator with the total energy E as eigenvalue and many-

wavefunction ψ(ri, RA) as eigenfunction with ri is electron spatial coordinates and RA 
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is nuclei spatial coordinates [28]. The Hamiltonian operator with N electrons and M 

nuclei in atomic unit (me = e = ħ = 1) is given by 

∑ ∑∑ ∑∑ ∑∑∑
= = = = > = >=

++−∇−∇−=
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Indices i and j run over N electrons while A and B over the M nuclei. is the 

Laplacian operator acting on particle, m

2∇

A is the mass of nuclei A and ZA is its nucleus 

charge, rij is the distance between particle i and j which is equal to | ri – rj |, and same 

to riA. The first term in equation (2.2) is the operator for the kinetic energy of the 

electrons; the second term is the operator for the kinetic energy of the nuclei; the 

third term represents the coulomb attraction between electrons and nuclei; the fourth 

term represents the repulsion between electrons and the last term represents repulsion 

between nuclei [29].  The wavefunction ψ is then a function of (3N+3M) spatial 

coordinates for a system containing N electrons and M nuclei. This is a very 

complicated problem that is impossible to be solved exactly. The first step in 

simplifying this problem is the Born Oppenheimer (BO) approximation. Since the 

nuclei are much heavier than electrons, they move more slowly. Hence, a good 

approximation can be made by considering the electrons in a molecule to be moving 

in the field of fixed nuclei [29]. As a result, the second term of equation (2.2) can be 

neglected and the last term can be considered to be a constant which has no effect on 

the operator eigenfunctions. Then the remaining terms are called the electronic 

Hamiltonian which is given by 

∑∑ ∑∑∑
= = = >=
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Although BO simplifies the original Schrödinger, the electronic part is still a 

daunting task to be solved exactly for systems with more than a few electrons and 

further approximation must be introduced. One fundamental approach is the Hartree 

Fock (HF) scheme, in which the principal approximation is called the central field 

approximation which means the Coulombic electron-electron repulsion is not 

specifically taken into account. Only its net effect is included in the calculation. As a 

result, the energies from HF calculation are always greater than the exact energy and 

tend to a limiting value called Hartree Fock limit. Post-Hartree-Fock methods which 
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are used by many calculations, begin with a Hartree-Fock calculation and 

subsequently correct for electron-electron repulsion, referred to also as electronic 

correlation. Some of these methods are Møller-Plesset perturbation theory (MPn, 

where n is the order of correction), the Generalized Valence Bond (GVB) method, 

Multi-Configurations Self Consistent Field (MCSCF), Configuration Interaction (CI) 

and Coupled Cluster theory (CC). Other important formalism which treats the 

correlation energy is Density Functional Theory (DFT) which has become popular in 

last two decades. In this method, energy is expressed as a function of total electron 

density. DFT is selected as the method of electronic structure in this research. It will 

be explained in more detailed in the following. Another method of ab-initio is 

Quantum Monte Carlo (QMC) which avoids making the HF mistakes in the first 

place.  QMC methods work with an explicitly correlated wave function and evaluate 

integrals numerically using a Monte Carlo integration. Although these calculations 

can be very time consuming, they are probably the most accurate methods known 

today. As these methods are pushed to the limit, they approach the exact solution of 

the non-relativistic Schrödinger equation. Relativistic and spin-orbit term should be 

included to obtain exact agreement with experiment.   

 

 

In HF, each molecular orbital is expanded in terms of a set of basis functions 

which are normally centered on the atoms in the molecule, as given by LCAO 

equation. The basis functions collectively are the basis set. Ab-initio is a method of 

calculation involves a choice of method and a choice of basis set. It offers a level of 

accuracy one needs to understand most physical properties of various materials. 

However in comparison with semi-empirical or empirical method, the high degree of 

accuracy and reliability of ab-initio calculation is compensated by large 

computational demand. In this method, the total molecular energy can be evaluated 

as a function of the molecular geometry, or in other words the potential energy 

surface. 

  
 

 

 

http://en.wikipedia.org/wiki/Electronic_correlation
http://en.wikipedia.org/wiki/Electronic_correlation
http://en.wikipedia.org/wiki/Molecular_geometry
http://en.wikipedia.org/wiki/Potential_energy_surface
http://en.wikipedia.org/wiki/Potential_energy_surface


 16

2.2       Density Functional Theory 

 

 

Density Functional Theory (DFT) is among the most popular and versatile 

methods in condensed matter physics or computational physics as well as 

computational chemistry. It is a quantum mechanical method that is widely used to 

investigate the electronic structure of many-body systems, particularly molecules and 

condensed phases. The contribution of DFT was given a great assurance with the 

award of the 1998 Nobel Prize in Chemistry to Walter Kohn and John Pople. DFT 

has been applied most of all to systems of electrons like atoms, molecules, clusters, 

homogenous solids, surfaces and interfaces, quantum wells, quantum dots and others 

[30]. It includes a significant fraction of the electron correlation for about the same 

cost of doing a HF calculation. Strictly speaking, DFT is neither a HF method nor 

post-HF method. The wavefunctions for spin and spatial parts are constructed in a 

different way from those in HF and the induced orbitals are often referred to as 

‘Kohn-Sham’ orbitals. Nonetheless, the same procedure of SCF is used as in HF 

theory.  

 

 

The main objective of density functional theory is to replace the many-body 

electronic wavefunction with the electronic density as the basic quantity. The many 

body Schrodinger equation is similar to equation (2.1) but can be more explicitly 

shown by 

( ) ( )NN rrrErrrH r
L

rrr
L

rr ,,,, 2121 ψψ =                                        (2.4) 

The particle density which is the key variable in DFT is given by 

( ) ( ) ( NNN rrrrrrrdrdrdNrn )r
L

rrr
L

rr
L

r ,,,,,,*
2121

3
3

3
2

3 ψψ∫ ∫∫=               (2.5) 

The electron density only depends on 3 instead of 3N spatial coordinates, but still 

contains all the information needed to determine the Hamiltonian, for example 

number of electron N, the coordinate of nuclei RA and the charge of nuclei ZA. This is 

the advantage of electron density compared to wavefunction. N is simply given by 

the integral over ( )rn r
 : 

( )∫ = Nrdrn 3r                                                       (2.6) 

http://en.wikipedia.org/wiki/Electronic_density
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2.2.1 Development of Density Functional Theory 

 

 

 The very first attempt to use electron density ( )rn r
 to calculate its total energy 

is the Thomas-Fermi theory formulated by Thomas and Fermi in 1927 [31,32]. They 

calculated the energy of an atom by representing its kinetic energy as a functional of 

the electron density, combining this with the classical expression for the nuclear-

electron and electron-electron interactions. Thus, Thomas-Fermi model is the 

predecessor to density functional theory. However, Thomas-Fermi model is not very 

accurate since there is no exchange or correlation included, and also the Thomas-

Fermi kinetic energy functional is only a crude approximation to the actual kinetic 

energy. Hohenberg-Kohn justified in 1964 the use of electron density as basic 

variable in determining total energy. They gave a firm theoretical footing to DFT 

with two remarkable powerful theorems. The first Hohenberg-Kohn theorem proved 

that the relation expressed in equation (2.5) can be reversed, in which the ground 

state wavefunction ( No rrr )r
L

rr ,, 21ψ can be calculated by a given ground state density 

 with a unique functional as shown below : ( )rno
r

 

[ ]ooo nψψ =                                                    (2.7) 

It shows that there exists the one-to-one mapping between ground state electron 

densities and external potentials. Therefore, ground state energy is given by 

[ ] [ ] [ ]oooooo nHnnEE ψψ==                                    (2.8) 

 

By substituting equation (2.3), we may represent the energy as: 

[ ] [ ]( [ ]))()()()()( 3 rnVrnTrdrVrnrnE eeeext
rrrrr

−++= ∫                    (2.9) 

where is equal to the interaction of the electrons with the nuclei V)(rVext
r

N-e and it is 

non-universal, while [ ] [ ] [ ]nVnTnF eeeHK −+=  is the Hohenberg-Kohn functional 

which does not depend on external potential and is therefore universal. The 

minimization of the energy functional shown in equation (2.9) will yield ground state 

density  and thus all other ground state observables. The exact form of  has 

not been found and thus approximation must be used for the variational principle that 

was introduced in the second Hohenberg-Kohn theorem. The variational problem of 

on [ ]nFHK
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minimizing the energy functional [ ]nE  can be solved by applying the Lagrangian 

method of underdetermined multipliers, which was done by Kohn-Sham. 

 

 

 

 

2.2.2 Kohn-Sham Theory  

 

 

In year 1965 which is a year after the Hohenberg-Kohn theorem was published, 

Kohn and Sham proposed a method to obtain an exact, single-particle like, 

description of a many body system by approximation of universal HK functional FHK. 

Kohn and Sham separate FHK into three parts so that ( )[ ]rnE r
 becomes 

[ ] [ ] [ ] [ ]nEnJnTnF XC++= 0                                       (2.10) 

( )[ ] ( )[ ] ( ) ( ) ( )[ ] ( ) ( )∫∫∫ ++′
′−
′

+= rdrVrnrnErdrd
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where  is the kinetic energy of the non-interacting electron gas with density ( )[ rnT r
0 ]

( )rn r
, the second term is the Hartree potential which describes coulomb interaction 

between electrons,  is the exchange-correlation energy.  is calculated 

in terms of the 

( )[ rnEXC
r ] [ ]nT0

( )ri
rφ ’s 

( )[ ] ( ) ( ) rdrr*rnT i
i

i
32

0 2
1 rrr φφ ⎟

⎠
⎞

⎜
⎝
⎛ ∇−= ∑∫                               (2.12) 

Though  is not the exact kinetic energy, it is well defined and is treated exactly 

in this method. This eliminates some of the shortcomings of the Thomas-Fermi 

approximation to the Fermion system, for instances the lack of shell effects or 

absence of the bonding in molecules and solids. In equation (2.11),  is the 

only term can not be treated exactly and thus it is the only term concerned in the 

approximation of that equation. By applying variational principle, equation (2.11) 

can be written in terms of an effective potential, 

[ ]nT0

( )[ rnEXC
r ]

( )rVeff
r  as follow: 

( )[ ]
( ) ( ) μ

δ
δ

=+ rV
rn
rnT

eff
r

r

r
0                                           (2.13) 
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where                        ( ) ( ) ( ) ( )[ rnrd
|rr|

rnrVrV XCexteff
r

rr ]
r

rr μ+′
′−
′

+= ∫ 3                        (2.14) 

and        ( )[ ] ( )[ ]
( )rn

rnE
rn XC

XC r

r
r

δ
δ

μ =                                                  (2.15) 

μ is the Lagrange multiplier related to the conservation of N and ( )rVeff
r is called 

Kohn-Sham (KS) effective potential.  If one consider a system that contains non-

interacting electrons that is without any two-body interaction, moving in an external 

potential ( )rVeff
r  as defined in equation (2.14), then the same analysis will lead to the 

exactly same equation (2.13). Solution of equation (2.13) can be found by solving 

single-particle equation for the non-interacting particles (KS equation): 

( ) ( ) ( )rrrV iiieff
rrr φεφ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∇
−

2

2

                                       (2.16) 

where iε  is the Kohn-Sham eigenvalue which is the Lagrange multipliers 

corresponding to the orthonormality of the N single-particle states ( )ri
rφ  referring to 

the variational condition under the orthonormality constraint jiji δφφ =  which 

lead to the following equation:  

( )[ ] ( ⎥
⎦

⎤
⎢
⎣

⎡
−− ∑

j,i
jijijirnE δφφεδ r ) = 0                               (2.17) 

The density is constructed from a set of one-electron orbitals or called Kohn-Sham 

orbitals (non-interacting reference system): 

( ) ( )∑=
i

i |r|rn 2rr φ                                                (2.18) 

Since the Kohn-Sham potential ( )rVeff
r  depends upon the density ( )rn r

, equation 

(2.14)-(2.16) must be solved self-consistently. This can be done by making a guess 

for the form of the density, then Schrödinger equation is solved to obtain a set of 

orbitals ( ){ ri
r }φ  from which a new density is constructed and the process repeated 

until the input and output densities are the same as depicted in Figure 2.1. Practically 

there is no problem of converging to the ground state minimum owing to the convex 

nature of density functional. From this solution, ground state energy and density can 

be determined. Total energy is then given by: 

( ) ( ) ( )[ ] ( )[ ] ( )∫∑ ∫∫ −+′
′−
′

−= rdrnrnrnErdrd
|rr|
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where        ( ) ( )[ ] ( ) ( )∑ ∫∑ +=+
∇

−=
i

eff
i

ieffii rdrnrVrnTrV 3
0

2

2
rrrr φφε            (2.20)  

In the above equation, ∑
i

iε is the non-interacting system energy which given by the 

sum of one-electron energies and when double-counting correlations is included 

which double-counts the Hartree energy and over-counts the exchange-correlation 

energy, induces the interacting system energy E.  The solution of equation (2.13) and 

(2.15) is much simpler than that of the HF equation since the effective potential is 

local. 

 

 

KS theory succeeds to transform N-body problem into N single-body 

problem with each coupled to Kohn-Sham effective potential. In contrary to HF, 

there is no physical meaning of these single-particle Kohn-Sham eigenvalues and 

orbitals but are merely mathematical tools that facilitate the determination of the true 

ground state energy and density. In HF theory, Koopman’s theorem provide a 

physical interpretation of orbital energies iε  such that the orbital energy is an 

approximation of the negative of the ionization energy associated with the removal 

of an electron from orbital iφ which is given by 

( ) ( ) ( )iIEnEnE i
HF

i
HFHF

i −==−== 01ε . It explains that the ionization potentials 

and electron affinities are approximated by the negative of the HF occupied and 

virtual orbital eigenvalues respectively. It assumes no relaxation of the orbitals when 

occupation numbers are changed. This theorem is invalid for KS orbitals in which 

the total energy is a nonlinear functional of the density as derived from equation 

(2.16). 

 ( )[ ]
( ) ( ) ( ) ( )rrrn,
rn
rnE

iiii
i

rrr
r

r

φφε
δ
δ *==                           (2.21) 

The exception is the highest occupied KS eigenvalue for which it has been shown to 

be the negative of the first ionization potential. Also, DFT is only variational if the 

exact energy functional is used, yet HF theory is variational providing an upper 

bound to the exact energy. 
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Figure 2.1: Schematic depicting self-consistent loop. 
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2.2.3 Self-Consistent Field (SCF) 

 

 

A self-consistent field (SCF) procedure used to find approximate wave 

functions and energy levels in many electron atoms. This procedure was introduced 

by the English mathematician and physicist Douglas Hartree in 1928 and improved 

by the Soviet physicist Vladimir Fock in 1930 ( by taking into account the Pauli 

exclusion principle). The initial wave functions can be taken to be hydrogenic atomic 

orbitals. The resulting equations can be solved numerically using a computer. The 

results of the Hartree-Fock theory are sufficiently accurate to show that electron 

density occurs in shells around atoms and can be used quantitatively to show 

chemical periodicity.  

 

 

 

 

2.2.4 Non-Self Consistent Field 

 

 

 Recently there was an increased interest in the so called Harris-Foulkes (HF) 

functional. This functional is non- self consistent: The potential is constructed for 

some 'input' charge density, then the band-structure term is calculated for this fixed 

non- self consistent potential. Double counting corrections are calculated from the 

input charge density: the functional can be written as 

 

[ ] ( ) ( )[ ] [ cin
c

in
xc

in

H

in

xc

in

H

ininHF ETrurebandstructE VVVV ρρρρρ α ++−−++= 2/, ]  (2.22)   

 

It is interesting that the functional gives a good description of the binding-energies, 

equilibrium lattice constants, and bulk-modulus even for covalently bonded systems 

like Ge. In a test calculation we have found that the pair-correlation function of l-Sb 

calculated with the HF-function and the full Kohn-Sham functional differs only 

slightly. Nevertheless, we must point out that the computational gain in comparison 
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to a self consistent calculation is in many cases very small (for Sb less than 20%). 

The main reason why to use the HF functional is therefore to access and establish the 

accuracy of the HF-functional, a topic which is currently widely discussed within the 

community of solid state physicists. To our knowledge VASP is one of the few 

pseudopotential codes, which can access the validity of the HF-functional at a very 

basic level, for example without any additional restrictions like local basis-sets and 

others. Within VASP the band-structure energy is exactly evaluated using the same 

plane-wave basis-set and the same accuracy which is used for the self consistent 

calculation. The forces and the stress tensor are correct, insofar as they are an exact 

derivative of the Harris-Foulkes functional. During a MD or an ionic relaxation the 

charge density is correctly updated at each ionic step 

 

 

 

 

2.2.5 Exchange-Correlation Functionals 

 

 

The results so far are exact, provided that the exchange-correlation functional 

 is known. The problem of determining the functional form of the universal 

HK density functional F

( )[ rnEXC
r ]

HK, has now been transferred to the exchange-correlation 

functional of Kohn-Sham formalism, and therefore this term is not known exactly. 

