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Abstract: This paper presents the outcome of work conducted to develop models for the prediction
of compressive strength (CS) of alkali-activated limestone powder and natural pozzolan mortar
(AALNM) using hybrid genetic algorithm (GA) and support vector regression (SVR) algorithm,
for the first time. The developed hybrid GA-SVR-CS1, GA-SVR-CS3, and GA-SVR-CS14 models
are capable of estimating the one-day, three-day, and 14-day compressive strength, respectively, of
AALNM up to 96.64%, 90.84%, and 93.40% degree of accuracy as measured on the basis of correlation
coefficient between the measured and estimated values for a set of data that is excluded from training
and testing phase of the model development. The developed hybrid GA-SVR-CS28E model estimates
the 28-days compressive strength of AALNM using the 14-days strength, it performs better than
hybrid GA-SVR-CS28C model, hybrid GA-SVR-CS28B model, hybrid GA-SVR-CS28A model, and
hybrid GA-SVR-CS28D model that respectively estimates the 28-day compressive strength using
three-day strength, one day-strength, all the descriptors and seven day-strength with performance
improvement of 103.51%, 124.47%, 149.94%, and 262.08% on the basis of root mean square error. The
outcome of this work will promote the use of environment-friendly concrete with excellent strength
and provide effective as well as efficient ways of modeling the compressive strength of concrete.

Keywords: compressive strength; natural pozzolan; genetic algorithm; limestone powder; support
vector regression

1. Introduction

Concrete is the backbone of our built-environment, especially in urban areas [1]. The
construction of infrastructures, such as bridges, roads, dams, tunnels, high-rise buildings,
dams, airports, seaports, power plants, seawalls, wastewater plants, freshwater plants and
dykes for social and economic benefits consumed roughly 35 billion tons of concrete [2].
This is generally due to its favorable compressive strength, durability, versatility, global
availability of the constituent materials, high fire-resistance, and relatively low cost [3].

Materials 2021, 14, 3049. https://doi.org/10.3390/ma14113049 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2572-4243
https://orcid.org/0000-0002-1763-6190
https://doi.org/10.3390/ma14113049
https://doi.org/10.3390/ma14113049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14113049
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14113049?type=check_update&version=2


Materials 2021, 14, 3049 2 of 25

The world production of Ordinary Portland cement (OPC), the main binding component
in concrete was estimated to be 4.6 billion tons in the year 2015 with a projection of four-
fold increase by 2050 [4]. However, the OPC calcination process significantly leads to the
emission of 5–8% of global CO2 into the atmosphere which has greatly contributed to the
depletion of earth’s ozone layer [5,6]. Demand-pull by the low carbon-conscious market
has gravitated attention to the use of alkali-activated materials (AAM) or geopolymer
concrete in recent years as an alternative to OPC [7].

AAM is a system formed by the reaction of soluble alkaline activator and aluminosili-
cate precursors [8]. AAM is classified into low calcium or geopolymer (fly ash, metakaolin,
and natural pozzolans) and high calcium (blast furnace slag) binders. The main products in
low binder AAM could be mainly potassium/sodium silicate hydrate with impregnation
of alumina (NASH and KASH) within the formation. In high calcium binders, such as
blast furnace slag, that are synthesized with a mild alkali, the main product is calcium
alumina silicate hydrate (CASH) [9]. AAM has been identified as an eco-efficient and
economically-viable alternative for replacing OPC due to its excellent strength, thermal
resistance and low permeability [8,10]. AAM is gaining wide acceptance as a component
of a sustainable cementitious binder system. It has a wide range of application in precast
concrete in which the alkaline activators can be handled appropriately and the curing
methods can be controlled and also it can be used for in-situ construction. The world’s
largest geopolymer concrete project was carried out by using 40,000 m3 of geopolymer con-
crete for the construction of heavy-duty pavement at the Brisbane west well camp airport
in Australia [11]. Additionally, several road projects were constructed using geopoly-
mer by VicRoads state agency in Australia [12]. Furthermore, several applications and
standardization of AAM are being done in Russia, Ukraine, South Africa, Netherlands,
UK, and the USA, among others [13–15]. Many researchers have successfully synthe-
sized alkali-activated mortars and concretes experimentally from natural raw materials,
such as natural pozzolan (NP) [9,16,17], agricultural waste materials, such as rice husk
ash [18], palm oil fuel ash (POFA) [18–22], or industrial waste, such as silico-manganese
slag (SiMn) [23], ground granulated blast furnace slag (GGBFS) [23–25], fly ash (FA) [26],
silica fume (SF) [26,27], coal bottom ash [28], paper sludge ash [29], and mine tails [8] with
aluminosilicate components.