Good approximation for ( )[ ]rnEXC
r  is still one of the challenge’s aims in modern 

DFT.  

 

 

2.2.5.1 Local Density Approximation for Exchange-Correlation Energy 

 

 

The simplest approximation for exchange-correlation functional is local 

density approximation (LDA), which works well and most widely used. This 

approximation assumes that the density can be treated locally as a uniform electron 

gas which describes a system in which electrons move on uniform positive 



 24

background charge distribution such that overall charge neutrality is preserved. The 

exchange-correlation energy at each point in the system is the same as even if the  

inhomogeneity is large by approximating it locally with the density of homogeneous 

electron gas (see Figure 2.2). This approximation was firstly formulated by Kohn and 

Sham and holds for a slow varying density. Using this approximation, the exchange-

correlation energy for a density is commonly written as 

( )[ ] ( ) ( )[ ]∫= rdrnrnrnE LDA
XC

LDA
XC

3rrr ε                                   (2.23) 

where ( )[ rnLDA
XC ]rε  is the exchange-correlation energy density corresponding to a 

homogeneous electron gas with the local density ( )rn r
. The energy is again can be 

separated into exchange and correlation contribution: 
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The LDA exchange-correlation potential is yielded by the functional derivatives of 

equation (2.23): 
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The available exchange and correlation potential of LDA type are as follow: 

• Dirac-Slater exchange [33]. 

• Vosko-Wilk-Nusair (VWN) correlation [34]. 

• Vosko-Wilk-Nusair (VWN) correlation within the random phase 

approximation (RPA) [34]. 

• Perdew and Zunger parametrization of the homogenous electron gas 

correlation energy, which is based on the quantum Monte Carlo calculations of 

Ceperley and Alder [35]. 

The exchange part of the energy per particle ( )[ ]rnLDA
X

rε  is given by Dirac functional: 

( )[ ] ( )
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rr

π
ε                                        (2.26) 

Accurate results of correlation energy per particle ( )[ ]rnLDA
C

rε  have been given by 

Quantum Monte Carlo (QMC) calculations of Ceperly and Alder [36] for 

homogenous electron gas of different densities. This is the most common correlation 

formula used.  Other methods finding correlation is listed above. Perdew and Zunger 

proposed the formula: 
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where rs is the Wigner-Seitz radius of each electron. For high-density (rs ≤1), RPA is 

used to obtain the parameters for LDA. For intermediate regime of densities, the 

simplest approach to the correlation energy is an interpolation between the high- and 

the low limit-density. Another widely used VWN correlation is given as: 
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F(x) = x2 + bx + c and other filling parameter, which varies for polarized and 

unpolarized conditions are obtained by the data of Ceperly and Alder. 

 

 

Most of the Kohn-Sham calculations were carried out under the LDA which 

produces surprisingly accurate results which makes it widely used especially in solid 

state physics. In LDA, exact properties of exchange-correlation hole are maintained. 

The electron-electron interaction depends only the spherical average of exchange-

correlation hole and this is reasonably well reproduced. The errors in exchange and 

correlation energy densities tend to cancel each other. Properties such as structure, 

vibrational frequencies, phase stability and elastic moduli are described reliably for 

many systems. However it tends to underpredict atomic ground state energies and 

ionisation energies, while overestimating binding energies (typically by 20-30%).  

Results obtained with the LDA usually become worse with the increasing 

inhomogeneity of the described system such as in atoms or molecules particularly. 

Nevertheless, the astonishing fact is that the LDA works as well as it does give the 

reduction of the energy functional to a simple local function of the density. 
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Figure 2.2: Schematic diagram depicting the energy density for inhomogeneous 
electron gas system (left hand panel) at any location can be assigned a value from 
the known density variation of the exchange-correlation energy density of the 
homogeneous electron gas (right hand panel).

( )rn r

rr

( )rn r

[ ]nXCε

 

 

 

2.2.5.2 Generalized Gradient Approximation (GGA) 

 

 

 As stated above, the LDA uses the exchange-correlation energy of the 

homogeneous electron gas at every point in the system regardless of the homogeneity 

of the real charge density. For nonuniform or inhomogeneous charge densities the 

exchange-correlation energy can deviate significantly from the homogeneous result. 

An improvement to this deviation is by considering the gradient of the charge density, 

which is utilized by Generalized Gradient Approximation (GGA). GGA was 

developed from gradient expansion approximation (GEA) proposed by Hohenberg 

and Kohn [37]. In comparison with LSDA, GGA tends to improve total energies, 

atomization energies, binding energies, bond length and angle [38], energy barriers 

and structural energy difference. Differ from the LDA which is local, GGA is semi-

local functional. General semi-local approximation to the exchange-correlation 

energy as a functional of the density and its gradient to fulfill a maximum number of 

exact relations is given by: 

 [ ] ( )∫ ∇∇= rdn,n,n,nfn,nE GGA
XC

3βαβαα β                           (2.29) 

where f is the analytic function. There are two strategies for determining function f. 

The first one is known as non-empirical by adjusting f such that it satisfies all known 

properties of the exchange-correlation hole and energy (Perdew); and the second way 

is semiempirical by fitting f to a data-set containing exactly known binding energies 
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of atoms and molecules (Becke). Many GGA’s are tailored for specific classes of 

problems, among those are: Langreth-Mehl 1983 (LM) [39,40], Perdew-Wang 1986 

(PW86) [41,42], Becke-Perdew 1988 (BP) [43], Lee-Yang-Parr 1988 (LYP) [44], 

Perdew-Wang 1991 (PW91) [45,46], Perdew-Burke-Ernzernhof 1996 (PBE) [47,48], 

and Revised-Perdew-Burke-Ernzernhof 1999 (rPBE) [49].  

 

 

 One way to compare these GGA’s (for spin-polarized system) is to define the 

exchange-correlation energy in terms of enhancement factor  [42] as: [ s,rF s
GGA

X ]
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LDA
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3rrrr ξεβα                      (2.30) 

where ( )[ ] πε 43 F
LDA
X krn −=

r  is the exchange energy per particle for a uniform gas 

of density n, which is defined by the LDA, s is a dimensionless measure of the 

gradient 
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with the local Fermi wavevector defined as 

( ) ( )[ ] 3
123 rnrkF

rr π=                                                 (2.32) 

and rs is the local Wigner-Seitz radius, 
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Plotting [ ]s,rF s
GGA

X  against s for various rs values allows an effective way of 

examining and comparing different GGA’s 

 

 

One GGA functional used predominantly in solid state physics is PW91. The 

PW91 exchange and correlation function was constructed by introducing real space 

cut-off the spurious long-range part of the density-gradient expansion for the 

exchange and correlation hole. It is one of the non-empirical constructions since it 

does not contain any free parameters fitted to experimental data but determined from 

exact quantum mechanical relations. In general GGA exchange energy can be written 

in the form similar to equation (2.33): 

[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫== rdrsFrnrnrdrs,rnrns,nE GGA
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[ ]sF GGA
X  in the case of PW91 is given by: 
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     (2.35) 

which is an extension of a form given by Becke B88 [43], though it is tailored so that 

extra exact conditions are obeyed, for instances, the correct behaviour in the slowly 

varying (small s) limit, some scaling relations [50], and energy bounds [51]. [ ]sF GGA
X  

remains unchanged with different rs values because there is no rs dependence in the 

enhancement factor since the exchange energy scales linearly with uniform density 

scaling. GGA correlation energy can be written in the form: 

[ ] ( ) ( ) ( )[ ]∫ += rd,r,tH,rrnn,nE ss
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where t is another dimensionless density gradient defined by: 
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with [ ] 2
1

4 πFs kk =  is the TF screening wave vector and ( ) ( )[ ] 211 3
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a spin-scaling factor. For PW91, H is defined as: 
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where ( ) ( ){ }[ ]( )1212 23 −−= βεαβα g/exp//A C ;  α = 0.09 ;  β = ν Cc(0) = 

0.004235 ν  0.066725 ;  ν = (16 /π)(3 π≅ 2)1/3 = 15.7559 ;  Cx = -0.001667 ;  Cc(rs) = 

Cxc(rs) – Cx ; and ( ) 32
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PW91 incorporates some inhomogeneity effects while retaining many of the best 

features of LSDA. However, it has its own problem; for example, the parameters are 

not joined seamlessly giving rise to spurious wiggles in the exchange-correlation 

potential for small and large dimensionless density gradients, which can afflict the 

construction of GGA-based electron-ion pseudopotentials. The analytic function f 

fitted to the numerical results of the real-space cutoff is also complicated and 

nontransparent, and it has been found that known exact features of the exchange-

correlation energy exist that are more important than those satisfied by the PW91. 

Hence, PBE which is the most popular GGA functional today has been constructed 
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to improved the deficiencies of PW91. PBE uses simple derivation of GGA 

functional in which its parameters are fundamental constants. The exchange 

enhancement factor of PBE is different from PW91 which is given by: 

( )
κμ

κκ
/s

sF PBE
X 21

1
+

−+=                                     (2.39) 

where μ  = β (π2/ 3) = 0.21951 and κ  = 0.804 is related to the second-order gradient 

expansion. This form has the following properties [34,38]: (i) satisfies the uniform 

scaling condition, (ii) recovers the correct uniform electron gas limit because Fx(0) = 

1, (iii) obeys the spin-scaling relationship, (iv) recovers the LSDA linear response 

limit for s 0 (Fx(s)→  1 + μs→ 2) and (v) satifies the local Lieb-Oxford bound [51] 

εX(r) ≥ -1.479 ρ(r)4/3, that is FX(s) ≤ 1.804, for all r, provided that κ ≤ 0.804. The 

correlation energy is written similarly to equation (2.35) with H as:  
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where [ ] ( ){ }[ ] 1
0

23 1 −
−−= aegnexpA LDA

C γε
γ
β  ; and ( ) 031091021 2 .ln ≅−= πγ . 

Other parameters are same with those of PW91. The correlation correction term H of 

PBE satisfies the following properties [38,47]: (i) it tends to the correct second-order 

gradient expansion in the slowly varying (high-density) limit (t 0), (ii) it 

approaches minus of the uniform electron gas correlation  for rapidly varying 

densities (t ∞), hence making the correlation energy to vanish results from the 

correlation hole sum rule 

→
LDA
Cε−

→

( )∫ =+ 03 ur,rnud , for density at position r+u of the 

correlation hole surrounding an electron at r, (iii) it cancels the logarithmic 

singularity of  in the high-density limit, thus forcing the correlation energy to 

scale to a constant under uniform scaling of the density. PBE retains correct features 

of LSDA and combines them with the most energetically important features of 

gradient-correlation non-locality [47]. It neglect the correct but less important 

features of PW91 which are the correct second-order gradient coefficients for E

LDA
Cε

X and 

EC in the slowly varying limit, and the correct nonuniform scaling of EX in limits 

where the s tends to ∞. 
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2.2.6 DFT Choice of Electronic Structure 

 

 

 Since in the nano-size, the material properties depend to a large extent on 

quantum effects, it necessitates the importance of atomic scale computer simulations 

and requires that these simulations should include a quantum mechanical description 

of the electrons. The development of ab-initio DFT and its integration into user-

friendly program has led to a revolution in atomic-scale computational modeling in 

the last two decades.  These methods are today used transdisciplinarily for the 

investigation of metallic, minerals,  semiconducting material and molecular systems, 

as well as nano-structured devices such as nano-structured surfaces and thin films, 

nano-wires and quantum-dots.  

 

 

Therefore, DFT is a successful theory to electronic structure of atoms, 

molecules and solids. It has become the most popular method in quantum chemistry 

and physics, accounting for approximately 90% of all calculation today. It produces 

good energy and excellent structure while scaling favorably with electron number 

and hence it is feasible on larger systems compared to other methods. Besides, it 

offers notable balance between accuracy and computational cost in which it produces 

accurate results with relatively smaller basis sets in comparison with other method 

such as HF (see Table 2.1). The success of DFT is also due to its availability of 

increasingly accurate approximations to the exchange-correlation energy. It is able to 

give the quantitative understanding of materials properties from the fundamental 

laws of quantum mechanics. Other than these, DFT is very useful in order to 

understand the complicated observation of diversity such as the reaction of some 

materials, design new materials with desired properties, and study conditions that are 

impossible or expensive to be measured experimentally. 
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Table 2.1: Comparison of accuracy of various computation tools.  

Method Description Accuracy 
Molecular Mechanics (MM) Atomistic, empirical potentials Low 
Austin Model 1 (AM1), 
Parameterized Model 3 (PM3) 

HF with semi-empirical integrals : 
: 
 

Hartree Fock (HF) Slater-determinant : 
2nd-order Møller-Plesset (MP2) Simplest ab-initio correlation : 
Density Functional Theory (DFT) Density based : 
Coupled-Cluster with Single and 
Double and Perturbative Triple 
excitations [CCSD (T)] 

Harder ab-initio correlation : 
: 

Multi-Reference Configuration 
Interaction (MRCI) 

Multi-reference High 

 
 
 
 

  There are plenty of DFT codes for electronic structure calculation, for 

instances some of them are:  

• VASP 

• CASTEP 

• Wien2K 

• CPMD 

• ABINIT 

• FHImd 

• Siesta 

In this research, VASP is used as the dominant codes for calculating electronic 

structure of gallium arsenide clusters. Its introduction is given in the next chapter. 

Below is the list of some of the properties that can be calculated by DFT: 

a) Total energy in the ground state, which is very useful quantity that can be 

used to get structures, heat of formation, adsorption energies, diffusion 

barriers, activation energies, elastic moduli, vibrational frequencies and 

others. 

b) Forces on nuclei which can be obtained with Hellmann-Feynman Theorem 

[52] which is given by: 
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http://en.wikipedia.org/wiki/M%C3%B8ller-Plesset_perturbation_theory
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where  is the position of the nuclei the forces IR
r

IF
r

 acting on, and ZI is its 

nucleus charge. The forces can be used to get equilibrium structures, 

transition states, vibrational frequanecies and others. It is also can be used in 

molecular dynamics to get the properties at finite temperature. 

c) Eigenvalues  

d) Vibrational frequencies  

e) Density in the ground state 

f) Magnetic properties (for example by using LSDA) 

g) Ferroelectric properties (for example by using Berry’s phase formulation) 

 

 

 

 

2.3     Basis Set 

 

 

As mentioned above, ab-initio involves the choice of method (e.g. DFT) and 

basis set. Basis set is a set of functions employed for representation of molecular 

orbitals, which are expanded as a linear combination of atomic orbitals (LCAO) with 

the coefficients to be determined as given by 

( ) ( )∑
=

=
n

rCr ii
1μ

μμ φψ rr                                                (2.42) 

where μφ  are elements of a complete set of functions. Typically, the basis functions 

are centered on the atoms, and so sometimes they are called atomic orbitals. Basis set 

were first developed by J. C. Slater. Thus, initially these atomic orbitals were typical 

Slater orbitals, which corresponding to a set of functions which decayed 

exponentially with distance from the nuclei. Later, it was realized that these Slater-

type orbitals (STO) [53] could be in turn approximated as linear combinations of 

Gaussian orbitals instead, for the reason that it is easier to calculate overlap and other 

integrals with Gaussian basis functions [54,55], which led to huge computational 

savings. Today, there are hundreds of Gaussian-type orbital (GTO) basis sets. They 

are generally categorized into two. The first and the simplest is minimal basis sets 

which describes only the most basic aspects of the orbitals. Examples for these basis 

http://en.wikipedia.org/wiki/Gaussian_orbital
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sets are STO-2G, STO-3G and STO-6G, where the number before G represents the 

number of GTOs combined to approximate the STO. Minimal basis sets can still be 

used in part for other types of basis sets which are called split valence and double-

zeta basis sets, which are the results of scaling the orbital to different size by splitting 

the minimal basis set. A few examples of common split-valence basis sets are 3-21G, 

4-31G and 6-31G. The second category is extended basis sets which have much more 

detailed description derived from a set of mathematical functions designed to give 

maximum flexibility to the molecular orbitals, which subject to the costs of the 

calculation. The basis sets can be added with any suitable function. The important 

additions are polarization functions (denoted by * at the end of basis set name, e.g. 3-

21G*) and diffusion functions (denoted by sign +, e.g. 3-21+g).  More extensions are 

for instances triple valence and triple zeta basis sets. All these basis sets are of the 

type of localized basis sets.  

 

 

 

 

2.3.1 Plane Wave Basis Sets 

 

 

In addition to the localized basis set, another basis sets available for quantum 

chemical or physics simulations are plane wave (PW) basis sets, which are of non-

localized basis set. PW basis set offers a number of advantages, including the 

simplicity of the basis functions, which make no preconceptions regarding the form 

of the solution, basis set superposition error (BSSE) is removed as all functions in the 

basis are mutually orthogonal, suitability for all atomic species with the same basis 

set, and the ability of calculate the forces on atoms efficiently due to the correction 

terms are not needed. 

 

 

On the reason that most of the material properties of solids are determined by 

the valence electrons, the representation of the valence states is more important than 

the representation of the core states for the calculations on solids and surfaces. 

Therefore, pseudopotential (PP) [56] is an approximation that removes the core 

http://www.chem.swin.edu.au/modules/mod5/c_6-311g.html
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electrons (see Figure 2.3 and 2.4) and thus reducing the wavefunctions need to be 

calculated. The use of pseudopotentials and the pseudo-valence wave functions allow 

the expansion of the valence wave functions in a PW basis set. In general the 

representation of an arbitrary orbital in terms of a PW basis set would require a 

continuous, and thus infinite, basis set. Nonetheless, the imposition of periodic 

boundary conditions allows the use of Bloch's Theorem whereby the k.n
~ rψ  of the 

system with a band index n and wavevector k
r

, can be written as 
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1 is the expansion of the valence wave with Ω is the 

volume of the unit cell. The sum is over all reciprocal lattice vectors G
r

, and the 

wavevector k
r

lies within the first Brillouin zone. A given one-electron state (basis 

set) for any point k
r

can be expanded in a discrete but infinite number of plane 

waves. . In practice, the set of plane waves is restricted to a sphere in reciprocal 

space most conveniently represented in terms of a cut-off energy, , such that for 

all values of G

cutE
r

 used in the expansion is given by: 
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The variation of a single parameter,  may ensure the convergence of the 

calculation with respect to basis set. Therefore, the calculated properties often show 

extreme sensitivity to tiny changes in basis set and no systematic scheme for 

convergence is available. This is a significant advantage of PW over other basis set 

choices. 

cutE

 

 

Bulk solid which exhibits translational symmetry possesses the natural 

condition of periodic boundary. In the case of isolated molecule, periodic boundary 

conditions must be introduced artificially by a supercell model (see Figure 2.3). In 

this model, there is an adequate amount of vacuum region around the molecules such 

that the periodic array of molecules has a large separation. By this, the results will be 
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those for an isolated molecule. The electron density ( )rn r
 and energy are given by 

averaging the results for all values of k
r

 in the first Brillouin zone (BZ), 
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In an infinite system, these integrals are replaced by weighted sums over a discrete 

set of k-points which must be selected carefully to ensure convergence of the results. 

Nevertheless an isolated molecule will exhibit no dispersion where there will be no 

variation of E and ( )rn r
 with k. Therefore, isolated molecule calculations need only a 

single k-point. 

 

 

Figure 2.3: Schematic illustrating the a supercell model for a isolated 
molecule. The dashed line depicts the boundaries of the supercell. 
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Figure 2.4: Schematic representation of a psedopotential (left) and a 
pseudowavefunction (right) along with all-electron potential and 
wavefunction. The radius at which all-electron and pseudofunction values 
match and identical is rc. the pseudofunctions are smooth inside the core 
region. 
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      Figure 2.5: Schematic depicting principle of pseudopotential, of which core      
      electrons are neglected. 
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2.3.2 Projected Augmented Wave (PAW) –Pseudopotentials (PP) in Plane 
Wave Basis 

 

 Owing to the number of plane waves would exceed any practical limit and 

lead to slow convergence, pseudopotentials (PP) instead of exact potentials need to 

be applied. There are plenty of PP approximations such as norm-conserving PP (NC-

PP), ultrasoft PP (US-PP) and projected augmented wave (PAW) potentials. All 

these three methods have a common that they are presently frozen core methods in 

which the core electrons are pre-calculated in an atomic environment and kept frozen 

in the course of the remaining calculations (see Figure 2.6). Among those, PAW 

method which is developed by Blöch [57], is a very powerful tool for performing 

electronic structure calculation within the framework of DFT, combining some of the 

best features of PP and all-electron approaches [58]. In PAW, the all-electron wave 

function is decomposed into three terms as depicted in Figure 3.7: 

∑∑ +−= site
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site
lm lmlmk,nk,n cc~~

ε εεε εε φφψψ rr                    (2.48) 

where                                            k,nlmlm
~p~c rψεε =                                             (2.49) 

where εlmp~  is the projector function, εφlm  is the partial wave, lm is an index for the 

angular and magnetic quantum numbers and ε refers to a particular reference energy. 

The first term on the right side of equation (2.47) is the pseudowavefunction given 

by equation (2.42) in PW expansion; the second term is the pseudowavefunction 

represented on FFT-grid, on-site terms on atom-centered radial grids; while the third 

term is the exact (or all-electron) onsite terms on radial grids. The decomposition is 

also holds for charge density, kinetic energy, exchange-correlation energy and 

Hartree energy. For instance, charge density ( )rn r
 can be represented by: 
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where  denotes the occupancy factor weighted by the fractional BZ 

sampling volume, i = lmε,  is the pseudo-density at one site, and  is the 

compensation density at site. Whilst kinetic energy can be represented by: 

k,nf r

1n~ 1n
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where  is an on-site density matrix. ∑=
k,n

jik,nji ccf *
r

rρ
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   Figure 2.6: Schematic depicting the decomposition of exact wavefunction 
   (and energy) into three terms. 

  

 
For KS orbitals expanded in a plane-wave basis set, atomic pseudopotentials 

are employed, by which a local contribution  and a angular momentum 

dependent non-local contribution  contributes to external energy or electron-

ion (ion = nucleus + core electrons) interaction energy, E

locE

nonlocE

ext which can be represented 

by 

nonloclocext EEE +=                                              (2.52) 

with                                     ( ) ( ) rdrnRrVE I

N

I

ion
I,locloc

3

1

rrr
−= ∑∫

=
                               (2.53) 

where is the local ionic pseudopotential with ion
locV IR

r
 is the Cartesian position of the 

Ith ion, and local pseudopotential energy contains the electron-ion Coulomb 

interaction. 

 

 



 
 
 
 

CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

In this research, VASP is used as the simulation tools for electronic structures of the 

gallium arsenide clusters. Introduction and the calculation process of VASP are 

discussed in this chapter. 

 

 

3.1       Introduction to VASP 

 

 

VASP which stands for Vienna Ab-Initio Software Package is initially 

written by Mike Payne at MIT. It has the same roots as the CASTEP/CETEP code 

but branched from this root at a very early stage [59]. The CASTEP version upon 

which VASP is based only supported local pseudopotentials and a Car-Parrinello 

type steepest descent algorithm. In 1989, VASP code had been brought by Jürgen 

Hafner to Vienna, Austria and continued its development at the Institut für 

Materialphysik of Universität Wien. The completion of the code had important 

contribution from Jürgen Furthmüller who joined the group in Jan 1993 and Georg 

Kresse who complete the parallelization in Jan 1997. 

 

 

VASP is a versatile package for performing ab-initio quantum mechanical 

molecular dynamics (MD) using pseudopotentials and a plane wave basis set. The 
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approach implemented in VASP is based on a finite-temperature LDA with the free 

energy as variational quantity and an exact evaluation of instantaneous electronic 

ground state at each MD-step. VASP uses efficient matrix diagonalization schemes 

and an efficient Pulay/Broyden charge density mixing. All the problems occurring in 

the original Car-Parrinello method based on the simultaneous integration of 

electronic and ionic equations of motion, is avoided in these techniques. The 

interaction between ions and electrons is described by ultra-soft Vanderbilt 

pseudopotentials (US-PP) or by the projector-augmented wave (PAW) [57,60] 

method, in which both of them allow for a considerable reduction of the number of 

plane-waves per atom for transition metals and first row elements. Forces and stress 

can be easily calculated with VASP and used to relax atoms into their instantaneous 

ground state. Besides pure LDA for exchange-correlation functional, the gradient 

corrected functionals that are implemented in VASP to account for non-locality in 

exchange and correlation are: LM, PB, PW91, PBE, RPBE. Below is a short 

summary of some highlights of the VASP code [59]: 

a) Owing to use of PAW and US-PP method, the size of the basis-set can be 

kept very small even for transition metal and first row elements like C and 

O. Generally not more than 100 plane waves (PW) per atom are required to 

describe bulk materials, in most cases even 50 PW per atom will be 

sufficient for a reliable description. 

b) In any PW program, the execution time scales like N3 for some parts of the 

code, where N is the number of valence electrons in the system. In the 

VASP, the pre-factors for the cubic parts are almost negligible leading to an 

efficient scaling with respect to system size. This is possible by evaluating 

the non-local contributions to the potentials in real space and by keeping the 

number of orthogonalisations small. For system with roughly 2000 

electronic bands, the N3 part becomes comparable to other parts. Therefore 

we expect VASP to be useful for systems with up to 4000 valence electrons.  

c) VASP uses a rather “traditional” and “old-fashioned” self-consistency cycle 

to calculate the electronic ground state. The combination of this scheme 

with efficient numerical methods leads to an efficient, robust and fast 

scheme for evaluating the self-consistent solution of the Kohn-Sham 

functional. The implemented iterative matrix diagonalisation schemes 
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(RMM-DIIS, and blocked Davidson) are probably among the fastest scheme 

currently available. 

d) VASP includes a full featured symmetry code which determines the 

symmetry of arbitrary configurations automatically. 

e) The symmetry code is also used to set up the Monkhorst Pack special points 

(k-points) allowing an efficient calculation of bulk materials, symmetric 

clusters. The integration of the band-structure energy over the Brillouin 

zone is performed with smearing or tetrahedron methods. For the 

tetrahedron method, Bloch corrections, which remove the quadratic error of 

the linear tetrahedron method, can be used resulting in a fast convergence 

speed with respect to the number of special points. 

f) VASP runs equally well on super-scalar processors, vector computers and 

parallel computers. 

 

 

 

 

3.1.1 Software Packages Needed by VASP 

 

 

 VASP is a Fortran 90 program which is UNIX based. It requires a few 

packages in order to successfully execute the simulation. The packages with brief 

descriptions are listed as below: 

i.) Fast Fourier Transform (FFT) 

FFT is an efficient algorithm to compute the Discrete Fourier Transform and 

its reverse. FFTs are of great importance to a wide variety of applications, 

including solving partial differential equations and algorithms for quickly 

multiplying integers. In multiplications involving complex numbers, it is 

simply a method of laying out the computation which is much faster for large 

values of N, where N is the number of samples in the sequence. FFT works by 

using the divide and conquer approach, to break up the original N point 

sample into two (N / 2) sequences in order to make a series of smaller 

problem which is easier to be solved. For instance, FFTs approach only 

require 1 multiplication and 2 additions by breaking it down into a series of 2 
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point samples of which the recombination of the points is minimal, whereas 

the Discrete Fourier Transform needs (N-1)2 complex multiplication and N(N-

1) complex addition. 

 

 

ii.) BLAS 

Basic Linear Algebra Subprograms (BLAS) are routines that provide standard 

building blocks for performing basic linear algebra operations such as vector 

and matrix multiplication. The Level 1 BLAS perform scalar, vector and 

vector-vector operations, the Level 2 BLAS perform matrix-vector operations, 

and the Level 3 BLAS perform matrix-matrix operations. They are commonly 

used in the development of high quality linear algebra software such as 

LAPACK (Linear Algebra PACKage) owing to its efficiency, portability and 

wide availability. Another package is ATLAS (Automatically Tuned Linear 

Algebra Software) which can automatically generate optimized BLAS library. 

It provides a full implementation of the BLAS application programming 

interfaces (APIs) as well as some additional functions from LAPACK. In 

addition, Intel Math Kernel Library (Intel® MKL) is also a package 

comprised of BLAS and LAPACK which is specifically support Intel 

processors. 

 

 

iii.) MPI 

For parallelization, VASP utilizes Message Passing Interface (MPI). Message 

passing is a method by which data from one processor's memory is copied to 

the memory of another processor. Hence, MPI is a language-independent 

computer communications descriptive API, with defined semantics, and with 

flexible interpretations. It was designed for high performance on both 

massively parallel machines and on workstation clusters. Simply stated, the 

goal of the MPI is to provide a widely used standard for writing message 

passing programs with high performance or scalability and high portability. 

MPICH (or MPICH2) and LAM/MPI are the examples of the implementation 

of the MPI. 

 

http://en.wikipedia.org/wiki/LAPACK
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/API
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3.2 Files Used by VASP 

 

Table 3.1 listed the input and out files used by VASP. Basically, four 

important input files are INCAR, POTCAR, KPOINTS, and POSCAR, which are 

indispensable in the execution of VASP. 

 

 

 Table 3.1: A relatively large number of input and output files of VASP. 
 

File Input / Output File 
INCAR In 

KPOINTS In 
POTCAR In 
POSCAR In 

stout Out 
IBZKPT Out 

CONTCAR Out 
CHGCAR In / Out 

CHG Out 
OUTCAR Out 

WAVECAR In / Out 
DOSCAR Out 
PCDAT Out 

OSZICAR Out 
EIGENVAL Out 
TMPCAR In / Out 

XDATCAR Out 
LOCPOT Out 
ELFCAR Out 
PROOUT Out 
PROCAR Out 
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3.2.1 INCAR File 

 

 

INCAR is the central input file of VASP. It determines ‘what to do and how 

to do it’, and contains a relatively large number of parameters. Most of these 

parameters have convenient defaults and any of the default values should not be 

changed without the awareness of their meaning. Some decisive parameters have to 

be set for specific calculations for instances geometry optimization and local density 

of states calculation. Therefore, understanding the parameters of INCAR helps 

manipulating the desired calculation well. 

 

 

 

 

3.2.2 POTCAR File 

 

 

The POTCAR file contains the pseudopotential for each atomic species used 

in the calculation. If the number of species is larger than one, simply combines the 

POTCAR files of each species into one. The first pseudopotential will correspond to 

the first species in the POSCAR and INCAR files, and so on. The POTCAR file also 

contains information about the atoms like their mass, their valence, the energy of the 

reference configuration for which the pseudopotential was created and others. In 

addition, it also contains a default energy cutoff and therefore it is not necessary to 

specify it in the INCAR file. The default value will be overwritten if a different value 

is specified in INCAR file. There are two types of pseudopotentials supplied by 

VASP, which are PAW and US-PP. Generally, the PAW potentials are more accurate 

than the US-PP. There are two reasons for this: first, the radial cutoffs (core radii) are 

smaller than the radii used for the US-PP, and second the PAW potentials reconstruct 

the exact valence wavefunction with all nodes in the core region. Since the core radii 

of the PAW potentials are smaller, the required energy cutoffs and basis sets are also 

somewhat larger. Most of the PAW potentials were optimized to work at a cutoff of 

250-300 eV. Pseudopotential that is used in this research is PAW for GGA (PBE). 
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3.2.3 POSCAR File 

 

 

This file contains the lattice geometry and the ionic positions, optionally also 

stating velocities and predictor-corrector coordinates for a Molecular Dynamic (MD) 

run. After the lattice geometry, number of atom per atomic species is given in the 

order consistent with the POTCAR and INCAR file. The atomic positions are 

provided either in Cartesian coordinates or in direct coordinates which is respectively 

fractional coordinates. In direct mode, the positions are given by 

332211 axaxaxR rrrr
++=      ,                                       (3.1) 

where  are the three basis vectors and  are the supplied values. In the 

Cartesian mode the positions are scaled by a factor s, which is the lattice constant 

used to scale all lattice vectors besides atomic coordinates, as given by: 

31K
ra 31Kx

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

x
x
x

sR
r

          .                                             (3.2) 

In order to be recognized, “Cartesian” (or ‘C’, ‘c’, ‘K’ or ‘k’) is written before the 

Cartesian atomic position, and any other character or “Direct” will switch to direct 

mode. 