The determination of material properties for the design of civil engineering structures
is of great significance to the construction industry. The compressive strength (CS) of AAM
is one of the key mechanical properties that dictates its suitability for structural purposes.
The CS of alkali-activated mortar (AAMT) is a function of many parameters, such as the
chemical composition of the primary or base materials (precursor), sodium hydroxide
molarity (NH), curing temperature, sodium silicate to sodium hydroxide (NS/NH) ratio
or silica modulus, alkali to binder ratio [NS + NH)/BD], fine aggregate to binder ratio
(FA/BD), water to binder ratio (W/BD), and the curing temperature and duration [9,20,30].
The synthesis of AAMT by using the traditional laboratory procedures is laborious, expen-
sive, and time-consuming. This is because the process involves the preparation, curing,
and testing of several specimens [31]. Thus, there is a need to develop an alternative
procedure that can eliminate the limitations of the traditional methods. This work models
the compressive strength of AAMT prepared with natural pozzolan (NP) and limestone
powder waste (LSPW) using hybrid support vector regression and genetic algorithm for
the first time.

Support vector regression (SVR) is a machine learning algorithm that is capable of
relating descriptors to the desired target through pattern acquisition and generation of
support vectors [32,33]. It has been extensively applied in many real-life applications
due to its unique features, such as strong mathematical background, non-convergence
to a local minimum, and excellent predictive strength in the presence of few data-points
and descriptive features [34–39]. The user-defined parameters in SVR algorithm, such as
regularization factor, epsilon, hyper-parameter lambda, kernel option, and kernel function
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play a significant role when it comes to model performance [40]. These hyper-parameters
are evolutionarily optimized in this research work using a genetic algorithm.

Despite the inevitability of concrete in construction industries, the environmental
danger of conventional ordinary Portland cement is of serious concern which necessitates
urgent attention to alkali-activated materials as the potential alternative to ordinary Port-
land cement due to their environmental-friendliness, excellent compressive strength, and
low permeability. In order to predict the compressive strength (CS) of AAMs without waste
of precious time and other valuable resources while the experimental precision is preserved,
this present work models the compressive strength of alkaline activated limestone powder
and natural pozzolan mortar (AALNM) using hybrid genetic algorithm (GA) and support
vector regression (SVR) algorithm, for the first time. The outputs of the developed models
are validated using experimental data of the prepared AALNM specimens with different
mixture proportions and compositions. The outcome of the modeling and simulation of
the compressive strength of AALNM will facilitate the quick estimation of the compressive
strength of AALNM system to a high degree of precision, while it saves valuable time and
other material resources.

2. Description of the Mathematical Background of the Proposed Hybrid Models

This section presents the mathematical formulation of support vector regression as
well as genetic algorithm.

2.1. Formulation of Support Vector Regression Algorithm

Support vector regression (SVR) is a machine learning algorithm developed by Vap-
nik [41,42]. It is the regression counterpart of support vector machine, which is used for
solving classification problems. SVR has been known to produce good results even when
there are few training samples [31,43]. Let {(x1, y1), (x2, y2), . . . (xn, yn)} be a set of n training
samples with which the regression model is to be built, where xi ∈ <d and yi ∈ < are the
set of the input features and the target for the i-th training sample, respectively. The SVR
algorithm seeks to find a function f (x) which fits all the training data with a deviation of at
most εwhile being as flat as possible [44]. Without loss of generality, f can be represented
as a linear function as shown in Equation (1) where 〈. . .〉 denotes the dot product in <d.

f (x) = 〈w, x〉+ b w ∈ Rd, b ∈ R (1)

In order to make f (x) flat, w needs to be as small as possible. w can be made small by
minimizing its Euclidean norm ||w ||2 = 〈w, w〉. The corresponding convex optimization
problem can be stated as shown in Equation (2) [45].

minimize ||w ||
2

2

subject to
{

yi − 〈w, x〉 − b ≤ ε
〈w, x〉+ b− yi ≤ ε

(2)

Since Equation (2) may be infeasible, slack variables ξi and ξi* are introduced to the
optimization problem, yielding Equation (3).