 

 

 

 

3.2.4 KPOINTS File 

 

The file KPOINTS must contain the k-point coordinates and weights or the 

mesh size for creating the k-point grid. There are a few formats to create KPOINTS 

file: 

i.) Entering all k-points explicitly with Cartesian or reciprocal coordinates. In the 

reciprocal mode, the k-points are given by 

332211 bxbxbxk
rrrr

++=        ,                                (3.3) 
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31K

r
bwhere  are the three reciprocal basis vector and  are the supplied 

value. In the Cartesian input format the k-points are given by: 

31Kx

( 321
2 x,x,x
a

k )π
=

r
      .                                   (3.4) 

Table 3.2 list the input required in order to specify the high symmetry k-points and 

Figure 3.1 shows the example of important k point on the BZ of a face-centered 

cubic (fcc) crystal. 

k<111> 

kz <001> 

kx <100> 

ky <010> 
Γ 

Σ
K W

Z 
X 
S 

U 

L  

Q 
Λ

X 

Figure 3.1: The First Brillouin zone of a fcc lattice, with high symmetry k-points  
and direction of planes marked. The zone center is Γ. Note that this is also the 
Wigner-Seitz cell of a body-centered cubic (bcc) lattice in real space.

Δ

 

 Table 3.2: Coordinates of high symmetry k-points in Cartesian and reciprocal mode. 

Point Cartesian coordinates 
(unit of 2π ) /a

Reciprocal coordinates 
( ½    ¾    ¼ ) ( ½    0     1 ) W 

( ¾    ¾    0 ) ( ⅜    ⅜   ¾ ) K 

Γ ( 0     0     0 ) ( 0     0     0 ) 
( ½    ½    ½ ) ( ½    ½    ½ ) L 

( ½    ½    0 ) X ( 0     0    1 ) 



 47

ii.) Strings of k-points for bandstructure calculation that connecting specific 

points of BZ, for example strings connecting Γ – X – W – Γ. 

iii.) Automatic k-mesh generation which requires only the input of subdivisions 

of the BZ in each direction and the origin for the k-mesh. The k-mesh is 

generated according to the Monkhorst-Pack scheme [61]. This essentially 

means that the sampling k-points are distributed homogeneously in the BZ, 

with rows or columns of k-points running parallel to the reciprocal lattice 

vectors that span the BZ. The construction rule of Monkhorst-Pack is 

321 bububuk kjikji

rrrr
++=                                       (3.5)     

i
i

i
i N,,,r,

N
Nr

u K21
2

12
=

−−
=where                      ,             (3.6) 

31K

r
b  are the reciprocal lattice vectors, and Ni  is the numbers of the 

subdivisions that determines the number of k-points in i-direction. There are 

two modes which are original Monkhorst-Pack, in which the k-mesh will be 

shifted off Γ for even divisions to get a mesh which is centered symmetrically 

around Γ, and Gamma mode which generates Monkhorst-Pack type meshes 

with the origin being at the Γ point. All symmetry operations of Bravais 

lattice are applied to all k-points and the irreducible k-points (or Irreducible 

Brillouin Zone, IBZ) are then extracted. 

 

 

 

 

3.3     Algorithm Used in VASP 

 

 

Most of the algorithms implemented in VASP use an iterative matrix-

diagonalization scheme. The used algorithms are based on the conjugate gradient 

scheme, block Davidson scheme, or a residual minimization scheme-direct inversion 

and the iterative subspace (RMM-DIIS). An efficient Broyden/Pulay mixing scheme 

is utilized for the mixing of the charge density. The typical flow-chart of VASP 

calculating KS ground state is shown in Figure 3.2. Input charge-density  and 

wavefunctions 

inn

{ bn N,,n, K1= }φ , are independent quantities. At startup, charge-
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density is by default taken as the superposition of atomic pseudo charge densities, 

while wavefunctions by default is set up by filling wavefunction arrays with random 

numbers. Within each self-consistency loop the charge density is used to set up the 

Hamiltonian and the wavefunctions are then optimized iteratively so that they get 

closer to the exact wavefunctions of this Hamiltonian. From the optimized 

wavefunctions, a new charge density is calculated which is then mixed with the old 

input-charge density. Figure 3.2 shows the flow chart of the algorithm and a more 

detailed explanation is given in the next paragraph. 

 

From the input charge densities, the local part of the Kohn-Sham Hamiltonian 

( ) which is given by sc
nonloc

sc
loc VVTH ++=

[ ] [ ]inXCinH
ion

loc
sc

loc nnVVV μ++=                              (3.7) 

and the corresponding double counting corrections  

[ ] [ ] [ ] ( ) ( )∫−+−= rdrnrnEnEnE inXCinXCinHin.c.d
3

2
1 rrμ              (3.8) 

are evaluated. For US-PP, the non-local part of the PP depends also on the local 

potential and must be calculated accordingly. In the next step the Nb trial 

wavefunctions are improved using iterative method and the new eigenenergies are 

used to calculate a new Fermi energy and new partial occupancies. The total free 

energy for the current iteration is calculated as the sum of the bandstructure energy, 

the entropy term and double counting corrections (see equation 3.9). 

[∑∑ +⎟
⎠
⎞

⎜
⎝
⎛ −

−=
n

in.c.d
n

n
n

n nESfF
σ

με
σε ]   ,                    (3.9) 

where  for occupied bands and 1=nf 0=nf  for unoccupied bands, nε  is 

bandstructure energy, σ  is a parameter to control the smearing of the occupation 

function f ( )nfS, μ  is the Fermi energy, and n  is the entropy term. The calculated 

energy conceptually corresponds to the energy evaluated from the Harris-Foulkes 

functional, which is non-self-consistent (in contrast to the KS functional) and the 

Harris Foulkes functional (defined in equation (3.9)) requires the calculation of the 

bandstructure energy for a fixed charge density nin. In VASP, it is easy to evaluate 

this energy by keeping the initial charge density fixed and iterating the eigenvectors 

only until they are converged. 
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 To obtain the exact KS-ground-state energy selfconsistency with respect to 

the input charge density requires that the charge density residual vector  given 

by 

[ innR ]

[ ] inoutin nnnR −=                                         (3.10) 

is zero, where the output charge density nout is calculated from the wavefunctions 

with the relation of ( ) ( )∑=
n

nnout rfrn 2rr φ . The residual vector  allows 

calculating a new charge density n

[ innR ]

in for the next selfconsistency loop. In principle it 

is necessary to evaluate the eigenfunctions nφ  exactly for each new input charge 

density making nout and the residual vector R functionals of the input charge density 

nin only. However, even in conjunction with complex Broyden like mixing 

techniques, it turns out that this is not necessary if the final wavefunctions of the 

previous mixing iteration are used as new initial trial wavefunctions. In such case a 

few steps in the iterative matrix diagonalization are sufficient to obtain a reliable 

result for the charge density residual vector R. 

 

 

The conjugate gradient (CG) and the residual minimization (RMM) scheme 

do not recalculate the exact KS eigenfunctions but an arbitrary linear combination of 

the lowest eigenfunctions of a number of bands. Thus, it is in addition necessary to 

diagonalize the Hamiltonian in the subspace spanned by the trial wavefunctions, and 

to transform the wavefunctions accordingly as shown below. 

kjkj

ikkjkji

jiij

U

UUH

H

φφ

ε

φφ

←

=

=H

                                              (3.11) 

This is called subspace diagonalization and can be performed either before or after 

CG or RMM scheme, in which the first choice is preferable in the self-consistent 

calculations. 

 



 50

 

Choose trial-charge nin and trial wavefunction { }nφ  

Calculate Hartree potential [ ]inH nV  and double counting corrections

Calculate XC potential [ ]inXC nV  and double counting corrections 

Set up non-local part sc
jiD  

Sub-space diagonalization nnnn U φφ ′′ ⇐  (if required) 

Iterative improvement of { }nn ,εφ  

Gram-Schmidt orthogonalizatoin (if required) 

New partial occupancies fn

Free energy ( ) [ ]∑∑ +−=
n

in.c.dnn
n

n nEfSfF σε  

New charge density nout from wavefunctions 

Mixing of charge density nin, nout ⇒  new nin

breakEE >Δ
no 

Figure 3.2: Flow chart of iterative methods for the diagonalization of the KS-
Hamiltonian in conjunction with an iterative improvement (mixing techniques) of 
the charge density for the calculation of KS-ground-state. 

Calculate force, update ions 
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Gram-Schmidt is a orthogonalization method which is only required for the RMM 

scheme and it is performed after the scheme. In general all iterative algorithms work 

very similar, where the core quantity is the residual vector: 

( ) nnnnnn ,R φφεφε HH =−=                        (3.12) 

The residual vector is added to the wavefunction nφ , and the algorithms differ in the 

way this is exactly done. 

 

 

 

 

3.3.1 Conjugate Gradient Algorithm 

 

 

 The conjugate gradient algorithm selects the successive direction vectors as a 

conjugate version of the successive gradients obtained as the method progresses. 

Thus, the directions are not specified beforehand, but rather are determined 

sequentially at each step of the iteration. At step k one evaluates the current negative 

gradient vector and adds to it a linear combination of the previous direction vectors 

to obtain a new conjugate direction vector along which to move. There are three 

primary advantages to this method of direction selection. First, unless the solution is 

attained in less than n steps, the gradient is always nonzero and linearly independent 

of all previous direction vectors. Indeed, as the corollary states, the gradient  is 

orthogonal to the subspace 

kg

kβ  generated by d , d , …..,dk+10 1 . If the solution is 

reached before n steps are taken, the gradient vanishes and the process terminates. 

 

 

 Second, a more important advantage of the conjugate gradient method is the 

especially simple formula that is used to determine the new direction vector. This 

simplicity makes the method only slightly more complicated than steepest descent. 

Third, because the directions are based on the gradients, the process makes good 

uniform progress toward the solution at every step. This is in contrast to the situation 

for arbitrary sequences of conjugate directions in which progress may be slight until 
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the final few steps. Although for the pure quadratic problem uniform progress is of 

no great importance, it is important for generalizations to non quadratic problems. 
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Step 3b when k = 0 is a steepest descent. Each subsequent step moves in a 

direction that modifies the opposite of the current gradient by a factor of the previous 

direction. Step 3a – 3e gives us the Q-orthogonality of the descent vector 

. 10 ,......., −ndd

 

 
 

 

3.3.2 Block Davidson Algorithms 

 

 

Davidson [59] has devised methods that are now widely applied to electronic 

structure problems. There are a number of variations that cannot be covered here. A 

primary point is that the Davidson approach is closely related to the Lanczos 

algorithm, but adapted to be more efficient for problems in which the operator is 

diagonally dominant. This is often the case in electronic structure problems for 

example plane wave algorithms. 

 

 

3.  for   do    

a)

b)
c)

d)

e)
4. return.  
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 The flavor of the Davidson methods can be illustrated by defining the 

diagonal part of the Hamiltonian matrix as '' mmmmmm HD δ=  and rewriting the 

eigenvalue problem   as  εψψ =H

                                      ( ) ( )ψεψ DIDH −=−                                                     (3.13) 

 

or                                 ( ) ( )ψεψ DHDI −−= −1                                                    (3.14) 

 

 Here I is the unit matrix, inversion of I – D is trivial, and H – D involves only 

off-diagonal elements. The latter equation is very similar to perturbation theory and 

suggests iterative procedures that converge rapidly if the diagonal part of the 

Hamiltonian is dominant. An algorithm has been suggested by Lenthe and Pulay [91] 

that involves three vectors at each step of the iteration. 

 

 

 

 

3.3.3 Residual Minimization Scheme-Direct Inversion In The Iterative 

Subspace (RMM-DIIS) 

 

 

The approaches described up to now (and the minimization methods  

described below) converge to the lowest state with no problems because the ground 

state is an absolute minimum. In order to find higher states, they must ensure 

orthogonality, either implicitly as in the Lanczos methods or by explicit 

orthogonalization. The residual minimization method (RMM) proposed by Pulay [92] 

avoids this requirement and converges to the state in the spectrum with eigenvalue 

closest to the trial eigenvalue ε  because it minimizes the norm of a “residual vector” 

instead of the energy.  
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 Since the approach of Pulay minimizes the residual in the full Krylov 

iterative space generated by previous iterations, the method is known as RMM-DIIS 

for “residual minimization method by direct inversion in the iterative subspace”. The 

general idea is    

                                            ∑
+

=

+ +=
1

1

1
n

j

j
j

o
o

n cc δψψψ                                            (3.15) 

 
1+nRwhere the entire set of  is chosen to minimize the norm of the residual jc . (Pre-

conditioning can also be applied at each step [57] to speed the convergence). The 
coefficients can be obtained by diagonalizing the Hamiltonian in the iterative 

subspace 
jc

( )no ψψψψ ..........,, 21 , which is a miniscule operation since the number of 
vectors is at most 10 or so. The time-consuming step is the operation ψΗ , which is 
a matrix operation requiring, in general, ( )2

bNO  operations for each eigenvector ψ , 
where  is the size of the basis.  bN
 

 

 

 

3.4     Simulation Process 

 

 

Generally, the simulation process in this research contains the steps shown in 

Figure 3.3 and this flow chart is applied to all of the structures in order to obtain the 

electronic structures. Each step of the process will be discussed in the next sections. 

The discussion of the methods provided in the following is not specific to any of the 

simulated structures but is universal and generally discussed. 
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Construct the cluster 

Geometry optimization on the cluster 

Density of states and Bandstructures 
calculation on the optimized cluster 

Energy, density of states and 
bandstructures are obtained 

Figure 3.3: Flow chart of the electronic structure simulation process of gallium arsenide 

 
clusters.

 

 

3.4.1 Construction of the Clusters 

 

 

Construction of a structure is done by specifying the Cartesian or direct 

coordinate of each atom of the structure in the POSCAR file. As discussed in the 

Section 2.2.1, due to the boundary conditions in VASP which are periodic in all three 

dimensions, supercell method is used for isolated structure calculations. The 

supercell is a simple cubic cell with large lattice length in order to create sufficient 

vacuum region for the isolated structure. The purpose is to eliminate the interaction 

between isolated clusters across the cell boundary in the periodic array and to make 

sure the results will be those for the isolated cluster. The structure of the cluster is 

built in the middle of the supercell. The supercell size is at least three times larger 

than the lattice constant of solid gallium arsenide. The distance between two isolated 

clusters is made about 2-3 times the size of the clusters to make sure the 

intermolecular interaction is negligible. In this research, the minimum lattice length 

of the supercell is taken to be 17 Å for the smallest clusters as three to six atoms 

clusters. Example is shown below with gallium arsenide cluster of 4 atoms. The 
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largest distance between atoms is taken (2.816 Å) and lattice length of 17 Å is built 

so that the distance between clusters is more than 10 Å, which is more than 3 times 

the individual cluster size. The lattice length increases as the number of atom of the 

cluster increases. 

 

       

          

 

 

 

 

         

        
(a) (b)  

Figure 3.4: (a) Bulk gallium arsenide with its unit cells repeated in 3 
dimensions. (b) supercells with Ga2As2 cluster in the center and the distance 
between clusters is large. The        show the Ga atoms and       show the As 
atoms. 

 

 

 

 

 

3.4.2 Geometry Optimization  

 

 

Geometry optimization is used to find the minima on the potential energy 

surface with these minimum energy structures representing equilibrium structures. 

When we first construct a raw cluster structure, the ion positions and bond lengths 

are not accurate and the structure is not in a stable condition. Thus geometry 

optimization is needed to be accomplished before any other calculation of the 

relevant structure. Force is a crucial element in the geometry optimization and it is 

relatively simple to be calculated by using plane wave basis set. The forces on a 

nucleus I with position RI can be conveniently described as II RF
rr

∂∂=F , which 

contains Pulay as well as Hellmann-Feymann contributions as shown in equation 

(2.40). F is the free energy which depends on the wavefunction nφ , the partial 

occupancies fn, expansion coefficients Cnq and the ionic position RI. This force can 
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then be used to find the ground state position of the atoms. The forces can be used to 

calculate a molecular dynamics trajectory. As the atoms move to new position, the 

electronic wavefunctions must also change. As the forces point to the minimum in 

the energy variation where the forces vanish, the atoms move toward an equilibrium 

structure. Thus, geometry optimization is also referred to as energy minimization.  

 

 

In VASP, geometry optimization can be done with a few algorithms such as 

standard ab-initio molecular dynamics (MD), RMM-DIIS implementation of quasi-

Newton, conjugate gradient (CG) and damped molecular dynamics. MD is a 

algorithm that performs the energy minimization into global minimum whereas all 

other algorithms are destined for relaxations into a local energy minimum. Damped 

MD is often useful for very bad initial guess structure while RMM-DIIS is usually 

the best choice that is close to the local minimum but fails badly if the initial 

positions are a bad guess. Therefore for difficult relaxation problems, CG is 

recommended because it possesses the most reliable backup routines. 

 

 

In this research, the geometry of the clusters has been determined by static 

relaxation using CG minimization and exact Hellmann-Feynman forces. For small 

clusters (n = 2 – 6), the most stable geometry is found from the many possible 

configurations with varying coordinates. When the size of the clusters is getting 

larger, the number of topologically distinct structures which is called isomers 

increases very rapidly with the number of atoms, n. Therefore, for larger clusters  

(n > 6) dynamical simulated annealing (SA) of the cluster structure was performed in 

addition. SA runs can be very helpful for an automatic determination of favorable 

structural models and it can avoid unfavorable local minima in the energy surface. 

The elevated temperatures strategy used in SA allows an efficient sampling of the 

potential energy surface [62]. Final structural refinement using the static CG 

approach for local minimization is performed after the system is cooled down to the 

best configurations. The following sections describe the parameters for CG and SA 

algorithms in the INCAR file. 
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SA CG Stable geometry 

Figure 3.5: Algorithm of geometry optimization used for large clusters. 

 

 

3.4.2.1 INCAR for Conjugate Gradient Geometry Optimization 

 

 

  Other than the default parameters specified in the POTCAR file, the 

following parameters is written in the INCAR file to overwrite those in the POTCAR 

(see Figure 3.6). Phrases after “!” briefly describe the flags respectively. The key of 

switching to CG algorithm is by setting IBRION = 2 and POTIM = 0.1 determine the 

scaling constant for the forces. The simulation is started with wavefunctions 

initialized according to flag INIWAV (default = 1 :fill wavefunction array with 

random numbers) and superposition of atomic charge densities is taken with 

ICHARGE = 2. High energy cutoff and precision are set to ensure the accuracy of 

the results. For cluster or isolated molecule with large supercell, Gaussian smearing 

is adopted and the width of the smearing is set to a significantly small value, of 

which 0.001 is set in this research. During the geometry optimization, the shape and 

volume of the supercell is kept constant and only the internal ions are relaxed 

(ISIF = 2), in the meanwhile force and stress tensor are calculated. The total energies 

and equilibrium geometries will converge to within the chosen precision (EDIFF and 

EDIFFG). EDIFF specifies the global break condition for the electronic self-

consistency loop. The relaxation of the electronic degrees of freedom will be stopped 

if the total or free energy and the eigenvalues change between two steps are both 

smaller than EDIFF. Whereas EDIFFG defines the break conditions for the ionic 

relaxation loop. For negative value, the relaxation will stop if all forces are smaller 

than | EDIFFG | (in unit of eV/Å). Sixty numbers of ionic steps is set and more steps 

should be added if convergence can not be reached. 
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   SYSTEM = Gallium arsenide cluster 
 
   ## Start parameter for this Run: 
     ISTART    = 0      ! job     : 0-new  1-cont  2-samecut 
     ICHARGE = 2                ! charge: 1-file  2-atom  10-const 
     PREC         = HIGH 
 
   ## Electronic Relaxation 
     ENCUT = 350 eV 
     EDIFF = 0.1E-0.7      ! stopping-criterion for ELM 
 
   ## Ionic Relaxation 
      IBRION = 2                     ! ionic relax: 0-MD  1-qausi-New  2-CG 
      ISIF = 2                            ! stress and relaxation 

EDIFFG = -0.01               ! stopping-criterion for IOM 
NSW = 60                        ! number of steps for IOM 
POTIM = 0.1                    ! time-step for ionic-motion 
 

   ## DOS related values 
      ISMEAR = 0                    ! -4-tet  -1-fermi  0-gaussian 
      SIGMA = 0.001               ! broadening in eV 
 
 

 
Figure 3.6: Parameters for CG algorithm in INCAR file. 

 

 

 In the first step of CG algorithm, ions are changed along the direction of the 

steepest descent which is the direction of the calculated forces and stress tensor. The 

CG method requires a line minimization which is performed in several steps as 

below: 

1. First a trial step into the search direction (scaled gradients) is done with the    

length of the trial step controlled by the POTIM parameter. Then the energy 

and the forces are recalculated. 

2. The approximate minimum of the total energy is calculated from a cubic or    

1xr0xr quadratic interpolation using energies and forces at  and  (see Figure  

 3.7), taking into account the change of the total energy and the change of the  

 forces, then a corrector step to the approximate minimum is performed. 

3. After the corrector step the forces and energy are recalculated and it is  

 checked whether the forces contain a significant component parallel to the  
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 previous search direction. If this is the case, the line minimization is  

 improved by further corrector steps using a variant of Brent’s algorithms. 

 

 

 

 

3.4.2.2 INCAR for Simulate Annealing 

 

 

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the 

global optimization problem for locating a good approximation to the global 

optimum of a given function in a large search space. It is a generalization of a Monte 

Carlo method for examining the equations of state and frozen states of n-body 

systems [63]. This technique involves heating and controlled cooling of a material to 

increase the size of its crystals and reduce their defects. The heat causes the atoms to 

become loose from their initial positions and wander randomly through states of 

higher energy whereas the slow cooling provides more chances of finding 

configurations with lower internal energy than the initial one. SA's major advantage 

over other methods is an ability to avoid becoming trapped at local minima. 

x0

x1

xtrial 2

xtrial 1

Figure 3.7: Conjugate gradient techniques: (top) Steepest descent step from 0x

x0

0gr x1

r

search for minimum along 0gr  by performing several trial steps to 1xr . (below) New 
gradient ( )10 xgg rrr

=  is determined and 1sr (green arrow) is conjugated. For 2D 
functions the gradient now points directly to the minimum. Minimization along 
search direction 1sr  is continued. 
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Because of the SA is a dynamic process that involves temperatures, there are 

a few parameters are to be included in the INCAR file as shown in Figure 4.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   SYSTEM = Gallium arsenide cluster 
 
   ## Start parameter for this Run: 
 ISTART    = 0      ! job     : 0-new  1-cont  2-samecut 
 ICHARGE = 2                ! charge: 1-file  2-atom  10-const 
 
   ## Electronic Relaxation 
 ENCUT = 350 eV 
 IALGO = 48                    ! RMM-DIIS algorithm for electrons 

LREAL = .FALSE          ! evaluate projection operators in rec. space 
NELMIN = 4                   ! do a minimum of four electronic steps 
MAXMIX = 50            ! keep dielectric function btwn ionic movement

            
   ## Ionic Relaxation 

IBRION = 0                       ! ionic relax: 0-MD  1-qausi-New  2-CG 
NSW = 600                        ! number of steps for IOM 
POTIM = 3.00                    ! time-step for ionic-motion 
NBLOCK = 1                     ! inner block 
SMASS = -1.00                  ! Nose mass-parameter (am) 
TEBEG = 1700                   ! temperature 
TEEND = 0 

Figure 3.8: Parameters for SA algorithm in INCAR file. 
 

 

Same as CG process, the energy cutoff of 350eV is used in the SA algorithm. 

IBRION = 0 denotes that the MD algorithm is combined in the SA process. RMM-

DIIS algorithm is set for electrons in order to reduce the number of 

orthonormalization steps and speed up the calculation. The projection operators are 

evaluated in reciprocal space (LREAL = FALSE) and at least 4 electronic iterations 

per ionic step is required for MD runs. MAXMIX specifies the maximum number of 

vectors stored in the Broyden/Pulay mixer or in other words it corresponds to the 

maximal rank of the approximation of the charge dielectric function build up by the 

mixer. It should be set roughly three times the number of iterations in the first ionic 

step. In the process of simulated annealing, the initial temperature is set to a very 

high temperature. This temperature is set to 1700 K which is a bit higher than the 
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melting point of gallium arsenide (1511 K). While these are indeed indicators of a 

transition from solid to liquid, the temperature at which this happen in a MD 

simulation is invariably higher than the melting temperature. In fact, the melting 

point is by definition the temperature at which the solid and the liquid phase coexist 

(they have the same free energy). However, lacking a liquid seed from where the 

liquid could nucleate and grow, overheating above melting commonly occurs. In this 

region the system is in a thermodynamically metastable state, nevertheless it appears 

stable within the simulation time. An overheated bulk crystal breaks down when its 

mechanical instability point is reached. This point may correspond to the vanishing 

of one of the shear moduli of the material or to similar instabilities, and is typically 

larger than melting temperature by an amount of the order of 20-30%. If the initial 

annealing temperature is too low, the search space is limited and the search becomes 

trapped in a local region. If the initial temperature is too high, the algorithm spends a 

lot of time “boiling around” and wasting CPU time. The idea is to initially  have a 

high percentage of moves that are accepted. 

 

 

The temperature reaches zero at the end after 600 numbers of ionic steps. 3 fs 

time step is set for the ionic motion. The decrement of the temperature is controlled 

by the option SMASS. In this case the velocities of the MD are scaled by each 

NBLOCK step to the temperature produced from the formalism TEMP = TEBEG + 

(TEEND – TEBEG) × NSTEP / NSW, where NSTEP is the current step (starting 

from 1). 

 

 

Figure 3.9 is the flowchart illustrating the algorithm of SA. There are two 

major processes that take place in the simulated annealing algorithm. First, for each 

temperature, the simulated annealing algorithm runs through a number of cycles. The 

number of cycles is predetermined by the programmer. As a cycle runs, the inputs 

are randomized. The randomization process takes the previous input values and the 

current temperature as inputs. The input values are then randomized according to the 

temperature. A higher temperature will result in more randomization; a lower 

temperature will result in less randomization.  
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Once the specified number of training cycles have been completed, the 

temperature can be lowered. Once the temperature is lowered, it is determined 

whether or not the temperature has reached the lowest temperature allowed. If the 

temperature is not lower than the lowest temperature allowed, then the temperature is 

lowered and another cycle of randomizations will take place. If the temperature is 

lower than the lowest temperature allowed, the simulated annealing algorithm 

terminates. 

 

 At the core of the simulated annealing algorithm is the randomization of the 

input values. This randomization is ultimately what causes simulated annealing to 

alter the input values that the algorithm is seeking to minimize. The randomization 

process must often be customized for different problems. 

 

By analogy with this physical process, each step of the SA algorithm replaces 

the current solution by a random "nearby" solution, chosen with a probability that 

depends on the difference between the corresponding function values and on a global 

parameter, which is temperature that gradually decreases during the process. The 

dependency is such that the current solution changes almost randomly when the 

temperature is large, but increasingly move downhill to lower kinetic energy as the 

temperature goes to zero. This optimization process does not only proceed uniformly 

downhill, but is allowed to make occasional uphill moves. The allowance for moving 

uphill saves the method from becoming stuck at local minima. 
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Figure 3.9: Flowchart illustrating the algorithm of SA. 
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3.4.2.3 KPOINTS for Geometry Optimization 

 

 

 As discussed in section 2.2.1, only single k-point is needed for isolated 

molecule. Therefore, gamma point is used for the geometry optimization of the 

isolated clusters in this research and the KPOINTS file for such case is shown in 

Figure 3.10. 

 

 

 

 

    
    Monkhorst Pack          ! comment 
       0                              ! Automatic generation 
       Monkhorst Pack          ! M=Monkhorst-Pack 

        1      1      1              ! grid 
       0      0      0              ! shift  

 
Figure 3.10: Parameters for geometry optimization in KPOINTS file.  

 

 

 

The KPOINTS file is written in the Monkhorst-Pack scheme as discussed in 

the section 3.2.4. The automatic generated k-mesh will be created and given in the 

file IBZKPT. The fourth line of the KPOINTS gives a gamma point with the 

coordinate (0  0  0) and the weight 1.0.  

 

 

 

 

3.4.3 Electronic Structures Calculations 

 

 

After the geometry optimization is performed and the stable geometry is 

obtained, electronic structure calculations are then done by using the final structure 

generated. The usual way to calculate DOS and bandstructure is the following: first 

charge density using a few k-points (gamma point for the case of isolated clusters) in 

a static self-consistent run is performed; the next step is to perform a non-
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selfconsistent calculation using the charge density file, CHGCAR from this self-

consistent run. This is the only way to calculate the bandstructure, because for 

bandstructure calculation the supplied k-points form usually no regular three-

dimensional grid and therefore a self-consistent calculation for it is meaningless. 

 

 

 

3.4.3.1 INCAR for Self-Consistent Run 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
     SYSTEM = Gallium arsenide cluster 
 
     ## Start parameter for this Run: 
 ISTART    = 0      ! job     : 0-new  1-cont  2-samecut 
 ICHARGE = 2                ! charge: 1-file  2-atom  10-const 
 
     ## Electronic Relaxation 
 ENCUT = 350 eV 

             
     ## Ionic Relaxation 
 IBRION = -1                   ! ionic relax: 0-MD  1-quasi-New  2-CG 
 
     ## DOS related value 
 ISMEAR = 0                   ! -4-tet  -1-fermi  0-gaussian 
 SIGMA = 0.001               ! broadening in eV 

Figure 3.11: Parameters for self-consistent run in INCAR file.  

 

 

Figure 3.11 shows the INCAR file parameters for self-consistent run. Value 2 

for ICHARGE instructs the calculation to calculate the charge density in a self-

consistent run. Same energy cutoff, Gaussian smearing and small smearing width as 

those for geometry optimization is used. IBRION = -1 denotes that there is no ionic 

update which means ions are not moved. The POSCAR file for this calculation is 

copied from the CONTCAR file of the previous geometry optimization run. 

KPOINTS file is also similar with the one used in geometry optimization which 

contains only gamma point. 
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3.4.3.2 INCAR for Non-Selfconsistent Run 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

     
      SYSTEM = Gallium arsenide cluster 
 
 ## Start parameter for this Run: 
 ISTART    = 0      ! job     : 0-new  1-cont  2-samecut 
 ICHARGE = 11              ! charge: 1-file  2-atom  10-const 
 
 ## Electronic Relaxation 
 ENCUT = 350 eV 
 NELMDL = -5                ! of ELM steps 

             
 ## Ionic Relaxation 
 IBRION = -1                   ! ionic relax: 0-MD  1-quasi-New  2-CG 
 
 ## DOS related value 
 ISMEAR = 0                   ! -4-tet  -1-fermi  0-gaussian 
 SIGMA = 0.1                  ! broadening in eV 

Figure 3.12: Parameters for non-selfconsistent run in INCAR file.  

 

 

Figure 3.12 shows the parameters used for non-selfconsistent run. Now, value 

11 of ICHARGE determines the calculation to be non-selfconsistent. This is the 

value to obtain the eigenvalues (for bandstructure plots) or the DOS for a given 

charge density read from CHGCAR and the charge density will be kept constant 

during the whole run. Therefore, CHGCAR file is first copied from the self-

consistent run before this calculation is started. NELMDL gives the number of non-

selfconsistent steps at the beginning. This is set for the case where the self-consistent 

convergence is bad and thus choosing a ‘delay’ for starting the charge density update 

is essential. Negative value results in a delay only for the start-configuration. 
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3.4.3.3 KPOINTS for Non-selfconsistent and Bandstructure 

 

 

The k-points used for bandstructrue is different from the previous run and its 

KPOINTS file contains strings of k-points as shown in Figure 3.13. 

 

 
           k-points for bandstructure L-G-X-U  K-G 
            10                        ! 10 intersections  
     Line-mode       Reciprocal 
            0.500    0.500    0.500              ! L  
            0.000    0.000    0.000              ! gamma   
            0.000    0.000    0.000              ! gamma  
            0.000    0.500    0.500              ! X   
            0.000    0.500    0.500              ! X  
            0.250    0.625    0.625              ! U   
            0.375    0.750    0.375              ! K  
            0.000    0.000    0.000              ! gamma   

 
Figure 3.13: Parameters for non-selfconsistent run in KPOINTS file.  

 

 

The strings of k-points connect the specific points of L-G-X-U and K-G of 

the Brillouin zone (refer Figure 3.1). The coordinates of the k-points are given in 

reciprocal mode. Value 10 in the second line instructs VASP to generate 10 k-points 

between the first and second supplied points, 10 k-points between the third and the 

fourth, and so on. The bandstructure is then plotted according to these specific k-

points. 

 

 

 

 

 

 



 

 

 

 

CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

4.1       Simulation of Bulk Gallium Arsenide and Gallium Arsenide Dimer 

 

 

As a first step, bulk gallium arsenide is calculated by using VASP for the 

purpose of comparison with the clusters as well as for accuracy assurance. In 

addition, dimmer is an excellent test system. If a pseudopotential has passed dimer 

and bulk calculation, one can be quite confident that the pseudopotential posseses 

excellent transferability. Bulk gallium arsenide is constructed according to its zinc 

blende structure that is in F43m space group, which follows face-centered-cubic (fcc) 

bravais lattice.  

 

 

The geometry optimization gives the structure with lattice constant 5.632 Å. 