minimize ||w ||
2

2 + C
n
∑

i=1
(ξi + ξi

∗)

subject to


yi − 〈w, x〉 − b ≤ ε + ξi
〈w, x〉+ b− yi ≤ ε + ξi

∗

ξi, ξi
∗ ≥ 0

(3)

The regularization constant C controls the trade-off between generalization ability and
accuracy on the training set [46]. Equation (3) can be solved more conveniently in its dual
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form by constructing a Lagrange function from the constraints and objective function, and
introducing dual variables [44]. The solution to the dual problem is given in Equation (4):

f (x) =
n

∑
i=1

(αi + αi
∗) φ〈xi, x〉+ b (4)

where αi and αi* are Lagrange multipliers. ϕ is the kernel function that allows the input
features to be mapped to higher dimensional feature space. This mapping improves the
accuracy and robustness of SVR [47]. In this work, the kernel function that performs better
is the Gaussian kernel function and is defined in Equation (5).

φ〈xi, x〉 = exp
(
− ||x− xi ||

σ

)
(5)

where σ stands for the kernel option. Since the performance of SVR depends on the
choice of hyper-parameters which include the regularization factor (C), epsilon (ε), and
kernel option (σ), genetic algorithm is hybridized with SVR for optimal selection of these
parameters.

2.2. Description of Genetic Algorithm

Genetic algorithm (GA) is a population-based optimization algorithm inspired by
evolution and natural selection, which is capable of solving complex search problems [48].
In GA, potential solutions to a problem are encoded as a chromosome, which is made up of
a number of genes. At the start of GA, a population of chromosomes is randomly generated.
The fitness level of each chromosome is determined by means of a fitness/cost function.
High-quality chromosomes have a greater chance of being selected for reproduction than
low-quality chromosomes. During reproduction (crossover), portions of two or more
existing chromosomes are combined together to generate one or more offspring. Some
chromosomes may undergo mutation, during which small random changes are introduced
in a chromosome to prevent it from being stuck in a local optimum [49]. GA goes through
several iterations (generations) of reproduction, crossover, and mutation until a stopping
condition is met [45].

2.3. Acquisition of Experimental Data and Computational Hybridization of the Proposed Models

This section discusses the computational method adopted for hybridization of the
two algorithms. The acquisition and description of the dataset used for modelling and
simulation are also presented.

2.3.1. Experimental Description and Data Acquisition

Natural pozzolan (NP) was obtained from Imerys Minerals Arabia, Rabigh, Kingdom
of Saudi Arabia and the limestone powder waste (LSPW) was collected from the local
tile manufacturing plants. Subsequently, it was oven-dried at 105 ± 5 ◦C for 24 h to
remove the moisture. The LSPW was sieved through a 200 µm sieve to remove stones
and debris. The alkaline activator used in this study is a combination of commercially
available aqueous sodium silicate (SS) with its initial silica modulus (Ms = SiO2/Na2O) of
3.3 and nM NaOH(aq) (NH) where n is the value of the molarity (4, 6, 8, 10, 12, and 14). The
percentage composition of the Na2SiO3(aq) are as follows: H2O: 62.11%, SiO2: 29.13%, and
Na2O: 8.76%. Desert sand [50] was used as fine aggregate (FA). The fineness modulus of
FA was 1.82 and the specific gravity in saturated surface dry (SSD) condition was 2.63 and
the water absorption was 0.5%. The mixture proportions of AAMT were designed with
the LSPW content of 0%, 20%, 40%, 60%, 80%, and 100% and natural pozzolan contents of
100%, 80%, 60%, 40%, 20%, and 0%, respectively. The samples were designated as AANLx
(alkali-activated NP/LSPW mortar), where x is the L