This is close to the experimental lattice constant 5.653 Å [64]. For Ga1As1 dimer, the 

approach is same as those for the clusters, which is using supercell method. The 

result shows the bond length of the Ga1As1 is 2.580 Å, which is also in good 

agreement to the experimental results of 2.53 Å ± 0.02 Å [12]. Density of state  
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(DOS) and bandstructure is further calculated for bulk gallium arsenide. The DOS 

and bandstructure are corresponding to each other and from both graph, the obtained 

bandgap value (direct bandgap) is 0.354 eV. This is lower than the experimental 

value 1.424 eV. It has been claimed that the reason lies the ground state emphasis of 

DFT and thus it underestimated the bandgap value [65]. The presence of a 

discontinuity in the true DFT exchange-correlation functional derivative is also the 

reason leading to the bandgap underestimation.  

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Structure of zinc blende bulk GaAs (Left). Structure of Ga1As1 
dimer (Right).  
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Figure 4.2: Bandstructure of bulk GaAs. Point a represents highest energy 
of valence band (band or area below a) while point b represents the lowest
energy of the conduction band (band or area after b). Both bandstructure 
and DOS are corresponding to each other. 
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Figure 4.3: DOS of bulk GaAs. Point a represents highest energy of 
valence band (band or area below a) while point b represents the lowest 
energy of the conduction band (band or area after b). Both bandstructure 
and DOS are corresponding to each other. 
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4.2       The Effect of Size on the Electronic Structures of Gallium Arsenide     

            Clusters  

 

 

In order to compare the results for variable size, the gallium arsenide clusters 

are simulated by clusters with different number of gallium arsenide atom. The size 

would rather to be termed as the number of atoms. A bare cluster has a large number 

of dangling bonds on its surface, which shows strong chemical reactivity and induces 

an unstable condition for the cluster.  

 

 

During the geometry optimization, the surface will reconstruct and eliminate 

dangling bonds to minimize the surface potential and consequently lead to a stable 

structure. Therefore, in order to maintain the regular tetrahedron bonding 

configuration, the cluster is terminated or passivated by hydrogen. With the presence 

of hydrogen atoms on the dangling bonds of the clusters, the surface tension is 

significantly reduced and thus has a function of stabilization.  

 

 

The clusters were built from arrangement corresponding to the bulk gallium 

arsenide fragment. Geometry optimization was performed with conjugate gradient 

process and only internal parameters (atoms’ position and distance) change without 

fluctuation of the supercell’s size. Four hydrogenated gallium arsenide clusters were 

compared, which are Ga4As4H12, Ga5As6H16, Ga7As6H16 and Ga7As6H19.                                    
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Figure 4.4: Ball and stick for hydrogenated gallium arsenide clusters, GaxAsyHz
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Figure 4.5: Bandstructure and DOS of hydrogenated gallium arsenide  
clusters,  GaxAsyHz. 
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The following list the bandgap energy of each cluster obtained from the 

bandstructures in Figure 4.5. 

 

 

 

Table 4.1: Bandgap energy for each of the cluster. Values in the brackets are the 
 bandgap (eV) from Asok  K. Ray et.al [87]. 

Total Number Of 

Atoms In The 

Clusters 

GaxAsyHz

  

HOMO (eV) LUMO (eV) Bandgap (eV) 

20 Ga4As4H12 -8.20 -0.86 7.34  (7.462) 
27 Ga5As6H16 -6.01 -1.59     4.42  (4.584) 
29 Ga7As6H16 -5.23 -1.65 3.58  (3.698) 
32 Ga7As6H19 -3.89 -1.97 1.92  (2.057) 

 

HOMO-LUMO Energy Levels in GaAs Clusters
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Figure 4.6: Band shift related to the cluster size. The upper line is HOMO 
energy value while lower line is LUMO energy value.  
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The surface atoms of hydrogenated gallium arsenide clusters do not give any 

new surface geometry formation other than that existing in the clusters as shown in 

the Figure 4.3. However, the clusters have encountered contraction where the bonds 

are shortened compare to their initial structures. For these four hydrogenated gallium 

arsenide clusters, the bond lengths of Ga-As are in the range of 2.413 Å to 2.448 Å, 

which is approaching the Ga-As bond length of bulk gallium arsenide 2.448 Å [66]. 

 

 

Table 4.1 shows the highest occupied molecular orbital (HOMO) energy, 

lowest unoccupied molecular orbital (LUMO) energy and the bandgap of each 

GaxAsyHz. The bandgap was obtained by the difference between HOMO energy and 

LUMO energy (ELUMO – EHOMO). Therefore, the bandgap can also be referred to as 

HOMO – LUMO gap. From the bandstructure spectra shown above, the energy 

levels have been subtracted the Fermi energy so that the Fermi level defines as zero 

energy. As a result, the HOMO and LUMO energy levels in the Figure 4.5 are 

different from the values listed in Table 4.1. Therefore, in the bandstructure spectra, 

HOMO is the first energy level under zero which is Fermi level whereas LUMO is 

the first energy level above the Fermi level. 

 

 

From the graph above, it is obvious that the HOMO-LUMO gap decreases as 

the number of atoms increases. In other words, the HOMO-LUMO gap is inversely 

proportional to the size of the clusters. Figure 4.6 also shows the size related LUMO-

band shifts in the nanoclusters which are consistent with HOMO-band shifts. The 

bandgap is getting narrower as the cluster size increases. This is consistent with the 

theoretical trend for the bandgap for various sizes of quantum dots as a result of the 

quantum confinement effects in the bandgap of gallium arsenide nanostructures, 

which can be depicted by the quantum confinement dictum:“the bandgap increases as 

the size decreases”. 
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 The HOMO-LUMO band-shift results in the red-shifting of the bandgap. 

From Figure 4.5, it is clear that the correlation between the bandgap and the number 

of atom is not linear. This indicates that the bandgap also depends on other factors 

which among them are the symmetry of the cluster and the specific transition 

involved. The important implication of Figure 4.6 is the relation between the cluster 

size and the bandgap as discussed above. Theoretical bandgaps of the four clusters 

(Ga4As4H12, Ga5As6H16, Ga7As6H16 and Ga7As6H19) are shown in the bracket in 

Table 4.1.  As discussed earlier, the calculated bandgaps are underestimated 

compared to the theoretical data.  

 

 

In comparison, it is obvious that the bandgap for each of the cluster is much 

larger than the bandgap of bulk gallium arsenide since cluster is much smaller than 

the bohr radius of bulk gallium arsenide is 12nm [67]. For bulk gallium arsenide, 

there are optical activities due to direct bandgap.  

 

 

Therefore, for hydrogenated gallium arsenide cluster, the light emission can 

be controlled by altering the size of the cluster which results in different color of 

light. As a result, it can be observed that the DOS of cluster is different from the one 

of bulk. The DOS is not continuous but is in discrete form.  

 

 

Hence, it is referred to as discrete energy spectrum instead of DOS. In 

conjunction with the DOS changing, bandstructure has also become a straight 

vertical line in consistent with the discrete spectrum, which is a result of single-point 

calculation. Although the calculated values are not in good agreement with the 

experimental values (since bandgap is underestimated by DFT), the results show 
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qualitative trends and relativity of the electronic properties of gallium arsenide 

nanostructures. 

 

 

 

 

4.3       The Effect of Shape on the Electronic Structures of Gallium Arsenide     

            Clusters  

 

 

 In this section, the shape effect to the electronic structures of gallium arsenide 

clusters is discussed. Unlike the hydrogenated gallium arsenide clusters studied 

previously, gallium arsenide clusters used for the study of shape effect are bare 

clusters without any passivation with other elements.  

 

 

 After the energy minimization algorithm; conjugate gradient (CG) and 

simulated annealing (SA) the ground state structures for GaxAsy (x+y≤15) as shown 

in Figure 4.7 were obtained. From an overall view, it could be observed that the 

structures of the optimized bare gallium arsenide clusters are different from each 

other and they have their own geometries. These optimized geometrical  structures 

will be discussed in the next section and the discussion of electronic structures will 

be made next.  

 

 

 

 

 

 

 

 



 81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ga1As2 Ga2As2 Ga2As3 Ga3As3

Ga3As4 Ga4As4 Ga4As5

Ga5As5 Ga5As6 Ga6As6

Ga7As6 Ga7As7 Ga7As8

 

 Figure 4.7 : Lowest energy geometries for the GaxAsy (x + y ≤ 15) 
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 4.3.1 Optimized Geometry Structure 

 

 

 
Table 4.2: The configurations and point group for each of the gallium 
arsenide clusters, GaxAsy

 

 

 

                                          Ga

 

xAsy
              Configurations 

 

Ga1As2 Triangle 

Ga2As2 Planar rhombus 

Ga2As3 Trigonal bipyramid 

Ga3As3 Tetragonal bipyramid 

Ga3As4 Pentagonal bipyramid 

Ga4As4 Bicapped octahedral 

Ga4As5 Capped Rhombic 

Ga5As5 Tetracapped trigonal prism 

Ga5As6 Capped trigonal prism 

Ga6As6 Hexacapped trigonal prism 

Ga7As6
Tricapped trigonal prisma additional rhombus 

capped on edge the prism 

Ga7As7 Two distorted rhombus with five atoms ring 

Ga7As8 Tricapped trigonal antiprism 
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The ground state geometry structure of each gallium arsenide clusters, GaxAsy 

(x + y ≤ 15) is discussed in the following: 

 

 

1. Ga1As1 

In section 4.1, the ground state structure of Ga1As1 was shown with a bond 

length of 2.580 Å which is close the experimental result is 2.53 Å ± 0.02 Å 

[12] . 

 

 

2. Ga1As2 

The equilibrium geometries of the trimers Ga1As2 are shown in Figure 4.7. 

The equilibrium geomerties are bent. The clusters have a ground state  

within the point group symmetry C

2
2 B

2v. In Ga1As2 the bond angle is . The 

small bond angle in Ga

o3.56

1As2 is due to the short As-As bond (2.4 Å). 

 

 

3. Ga2As2 

The ground state of Ga2As2 is the  state and is in the form of a planar 

rhombus in D

gA1

2h symmetry. The values for the Ga-As bond length is 2.71 Å 

but for the As-As bond length our value of 2.28 Å is in good agreement with 

the value of other researchers [7,8,68,69]. 

 

 

4. Ga2As3 

The ground state of Ga2As3 is  in D"
2

2 A 3h symmetry. The equilibrium 

geometry is a trigonal bipyramid composed of a 3-arsenic basal ring and 2 

apical gallium atoms. The As-As bond length is 2.62 Å, compared to 2.39 Å 

for the As3 cluster in its ground state in an equilateral triangle form. The 
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rather loose bonding between the basal arsenic atoms in the Ga2As3 

bipyramid is compensated by the strong bonds between the basal arsenic 

atoms and the apical gallium atoms. 

 

 

5. Ga3As3 

Ga3As3 has a similar structure to Ga2As3, which is tetragonal bipyramid 

structure in the point group of D4h. The As-As bond length is 2.37 Å and the 

distance of unbonded atoms at the pyramid square base is 2.75 Å. The two 

apex atoms having coordination number (bonds) of 4 are holding the square 

together and they are 2.71 Å apart.  

 

 

6. Ga3As4 

The most stable geometries of the Ga3As4 were obtained by relaxing 

pentagonal bipyramids in Cs symmetry. The optimized bond lengths within 

the plane of pentagon have a value of 2.50 Å. The apex atoms have five 

equivalent bonds to the atoms in the pentagon plane with the length of 2.47 

Å, which is a very unusual geometrical arrangement. This is an almost close-

packed compressed structure with the apex atoms only 2.52 Å apart.  

 

 

7. Ga4As4 

Ground state of Ga4As4 has a distorted bicapped octahedral structure with the 

point group of Cs. As the name of the structure, Ga4As4 has two octahedron 

capping two opposite faces. 
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8. Ga4As5 

Ga4As5 has a ground state structure of capped stack rhombic with the point 

group of C2v. This structure can be viewed as two stacked distorted rhombic 

with an additional atom capped on top. 

 

 

9. Ga5As5 

A tetracapped trigonal prism (C3v) ground state structure was obtained for 

Ga5As5. This structure contains a 9 atom gallium arsenide clusters subunit 

where there are three rectangular faces are capped together forming a 9-atom 

of tricapped trigonal prism (TTP) structure with D3h point group. One atom is 

capped on top of the triangular faces of the TTP to give this Ga5As5 structure 

with overall C3v symmetry.  

 

 

10. Ga5As6 

For x + y = 11, Cs structure was obtained as the ground state structure, which 

is also a capped trigonal prism. This structure is similar to the C3v structure of 

Ga5As5 but with one additional atom capped at one prism face. 

 

 

11. Ga6As6 

Ground state structure obtained for Ga6As6 is a hexacapped trigonal prism 

with C2v symmetry. This is a structure where two capping atoms are added to 

the ground state of Ga5As5. 
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12. Ga7As6 

The most stable structure for 13 atoms GaAs cluster is C2v which can be 

described as a distorted tricapped trigonal prism with an additional rhombus 

capped on one edge of the prism. 

 

 

13. Ga7As7 

The ground state structure obtained in this research for Ga7As7 is of Cs 

symmetry. This structure exhibits stacking sequence of two distorted 

rhombus, one five atoms ring and an atom on top. 

 

 

14. Ga7As8 

A TTP fused with a tricapped trigonal antiprism on top is found for Ga7As8

as a stable structure. This structure is in the symmetry point group of C3v. 

 

 

It is very obvious that the tetrahedral bond structure of bulk gallium arsenide 

is broken and the stable structures of the clusters have entirely new geometries and 

symmetries. The atoms bond in such ways to get the favorable lowest energy 

geometries. It could be observed that almost all the structures have their atoms on the 

surface and the atoms are bonded. Scanning each of the clusters, it can be seen that 

each cluster can be made from the previous cluster by attaching a gallium arsenide 

atom at an appropriate bonding site. These bonding sites are typically face- or edge-

capped sites.  

 

 

For instance, Ga2As2 can be constructed from triangular Ga1As2 by adding a 

Ga atom along an edge to obtain a planar rhombus. If a third edge cap is added and 

the structure twisted slightly to make all caps equivalent, the trigonal bipyramid of 

Ga2As3 can be yielded. The ground state of Ga3As3 can be derived from Ga2As3 by 
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adding an atom along the triangular edges and form a square. Similar to Ga3As4 

forming the pentagon from the square by adding an atom. For 2 ≤ x + y ≤ 7, the 

clusters can be constructed by edge-capping. For x + y ≥ 10, the GaxAsy clusters are 

developed from TTP and face-capping growth mode is preferred. For example 

Ga5As5 is made by capping an atom on the triangular face. Ga5As6, Ga6As6 and 

Ga7As8 have obvious TTP structure inside with more atoms is inserted around them.  

 

 

Ground state structures of Ga1As2 – Ga2As2 discussed above agree well with 

others’ theoretical structures [4,6,8,9,10,24,70,71,72,73,74,75,76,77] which had been 

confirmed experimentally. The experimental results obtained by infrared and raman 

spectra [78] are in good agreement with the ab-initio calculated vibrational 

frequencies, including their relative intensities. As the cluster size increases, it 

becomes more difficult to find its lowest-energy structure theoretically as the number 

of possible geometries increases exponentially. For instances, distorted tricapped 

octahedron (Cs) and distorted TTP (C2v(II)) [5] has been proposed as stable structures 

for Ga4As5, tetracapped octahedron (Td) for Ga5As5 [6], another capping trigonal 

prism isomer (C2v) for Ga5As6 [79], and more isomers for Ga6As6,Ga7As6,Ga7As7 

and Ga7As8 [9]. 

 

 

 

 

4.3.2    Electronic Structure 

 

 

Figure 4.8 – 4.21 shows the DOS and bandstructure of the corresponding 14      

ground state gallium arsenide cluster structures shown in Figure 4.7. DOS and     

bandstructure are displayed together since they are related as discussed in the     

section above. Binding energy and electron affinity of each of the clusters were also 

studied. 
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Figure 4.8: DOS and bandstructure of Ga1As1 cluster 

Figure 4.9: DOS and bandstructure of Ga1As2 cluster 
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Figure 4.10: DOS and bandstructure of Ga2As2 cluster 

Figure 4.11: DOS and bandstructure of Ga2As3 cluster 
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 Figure 4.12: DOS and bandstructure of Ga3As3 cluster 

 

 

                    
 Figure 4.13: DOS and bandstructure of Ga3As4 cluster 
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Figure 4.14: DOS and bandstructure of Ga4As4 cluster 

Figure 4.15: DOS and bandstructure of Ga4As5 cluster 
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 Figure 4.16: DOS and bandstructure of Ga5As5 cluster 

 

 

 
 Figure 4.17: DOS and bandstructure of Ga5As6 cluster 
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Figure 4.18: DOS and bandstructure of Ga6As6 cluster 

Figure 4.19: DOS and bandstructure of Ga7As6 cluster 
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Figure 4.20: DOS and bandstructure of Ga7As7 cluster 

Figure 4.21: DOS and bandstructure of Ga7As8 cluster  
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 Table 4.3: Energy level (HOMO and LUMO) as well as bandgap value   
 of each GaxAsy clusters, (x +y ≤ 15 ) 

 

 
GaxAsy HOMO (eV) LUMO (eV) Bandgap (eV) 
Ga1As1 -4.329 -3.949 0.38 
Ga1As2 -4.473 -4.063 0.41 
Ga2As2 -4.356 -3.196 1.16 
Ga2As3 -4.783 -3.693 1.09 
Ga3As3 -4.325 -2.395 1.93 
Ga3As4 -4.294 -3.834 0.46 
Ga4As4 -4.392 -3.272 1.12 
Ga4As5 -4.211 -3.801 0.41 
Ga5As5 -4.584 -2.854 1.73 
Ga5As6 -4.205 -3.365 0.84 
Ga6As6 -4.117 -3.067 1.05 
Ga7As6 -4.287 -3.307 0.98 
Ga7As7 -4.311 -3.141 1.17 
Ga7As8 -4.195 -3.235 0.96 
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                       Figure 4.22: Graph of bandgap versus number of GaAs atom in    
  the cluster and comparison between other researcher’s results [5]. 
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Table 4.4: Binding energy per atom of each gallium arsenide cluster, GaxAsy  
(x + y ≤ 15 ). The binding energies are not corrected with zero potential energies. 
Reseacher’s data  are from reference a[5], b[6] , c[12], d[10], e[80] and f [9]. 

 

GaxAsy Binding Energy Per Atom 
(eV/atom) 

Researcher’s Data (eV/atom) 

Ga1As1 1.87 1.08a, 2.46b, 2.06±0.05c, 2.206d

Ga1As2 2.14 1.93a, 2.31b, 0.767d

Ga2As2 2.25 2.22a, 2.38b, 0.572d

Ga2As3 2.28 2.40a, 2.87b, 0.387d, 2.95f

Ga3As3 2.31 2.43a, 2.56b, 0.367d, 2.233e, 3.29f

Ga3As4        2.37        2.43a, 2.52b, 0.334d

Ga4As4 2.45 2.54a, 2.55b, 0.673d, 2.379e, 3.35f

Ga4As5 2.48 2.54a, 2.63b

Ga5As5 2.59 2.65a, 2.71b, 2.373e, 3.58f

Ga5As6 2.61 2.393e, 3.59f

Ga6As6 2.69  
Ga7As6 2.70  
Ga7As7 2.73 2.574e

Ga7As8 2.78  
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     Figure 4.23: Graph of binding energy per atom of GaAs clusters. 
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Table 4.5: Second-difference energies and electron affinity of each gallium arsenide 
cluster, GaxAsy  (x + y ≤ 15 ). Researcher’s data are from reference a[5], b[6], c[10] 
and d[9]. 

 

Electron Affinity (eV) GaxAsy
Second-difference 

Energies (eV) Calculation Researcher’s Data 
Ga1As1  0.56 1.85 1.9a, 1.9b, 1.24c

Ga1As2 -0.04 2.17 2.1a, 1.9b, 1.31c

Ga2As2  0.28 1.63 1.8a, 1.7b, 1.40c, 1.7d

Ga2As3 -0.11 2.41 2.7a, 2.5b, 1.83c

Ga3As3  0.03 1.72 1.6a, 1.5b, 0.81c, 1.8d

Ga3As4         -1.32        2.69 2.9a, 2.5b, 2.71c

Ga4As4  1.57 2.27 2.8a, 2.4b, 1.46c, 3.3d

Ga4As5 -1.65 3.24 3.5a, 3.1b

Ga5As5  0.96 2.37 2.4a, 2.0b, 2.2d

Ga5As6 -0.46 2.56  
Ga6As6  0.51 2.13 2.1d

Ga7As6 -0.27 2.33  
Ga7As7  0.22 2.21  
Ga7As8 -0.58           2.71  
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Figure 4.24: Graph of second-difference energies and electron affinity of each 
GaxAsy  (x + y ≤ 15 ) corresponding to the table above. 
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Figure 4.8 – 4.21 shows the bandstructure and energy spectrum of each of the  

gallium arsenide cluster from number of atoms 2 to 15. Obviously similar to the 

GaxAsyHz discussed previously, the energy levels of each cluster are discrete 

depicting the effect of size and quantum confinement. The corresponding HOMO 

and LUMO energy levels as well as the band gap resulted from the HOMO-LUMO 

difference is listed in Table 4.3.   

 

  

 The bandgaps of those optimized gallium arsenide clusters do not have a 

trend as those for the hydrogenated gallium arsenide clusters, as shown in Figure 

4.22. Instead, they have uneven bandgap values and the data point is up and down. 

Ga2As2, Ga2As3, Ga3As3, Ga4As4, Ga5As5, Ga6As6 and Ga7As7 a have very large 

bandgap values which are above 1.0 eV. Ga1As1 has the lowest bandgap among all 

the clusters. Nevertheless, this smallest bandgap is still larger than the bulk gallium 

arsenide bandgap (0.354 eV obtained in this research), indicating the effects of 

quantum confinement in the small clusters. These bandgap values have a good 

agreement with other researchers’ result. As shown in Figure 4.22, the bandgap 

values calculated in this research are very close to the results obtained by L. Lou et.al 

[5].  

 

 

 Figure 4.23 shows the graph of the binding energies per atom of all clusters. 

The energy values shown are not zero-point energy (ZPE) corrected. Binding energy 

depicts the energy required to remove an atom from the cluster. Binding energy per 

atom is given in terms of the energies of the free gallium arsenide atom and the 

cluster: 

 

                                EB =  (nEGa-atom + nEAs-atom) – (Ecluster)                           (4.1) 
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Where E(Ga), E(As) and E(cluster) are the energies of an isolated Ga atom, a As 

atom and the cluster, respectively.  An agreement is found between the calculated 

and the theoretical binding energy as shown in Table 4.4. The binding energy per 

atom rose rapidly from Ga1As1 to Ga1As2 and the slope gradually decreases until it is 

nearly horizontal. The size dependence of binding energy is the consequence of the 

cluster growth patterns. The very small clusters (x +y ≥ 2-7) tend to have compact 

polyhedral geometries, which allow them to maximize their binding energy 

effectively [81]. It has been shown that intermediate size clusters (x +y ≥ 8-15)  grow 

as elongated structures. From Table 4.4 shows that the binding energy per atom 

increase as the size of the clusters increases. It is due to the fact that constituent 

atoms in larger clusters have more neighbors resulting in strong interactions.  

 

 

 Binding energy graph can be used to study the magic sizes of the clusters. 

However, the phenomenon is not obvious and hardly noticeable from the binding 

energy graph (Figure 4.23). A better way to show the relative local stability of the 

gallium arsenide cluster is through the use of the second-order difference binding 

energy (2Δx+y) as a function of cluster size as shown in Figure 4.11. This energy is 

obtained by: 

 
2Δx+y

  = E(x+y) + 1 + E(x+y) – 1  –  2E(x+y)                                          (4.2) 

 

Notable peaks were observed for GaxAsy clusters with Ga1As1, Ga2As2, Ga3As3, 

Ga4As4, Ga5As5, Ga6As6 and Ga7As7 indicating that they are relatively more stable in 

comparison with clusters of [(x+y)+1] and [(x+y)-1] atoms. If the highest occupied 

electronic subshell is filled in a cluster of (x + y) atoms, and the next available 

subshell is separated by a sizable energy gap, the cluster energy will jump from E(x+y) 

to E(x+y)+1, which gives rise to peak indicating the cluster of size n is very stable. This 

result has proved the validity of the cluster stability obtained from binding energy 

graph. 
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 Another method to determine the relative stability is through electron affinity. 

Electron affinity is a measure of the energy change when an electron is added to a 

neutral atom to form a negative ion. Thus it is calculated by: 

 

EA = EN – EN+1 = E(neutral) - E(anion) = E(GaxAsy) – E( )                    (4.3) −
yAsGax

 

where N is the number of electrons of the system or cluster. The electron affinity 

calculated here is vertical electron affinity which is equal to the energy difference of 

the cluster GaxAsy and its anion  in the equilibrium geometry of the Ga−
yAsGax xAsy. 

The result shows smaller electron affinities are yielded for Ga1As1, Ga2As2, Ga3As3, 

Ga4As4, Ga5As5, Ga6As6 and Ga7As7. Conversely, Ga1As2, Ga2As3, Ga3As4, Ga4As5, 

Ga5As6, Ga7As6 and Ga7As8 have larger electron affinities than their adjacent 

clusters.  

 

 

 This result is in opposite trend with the second-order difference energies. The 

higher peaks for the second-order difference energies are those lower peaks for the 

electron affinities (Ga1As1, Ga2As2, Ga3As3, Ga4As4, Ga5As5, Ga6As6 and Ga7As7). 

The gallium arsenide clusters with smaller electron affinities are more stable than 

their neighbors. The GaxAsy clusters have shown that the electronic affinity (EA) of 

gallium arsenide clusters with the number of atoms (x + y); the even-numbered 

clusters tend to have smaller EA and the odd-numbered clusters have larger EA [82].  

 

 

 The vertical electron affinity is in correspondence with the LUMO energy 

level. Referring to Table 4.5, it can be observed that the clusters with higher LUMO 

energy level have smaller vertical electron affinity and vice versa. Those with higher 

LUMO are the highly stable clusters. Ga1As2, Ga2As3, and Ga3As4 and Ga4As5 have 

lower LUMO level and therefore its vertical electron affinity is higher. Adiabatic 

electron affinity [10] which is the energy difference of GaxAsy and its corresponding 
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anion,  had given a much smaller electron affinity value for Ga−
yAsGax 1As2 and 

Ga2As3. Gallium Arsenide cluster with 5 atoms, Ga2As3 has lower adiabatic electron 

affinity than Ga3As4 which has additional bonding in its anion contributing to a fairly 

high electron affinity [10]. Most photoelectron spectroscopy corresponds to the 

adiabatic electron affinity. Nonetheless, vertical electron affinity yielded in this 

research gave a good stability trend for gallium arsenide clusters. The goal here is to 

understand the trends in the electron affinities as a function of the size of the clusters. 

 

 

 From the graphs, it can be concluded that the stable clusters obtained are 

Ga1As1, Ga2As2, Ga3As3, Ga4As4, Ga5As5, Ga6As6 and Ga7As7. Stability of Ga3As3 is 

more obvious in the electron affinity graph than in the second-order difference graph. 

These stability studies contribute to the “magic number” of the gallium arsenide 

cluster where the highly stable clusters are the magic clusters. 

 

 

 The bandgap of the gallium arsenide clusters can be related with their 

stability discussed above. It can be noted that the clusters with large bandgap have 

high stability. This is especially obvious for GaxAsy with Ga2As2, Ga3As3, Ga4As4, 

Ga5As5, Ga6As6 and Ga7As7, for which these are the magic clusters. However, this is 

not the case for Ga1As1 and Ga2As3, where Ga1As1 which is more stable has 

comparative lower bandgap and while larger bandgap for Ga2As3 which are less 

stable. Therefore, the relation between the stability and bandgap can be applied for 

clusters with the number of atom after 5. The interpretation could be made such that 

the ground state stability was derived by having significant bonding which splits the 

HOMO and LUMO as much as possible. An ambiguous relation can also be made 

with the geometries of the gallium arsenide clusters. From Figure 4.7, it could be 

observed that GaxAsy with Ga2As3, Ga3As3, Ga3As4, Ga5As5 and Ga6As6 have more 

compact, nearly spherical and higher symmetrical geometries. Ga1As2 and Ga2As2 

for which their structures are more open and flat have small bandgap. 
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4.4 Effect of Hydrogen and Reconstructed Surface to Electronic Structures 

 

 

 The results of hydrogenated and stable ground state gallium arsenide clusters 

could be compared as in Table 4.6. The bandgap values for pristine gallium arsenide 

clusters similar to those in Figure 4.3 with hydrogen atoms eliminated and without 

optimization, were also included in the table.  Only gallium arsenide clusters GaxAsy 

with (x +y) = 8, 11 and 13  were taken for comparison. 

 

 

 

 

Bandgap (eV) 
Number of atom, 

x, y, and z 
GaxAsy (non-

optimized) 
GaxAsyHz

GaxAsy (surface 

reconstructed) 

(x = 4), (y = 4), (z = 12) 0.48 7.34 0.92 
(x = 5), (y = 6), (z = 16) 0.65 4.42 1.23 
(x = 7), (y = 6), (z = 16) 0.31 3.58 0.98 

Table 4.6: Bandgap (eV) comparison of bare non-optimized tetrahedral GaAs 
clusters, hydrogenated GaAs clusters and surface reconstructed GaAs clusters. 

(x = 7), (y = 6), ( z = 19) 0.31 1.92 0.98 
 

 

 The bandgap values for 3 types of gallium arsenide cluster show obvious 

difference between each other, where hydrogenated gallium clusters have the largest 

bandgap followed by optimized gallium clusters and lastly non-optimized gallium 

arsenide clusters. For unpassivated and non-optmized gallium clusters having 

tetrahedron bonding as bulk gallium , the bandgaps were found to be very small that 

they are even smaller than the bandgap of bulk gallium arsenide (0.354 eV). These 

clusters tend to be metallic. This phenomenon is due to the surface state of the 

unpassivated gallium arsenide clusters that have dangling bonds at the surface. It is a 

consequence of the missing neighbors at the surface. Each dangling bond contributes 

a partially filled surface state and these states are located in the energy gap around 

the Fermi level. This has been well demonstrated for the surface of bulk gallium 
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arsenide using a number of methods including high resolution electron energy loss 

spectroscopy [83,84] and photoemission [85], which show that surface states mostly 

fill the bandgap of the unpassivated gallium arsenide  surface. Therefore, it results in 

a much smaller bandgap. 

 

 

 When the clusters with non-relaxed surface atoms and very low average 

coordination numbers, as described above is relaxed and optimized, dissimilar 

geometries are likely to be produced, in which the tetrahedron bonds symmetry of 

bulk gallium arsenide have been broken. The surface atoms (dangling bonds) 

contributing surface tension provide a large driving force to form more compact 

structures provided the resulting strain energy is not too high.  

 

 

 Therefore the dangling atoms reconstructed by creating bonds with other 

atoms and this leads to a stable configurations with large portion of atoms are on the 

surface. The dangling bonds and thus the surface states near the Fermi level are 

significantly reduced via the reconstruction. New states appear due to the geometry 

reconstruction at the outer shell and generally the occupied states shift toward more 

negative side while the virtual (unoccupied) states shift towards more positive side. 

As a result, the clusters have larger bandgap compared to the pristine cluster with 

high density of dangling bonds. However, the reconstruction does not eliminate the 

dangling bonds completely. Hence, the reconstructed gallium arsenide surface still 

contains a large amount of dangling bonds and shows chemical reactivity which is 

somewhat smaller compared to the bulk. This is the reason of the random energy gap 

values which is independent of the cluster size. 

 

 

 The results for gallium arsenide clusters passivated with hydrogen are 

entirely different from the two types of bare clusters discussed previously. The 

passivated gallium arsenide clusters do not show low energy transitions associated 
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with surface states but show much broader bandgaps just as expected for particles in 

this extremely small size range. The dangling bonds on the surface which exist in the 

bare cluster have now been eliminated or passivated by hydrogen atoms which 

complete the four coordination number of gallium arsenide atoms. The surface atoms 

do not give any new surface geometry formation and retain their original shape. 

Since all the dangling bonds of the surface atoms are passivated, no surface state is 

introduced within the energy gap.  

 

 

 The bandgap depends only on the size effect, rather than on the surface effect. 

The dependence of electronic structure variations on the size effect has important 

consequences especially on the optical properties which are controllable with size. 

The bandgap increases as the size decreases, implying that radiation or emission 

from quantum dot “blue-shifted” reflecting the fact that electron must fall a greater 

distance in terms of energy (from conduction band to valence band) and thus produce 

radiation of a shorter wavelength. The size-dependent emission frequency gives rise 

to a very important development of optical devices in which the output wavelength 

and therefore the output color can be controlled precisely by controlling the size of 

the quantum dot. Passivation with oxygen has further consequences for the particles 

[86]. Surface passivation and absorption with different passivants are likely to give 

different impact on the electronic structures. 