L+N ratios. A total of six AANLx
(where x = 0, 0.2, 0.4, 0.6, 0.8 and 1) mixtures were prepared. The fine aggregate to the
binder (FA/B) ratio ranged from 1.4 to 2.2 at an interval of 0.2. The Na2SiO3(aq)/NaOHaq
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(NS/NH) ratio ranges from 0 to 1.5 and alkaline activator to binder ratio of 0.45, 0.5 and
0.55 were used. A free water to precursor (pozzolanic material) ratio of 0.1 was used in all
the mixtures. The required quantities of constituent materials were measured and mixed
in batches in the 5.0 L capacity Hobart planetary bench mixer (Hobart GmbH, Offenburg,
Germany). The mixing of the materials was done in two stages. In the initial stage, the NP
and LSPW powder and sand were mixed in a dry condition for 3 min. In the second stage,
the alkaline solution (NaOH(aq) + Na2SiO3(aq)) and water were added for the wet mixing
stage which involves low speed mixing for 2 min and another 4 min for fast or high speed
mixing until a homogeneous mixture was achieved, the total mixing time was about 9 to 10
min to ensure the homogeneity of the mix. Thereafter, the mortar was placed in oil-smeared
steel molds measuring 50 × 50 × 50 mm in two layers and each layer was vibrated on the
vibrating table for 30 s to remove any entrapped air from the mixture. Then the surface was
carefully smoothened with a trowel to have a smooth finish. After placement, consolidation,
and finishing of the mortar, the specimens were covered with a plastic sheet to prevent
moisture loss and kept in the laboratory at 20 ± 5 ◦C for 24 h. After 24 h of casting, the
cubes were de-molded and placed in zip plastic bags to avoid evaporation of moisture.
The specimens were then subjected to temperature curing in an oven maintained at the
room temperature (20 ± 5 ◦C) and various curing temperature of 45, 60, 75, and 90 ◦C for
24 h. After that, the specimens were cured under a normal room temperature condition of
20 ± 5 ◦C until the age of testing (1, 3, 7, 14, and 28 days). The CS of the AANL mortar was
determined in accordance with ASTM C 39 [51] on 50 × 50 × 50 mm cube specimens using
a digital compression testing machine. The CS of the specimens was determined after 1,
3, 7, 14, and 28 days of curing. Three specimens were tested at each age and the average
compressive strength values were recorded for use in the models. Table 1 summarizes the
quantities of materials and the compressive strength of 390 alkali-activated specimens.

Table 1. Mixture proportions of alkali-activated natural pozzolan/limestone powder mortar specimens.

Mix X
-

M
mol/dm3

T
(◦C)

NS/NH
-

FA/B
-

AK/B
-

CS-1
(MPa)

CS-3
(MPa)

CS-7
(MPa)

CS-14
(MPa)

CS-28
(MPa)

M1 0 10 75 1 2 0.5 4.4 4.9 5.2 7.4 8.9
M2 0.2 10 75 1 2 0.5 18.6 18.7 21.9 22.4 22.6
M3 0.4 10 75 1 2 0.5 20.7 23.9 24.3 24.5 25.0
M4 0.6 10 75 1 2 0.5 20.9 24.0 25.2 25.3 27.0
M5 0.8 10 75 1 2 0.5 12.9 14.0 14.5 15.3 15.7
M6 1 10 75 1 2 0.5 5.3 5.6 5.8 6.0 6.3
M7 0.6 4 75 1 2 0.5 4.3 4.4 4.8 5.3 6.0
M8 0.6 6 75 1 2 0.5 4.7 4.9 5.0 5.6 7.6
M9 0.6 8 75 1 2 0.5 7.9 8.4 9.0 9.8 11.6
M10 0.6 12 75 1 2 0.5 20.2 24.3 24.7 24.7 22.8
M11 0.6 14 75 1 2 0.5 21.6 23.6 24.7 24.0 22.7
M12 0.6 10 25 1 2 0.5 6.85 7.73 10.55 11.68 13.00
M13 0.6 10 45 1 2 0.5 10.68 12.47 12.76 13.25 14.13
M14 0.6 10 60 1 2 0.5 17.06 19.34 20.36 20.86 22.00
M15 0.6 10 90 1 2 0.5 23.35 24.13 24.37 24.84 25.92
M16 0.6 10 75 0 2 0.5 9.6 14.4 13.2 14.3 15.6
M17 0.6 10 75 0.5 2 0.5 15.4 18.3 18.9 19.1 18.9
M18 0.6 10 75 0.75 2 0.5 17.1 19.1 19.0 19.5 20.4
M19 0.6 10 75 1.25 2 0.5 18.3 18.9 18.8 15.3 16.2
M20 0.6 10 75 1.5 2 0.5 10.9 12.3 13.4 10.5 10.9
M21 0.6 10 75 1 1.4 0.5 15.4 18.3 20.1 22 23.5
M22 0.6 10 75 1 1.6 0.5 17.6 20.6 22.4 23.3 24.3
M23 0.6 10 75 1 1.8 0.5 18.2 21.2 23.6 24.2 25
M24 0.6 10 75 1 2.2 0.5 19.5 21.3 22.8 23.4 24.4
M25 0.6 10 75 1 2 0.45 20.3 22.2 23.7 25.0 23.7
M26 0.6 10 75 1 2 0.55 21.5 23.6 22.8 23.1 22.5

Statistical analysis was carried out on the dataset presented in Table 1 and the outcomes
of the analysis are presented in Table 2. The mean and the range presented in the Table 2
give significant insights to the overall content of the dataset while the consistencies in the
dataset from one measurement to another is contained in the acceptable standard deviation.
The correlation coefficient (CC) shows the degree of a linear relationship between each of
the descriptors and the targets. From these coefficients, the inadequacy of linear models
to holistically capture the relationship between the descriptors and the targets can be
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inferred. Hence, the need for nonlinear modelling, such as the proposed hybrid GA-SVR,
becomes paramount.

Table 2. Outcomes of the statistical analysis performed on the dataset used for modelling and simulation.

Parameter Mean Range Standard
Deviation

CC-1
(MPa)

CC-3
(MPa)

CC-7
(MPa)

CC-14
(MPa)

CC-28
(MPa)

X 0.577 1 0.173 −0.026 −0.007 −0.035 −0.073 −0.095
M(mol/dm3) 9.769 10 1.728 0.578 0.605 0.609 0.589 0.545

T (◦C) 71.923 65 12.006 0.329 0.308 0.255 0.236 0.226
NS/NH 0.962 1.5 0.252 0.083 −0.021 0.032 −0.042 −0.055

FA/B 1.962 0.8 0.150 −0.055 −0.102 −0.144 −0.189 −0.225
AK/B 0.500 0.1 0.014 0.027 0.029 −0.016 −0.039 −0.024

CS-1 (MPa) 14.737 19.05 6.187
CS-3 (MPa) 16.556 19.9 6.871
CS-7 (MPa) 17.376 20.4 7.053
CS-14(MPa) 17.714 20 7.004
CS-28 (MPa) 18.328 21 6.655

2.3.2. Computational Hybridization of Genetic Algorithm and Support Vector Regression

Due to the fact that the performance of SVR is highly dependent on the set of SVR
parameters used, it is important to fine-tune the parameters of SVR in order to obtain a
good prediction. All the modelling and simulation were conducted within the MATLAB
(2019 MathWorks, Natick, MA, USA) computing environment. Before the commencement
of modelling, the dataset was divided into training, testing, and validation in the ratio 6:2:2
after randomization. Randomization of data is necessary to ensure an even distribution
of data-points and to promote efficient computation. Therefore, 16 data-points were used
for training the model, five data-points were used for tuning the hyper-parameters, while
the remaining five data-points were used for validating the robustness of the developed
hybrid model. The procedures for hybridization of SVR with GA are itemized below:

Step I: Chromosome representation and population initialization: Each chromosome
is real-coded and made up of three genes representing regularization factor, epsilon, and
kernel option for the selected kernel function. The search space which represents the range
of valid values for each of the parameters is defined as 1–1000 for regularization factor, 0.1–1
for epsilon, and 0.001 to 1 for kernel option. These wide ranges of search space enhance the
possibility of attaining the optimality. The initial population of chromosomes was formed
by randomly assigning values for each parameter within its lower and upper bounds.

Step II: Fitness value computation: In order to compute the fitness value for each of
the chromosome, the kernel function was selected from a pool of functions which include
Gaussian, polynomial and sigmoid among others while the hyper-parameter that defines
the hyper-plane was set at 10−7. Thereafter, the values of other SVR parameters (which
include regularization constant, epsilon and kernel option) are encoded in the chromosome.
The set of parameters as well as the training set of data were used to train SVR algorithm.
The generalization capability and robustness of the SVR prediction model is measured by
implementing the model to estimate the compressive strength of data samples contained in
the validation set and computing the root mean square error (RMSE) between the estimated
compressive strength and the empirically measured comprehensive strength. Therefore,
the fitness value of a chromosome is the RMSE of the corresponding SVR model on the
validation set of data.

Step III: Selection for reproduction: Based on the principle of survival of the fittest,
the chromosomes having higher quality (i.e., lower RMSE) have a greater chance of being
selected for reproduction. Tournament selection was utilized in the present hybrid GA-SVR
model. In tournament selection, a few chromosomes were randomly chosen from the
entire population and the winner of the tournament, which is the fittest of the chosen
chromosomes, was used for crossover. The selection probability was set at 0.8.