 

 

 The discussions above gave an evidence that the electronic structures of 

gallium arsenide clusters could be influenced by plenty of factors. The bandgap is 

found to be strongly dependent on the factors as below: 

i.) Surface passivation 

ii.) Surface reconstruction 

iii.) Surface orientation 

iv.) Passivation with species other than hydrogen 

 



 

 

 

 

CHAPTER 5 

 

 

 

 

SUMMARY AND CONCLUSION 

 

 

 

 

5.1       Summary and Conclusion 

 

 

The electronic structure of gallium arsenide clusters  have been presented. 

The electronic structures were simulated by using VASP, a simulation package 

which is based on the  principle of density functional theory (DFT). In this research, 

structural properties of gallium arsenide clusters were also studied. 

 

 

Simulation of bulk gallium arsenide has shown that the density functional 

theory underestimates the bandgap value. It has been claimed that the result is due to 

the discontinuity in the DFT exchange-correlation functional derivatives. The 

simulation shows the bandgap of 0.354 eV for gallium arsenide, which is 1.07 eV 

lower than the experimental value, 1.424 eV.  However, geometry optimization done 

by DFT has produced quite accurate structures. Although DFT has underestimated 

the bandgap, it still give excellent qualitative results for insights on nanostructures. 

The bandgap underestimation does not demonstrate the failure of DFT since it is a 
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ground state theory and the bandgap is an excited state property. DFT produces good 

energy and excellent structure while scaling favorably with electron number and 

hence it is feasible on larger systems compared to other methods. Besides, it offers 

notable balance between accuracy and computational cost in which it produces 

accurate results with relatively smaller basis sets in comparison with other method 

such as Hartree-Fock . The success of DFT is also due to its availability of 

increasingly accurate approximations to the exchange-correlation energy. It is able to 

give the quantitative understanding of materials properties from the fundamental 

laws of quantum mechanics. 

 

 

The simulation of hydrogenated gallium arsenide clusters was done to study 

the size effect to electronic structures of the clusters. Bandgap and density of states 

(DOS) were studied particularly. The energy quantization is shown by the discrete 

spectrum of DOS. It is called discrete energy spectrum instead of density of states 

which has continuous density. It shows the evolution of electronic structures of the 

clusters in comparison to bulk solids. From the graph of bandgap versus number of 

gallium arsenide atom, it is found that the bandgap increases  with the decrement of 

the cluster sizes in term of the number of gallium arsenide atoms. This dependence of 

bandgap to the size of cluster is in agreement with the theory of nanostructures. 

 

 

The lowest-energy structures of gallium arsenide clusters, GaxAsy (x + y ≤ 

15) have been studied. The ground state structure of each cluster has entirely 

different structure with the tetrahedral bond structure of bulk gallium arsenide. 

Unlike hydrogenated gallium arsenide cluster, the bandgap values for these ground 

state clusters do not have a particular trend either increasing or decreasing. Instead, 

the bandgap values are up and down. Binding energy, second-order difference 

energy, and electron affinity were also studied for the ground state gallium arsenide 

clusters. These three analyses could show the local relative stability of the gallium 

arsenide cluster. The results show that Ga1As1, Ga2As2, Ga3As3, Ga4As4, Ga5As5, 



 107

Ga6As6 and Ga7As7 are more stable in comparison with their neighbors. When the 

stability was related to the bandgap, it was found that the clusters with larger 

bandgap (>1.0 eV) have higher stability, such as Ga2As2, Ga3As3, Ga4As4, Ga5As5, 

Ga6As6 and Ga7As7. However, it is found that Ga2As3 cluster has lower stability 

although it has a bandgap larger than 1.0 eV. The Ga1As1 is more stable and it has 

the smallest bandgap with 0.38 eV. Nonetheless, it is still larger than the bulk 

bandgap value (0.354 eV).  

 

 

Comparing the hydrogenated gallium arsenide clusters with the bare ground 

state gallium arsenide clusters, it has been observed that the former have much larger 

bandgap in comparison with the latter. Another simulation results has showed that 

for the unrelaxed gallium arsenide clusters with tetrahedron bonds extracted from 

bulk gallium arsenide, their bandgaps are very small that they are even smaller than 

the bulk bandgap value and is approximately zero. This smaller bandgap of bare 

gallium arsenide clusters compared to the fully passivated gallium arsenide clusters 

is due to the dangling bonds. The dangling bonds introduce extra states in the energy 

gap near Fermi level which reduces the bandgap. 

 

 

From the results obtained, it could be concluded that gallium arsenide clusters 

in nano-size have novel electronic structures that differ from the bulk gallium 

arsenide. The electronic structures of the gallium arsenide clusters can be affected by 

the surface reconstruction and also the surface passivations. Therefore, the bandgap 

of the clusters  can be controlled by manipulating their size and shapes. These 

properties of clusters  have contributed to the unique attributes of the novel 

transistors such as single electron transistor (SET). The objectives of this research 

have been achieved and this could be a good foundation for further research, for 

instance the study the electron transport in SET. 
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5.2       Suggestions 

 

 

Some suggestions are given in the following to improve the research. These are the 

improvement in bandgap accuracy and computational time.  

  

 

 

 

5.2.1 Improvement of the Bandgap Accuracy 

 

 

Since DFT underestimates the bandgap value in semiconductor, other 

approximation could be taken to improve the accuracy. For example, Green’s 

function and the screened Coulomb interaction approximation have been applied as 

the correction to DFT bandgaps [88]. Besides this, Quantum Monte Carlo (QMC) 

approach for calculating electronic structures would give more accurate results for 

the bandgap. QMC is an important and complementary alternative to density 

functional theory when performing computational electronic structure calculations in 

which high accuracy is required. The method has many attractive features for 

probing the electronic structure of real atom, molecules and solids. In particular, it is 

a genuine many-body theory with a natural and explicit description of electron 

correlation which gives consistent, highly-accurate results while at the same time 

exhibiting favorable (cubic or better) scaling of computational cost with system size. 

The most important characteristics and advantages of the QMC methodology can be 

summarized as follows: 
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(a) it gives a direct and accurate wave-function-based treatment of quantum 

many-body effects. 

(b)    it is a very general approach, applicable to solids and molecules and able to    

calculate almost any ground-state expectation value, including energies and 

static correlation functions. 

(c)    the N3 scaling of the computational cost is very favorable when compared 

with other correlated wave-function methods. N is the number of particles. In 

contrast,  Monte Carlo simulations for the ground state of many-body systems 

scale as N3 so that they can be applied to sufficiently large systems to allow 

extrapolation to the bulk limit. 

(d)   it has the significant computational advantages of easily achieved scalability 

on parallel architectures and low storage requirements. 

(e)     the diffusion monte carlo (DMC) method does not suffer from the basis set 

errors inherent in other correlated wave-function methods. 

 

 

 

 

5.2.2. Improvement of the Computation Time 

 

  

Ab-initio calculations are accurate but computationally expensive. The 

representation of structures by unit cells is the reason leads to redundancies within 

the high dimensional search space. To shorten the computation time, more high 

power computation units (CPUs) are needed. This problem can be solved by parallel 

computing, which is the simultaneous execution of the same task on multiple 

processors in order to obtain results faster. A problem can be divided into smaller 

task and broken down to a series of instructions. These instructions from each task 

execute simultaneously on different CPUs.  
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Computer cluster is a group of tightly coupled computers that work together 

closely so that in many respects they can be viewed as though they are a single 

computer. The components of a cluster are commonly connected to each other 

through fast local area networks. The cluster built can be categorized as high-

performance cluster (HPC). HPC with nodes running Linux as the open system (OS) 

and free software to implement the parallelism is often referred to as a Beowulf 

cluster.  

 

 

To test the performance of the parallelization, two factors were studied, 

which are speedup and efficiency. Speedup refers to how much a parallel algorithm 

is faster than a corresponding sequential algorithm. It is defined by the following 

formula: 

 

NS
T
TS N

N
N ≤≤= 1,1  

 

where N is the number of processors, T1 is the execution time of the sequential 

algorithm, and Tp is the execution time of the parallel algorithm with p processors 

[89]. Ideal speedup is SN = N, which is called linear speedup. Efficiency is a 

performance metric estimating how well-utilized the processors are in solving the 

problem compared to how much effort is wasted in communication and 

synchronization. It is defined as: 

 

10, ≤≤= N
N

N E
N
S

E  

 

 

Algorithms with linear speedup and algorithms running on a single processor have an 

efficiency of 1. 

 

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Algorithm
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Table 5.1: Execution time, speedup and efficiency of VASP using parallel 
 computing [90]. 

 

 

 

 

 

 

 

 

 

Number of CPU Execution Time (s) Speedup Efficiency 
1 308.447 1 1 
2 180.798 1.706031 0.853016 
3 131.688 2.342256 0.780752 
4 109.984 2.804472 0.701118 
5 92.549 3.332797 0.666559 
6 80.901 3.812648 0.635441 
7 73.709 4.184659 0.597808 
8 68.259 4.518774 0.564847 
9 65.806 4.687217 0.520802 

10 61.958 4.978324 0.497832 
11 57.473 5.366816 0.487892 

 

 

Figure 5.1 and 5.2 show a simple performance benchmark of VASP running 

at 2 to 11 CPUs. It is obvious that the execution time for the parallel calculation 

reduces as the number of CPU increases (refer to Table 5.1).  

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Graph of total time used for completing a parallel calculation 
versus the number of CPU. 
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 Figure 5.2: Graph of speedup and efficiency vs number of CPU. 

 

 

From the graph, it can be observed that the speedup is not linear. For 11 

CPUs, the speedup is 5.4 times faster than the sequential algorithm. Both speedup 

and efficiency trends show the decreasing of the speedup and efficiency as the 

number of CPU increases. This is owing to the communications between the CPUs  

are getting more massive when the number of CPU increases. 
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APPENDIX A 

 

 

Parallelization of VASP 

 

 

Traditionally, software has been written for serial computation executed on a 

single computer having a single Central Processing Unit (CPU). A problem is broken 

into a discrete series of instructions and carried out one after another. In this case, 

only one instruction may execute at any moment in time. Therefore, when a CPU is 

given a massive and complex ab-initio calculation, it will take a very long time to 

handle and the calculation might fail due to the insufficient memory problem. This 

serial computing problem can be solved by parallel computing, which is the 

simultaneous execution of the same task on multiple processors in order to obtain 

results faster. A problem can be divided into smaller task and broken down to a 

series of instructions. These instructions from each task execute simultaneously on 

different CPUs. 

 

Parallel version of VASP is available and computer cluster approach (see 

Figure 2) is used in this research. Computer cluster is a group of tightly coupled 

computers that work together closely so that in many respects they can be viewed as 

though they are a single computer. The components of a cluster are commonly 

connected to each other through fast local area networks. The cluster built can be 

categorized as high-performance cluster (HPC). HPC with nodes running Linux as 

the OS and free software to implement the parallelism is often referred to as a 

Beowulf cluster.  

 

Figure 1 shows the parallel computing cluster used for VASP calculation in 

this research. The following lists the important components including hardware and 

software of the Beowulf cluster used for the VASP calculation: 

i) 11 units of CPU with Intel 3.06Ghz Pentium 4 Hyper-Threading 

ii) Gigabit Ethernet card 

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Local_area_network
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iii) Gigabit network switch 

iv) Operating system of Fedora Core 4 

v) MPICH2 for the MPI implementation 

Network is an important element in determining the performance of the 

parallel cluster. It had been shown that Gigabit cards can reduce the latency (delay-

time for a packet of data to get from one designated point to another) to 30 μs in 

comparison to the typical 100 MBit Ethernet based network which shows around 90 

μs latency. In consideration of bandwidth (maximum transfer rate limits the 

communication speed), VASP uses all-to-all communication. 
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Figure 1. Schematic of parallel computing cluster illustrating a master-server 
distributes a job to 3 client nodes and communication between them is showed. 

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212736,00.html
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 The MPI version of VASP is compiled and installed by using the Fortran 90 

of Intel Fortran Compiler (IFC). Therefore, MPICH2 is also compiled by using IFC 

before the installation of VASP. Below are the brief descriptions on how to build the 

11-nodes Beowulf cluster: 

1) The network of the cluster is configured. Hostnames and unique IP addresses 

are assigned for each node in the cluster. All the nodes should be in the same 

local network. One node is designated as the master node and is assigned IP 

address of 192.168.10.101. IP address is added one for each client node 

(192.168.10.102, etc.) for easy recognition and there would be no problem as 

long as the IP address is in the range of 192.168.10.255. The nodes are named 

setpar01 through setpar11 to keep things simple, using setpar01 as the master 

node. An identical user account is created in all nodes so that VASP is run as 

common user but not root. 

 

2) The communication protocol of the cluster is configured. There are commonly 

two protocols which are RSH and SSH. Because of the cluster is exposed to the 

public networks, SSH (Secure Shell) is chosen to provide a more secure system 

since it encrypts all communication by means of private plus public key 

encryption methods. The MPICH2 must be also using SSH protocol.  

 

3) Password-less login is enabled. The communication between the cluster nodes 

must be free from password request to ensure a non-barrier environment for 

data sending and receiving. This can be done by first enabling the global 

cluster node authentication. A database of all nodes' public keys is kept in the 

file named ‘ssh_known_hosts’ in the SSH directory and this file is saved in 

each of the node. In the second step, the list of all hostnames of the cluster 

nodes is created in the file ‘shosts.equiv’ in SSH directory and also list of all 

hosts and user who allowed to log in is created in file ‘.shosts’ in home 

directory. This is a authentication method combines shosts or shosts.equiv with 

RSA-based host authentication. It means that is the login would be permitted 

by ~/.shosts or /etc/ssh/shosts.equiv, and additionally it can verify the client’s 

host key from /etc/ssh/ssh_known_host, only then login is permitted. This 

authentication method closes security holes due to IP spoofing, DNS spoofing 

and routing spoofing. 
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4) NFS (Network File System) server and clients is configured. NFS allows hosts 

to mount partitions on a remote system and use them as though they are local 

file systems. This allows the system administrator to store resources in a 

central location on the network, providing authorized users continuous access 

to them. Master node is configured to be NFS server and shares the directory of 

VASP and MPICH2 with other client nodes. 

 

5) MPICH2 is configured and a file mpd.hosts containing a list of hostnames is 

created. The process manager of MPICH2 which is called MPD will start the 

MPI jobs on the nodes specified in the file. 

 

6) VASP is run by giving the command ‘mpiexec –np 11 <directory of VASP>’ 

in the working directory where the calculation is to be run. 

 

 

 

 Figure 2. Cluster of parallel-computing set up for VASP calculation. 
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Performance of Parallelization 

 

 

 To test the performance of the parallelization of VASP, two factors were 

studied, which are speedup and efficiency. Speedup refers to how much a parallel 

algorithm is faster than a corresponding sequential algorithm. It is defined by the 

following formula: 

NS
T
TS N

N
N ≤≤= 1,1  

where N is the number of processors, T1 is the execution time of the sequential 

algorithm, and Tp is the execution time of the parallel algorithm with p processors 

[103]. Ideal speedup is SN = N, which is called linear speedup. Efficiency is a 

performance metric estimating how well-utilized the processors are in solving the 

problem compared to how much effort is wasted in communication and 

synchronization. It is defined as: 

10, ≤≤= N
N

N E
N
S

E  

Algorithms with linear speedup and algorithms running on a single processor have an 

efficiency of 1. 

 

 
Table 1. Execution time, speedup and efficiency of VASP using parallel computing 

Number of CPU Execution Time (s) Speedup Efficiency 
1 308.447 1 1 
2 180.798 1.706031 0.853016 
3 131.688 2.342256 0.780752 
4 109.984 2.804472 0.701118 
5 92.549 3.332797 0.666559 
6 80.901 3.812648 0.635441 
7 73.709 4.184659 0.597808 
8 68.259 4.518774 0.564847 
9 65.806 4.687217 0.520802 

10 61.958 4.978324 0.497832 
11 57.473 5.366816 0.487892 

 

 

http://en.wikipedia.org/wiki/Algorithm
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Figure 2 and 3 show a simple performance benchmark of VASP running at 2 

to 11 CPUs. It is obvious that the execution time for the parallel calculation reduces 

as the number of CPU increases (refer to Table 1).  
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Figure 2. Graph of total time used for completing a parallel 
calculation versus the number of CPU. 
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 Figure 3. Graph of speedup and efficiency vs number of CPU. 

 

 

 From the graph, it can be observed that the speedup is not linear. For 11 

CPUs, the speedup is 5.4 times faster than the sequential algorithm. Both speedup 

and efficiency trends show the decreasing of the speedup and efficiency as the 

number of CPU increases. This is owing to the communications between the CPUs  

are getting more massive when the number of CPU increases. 
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