Step IV: Crossover: The crossover operator combines portions of two parents to form
two offspring. Subsequences and portions of both parents are swapped among the children
with a crossover probability of 0.65.
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Step IV: Mutation: With a mutation probability of 0.009, the value at a randomly chosen
position in a chromosome was altered.

Step V: Stopping criteria: Step I to Step IV was repeated until the best fitness value does
not improve over 60 consecutive generations. Figure 1 presents the computational flow
chat of the hybridization.
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3. Results and Discussion

This section presents and discusses the results of the modelling, simulation, and
optimization. The outcomes of the developed models are compared with the experimental
values while the developed models are implemented for modelling the behavior of the
compressive strength under various conditions.

3.1. Early Age Compressive Strength Using the Developed Hybrid Models

The results of early age compressive strength as estimated using the developed hybrid
GA-SVR-CS1, GA-SVR-CS3, GA-SVR-CS7, and GA-SVR-CS14 model for one-, three-,
seven-, and 14-days, respectively, are presented in this section. The convergence of the
models at various numbers of initial populations is also discussed. The effectiveness of
each of the models in obtaining maximum desired compressive strength is also discussed.

3.1.1. Optimization of SVR Hyper-Parameters for the Early and 14-Day Compressive
Strength Models

Since the hyper-parameters of SVR algorithm are of high significance to the perfor-
mance of the model, these parameters were optimized using GA. The convergence of the
hybrid GA-SVR-CS1 and GA-SVR-CS3 models is presented in Figure 2.
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Figure 2a shows the convergence of GA-SVR-CS1 at different number of initial popu-
lation while Figure 2b presents the convergence of GA-SVR-CS3 model at three different
numbers of initial populations. Both graphs in Figure 2 strongly indicate the robustness
of the models as they converge to the same point, despite the large size of the population.
Similar convergence is obtained for GA-SVR-CS7 and GA-SVR-CS14 models, developed
for estimating seven- and fourteen-days compressive strength, respectively. Only the
convergence of GA-SVR-CS1 and GA-SVR-CS3 models is presented so as to prevent repeti-
tion. Table 3 presents the obtained hyper-parameters for each of the developed early-age
compressive strength models.
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Table 3. Optimized hyper-parameters of the early-age strength compressive strength models.

Model Regularization
Factor Epsilon Kernel

Option
Hyper-Parameter

Lambda
Kernel

Function

Hybrid
GA-SVR-CS1 418.5247 0.7126 0.3201 0.1 Gaussian

Hybrid
GA-SVR-CS3 417.1485 0.002 0.4056 0.1 Gaussian

Hybrid
GA-SVR-CS7 36.7688 0.0539 2.0000 0.1 Gaussian

Hybrid
GA-SVR-CS14 457.0419 0.002 0.2433 0.1 Gaussian

3.1.2. Performance of the Developed Early-Age Compressive Strength Models at Each
Developmental Stage

The performance of each of the developed models for estimating the strength of
AALNM is assessed using correlation coefficient (CC) between the estimated and experi-
mentally measured values, root mean square error (RMSE), and mean absolute error (MAE)
for training, testing, and validating the set of data. The values of each of the parameters
at each of the developmental stages of the model are presented in Table 4. The validation
stage is the most vital stage by which the accuracy as well the generalization and predictive
strength of the models can be assessed since the models are subjected to data that are not
involved in both training and testing stages. In the training phase, support vectors are
acquired while these support vectors are altered and perfected to give excellent estimation
using the testing set of data for parameters tuning. The developed GA-SVR-CS1 model
performs better at validation stage than training and testing stage with the performance
improvement of 17.48% and 47.52%, respectively, using RMSE as a performance measuring
parameter. However, a comparison of validation stage with training and testing stage on
the basis of MAE shows that the developed GA-SVR-CS1 model performs better during
the validation than training and testing stage with performance enhancement of 8.15% and
75.04%, respectively. On the basis of CC, the performance at the validation stage is better
than that of the training phase while the best performance is obtained during the testing
phase. Table 4 presents the value of each of the performance measuring parameters for
each of the early-age compressive strength models. In the case of developed hybrid GA-
SVR-CS3 model for estimating three-days compressive strength, the model performs better
during the validation stage compared with the training stage while the best performance
was recorded during the initial acquisition of support vectors using the three performance
measuring parameters as a yardstick for comparison. The testing phase of GA-SVR-CS7
model shows the best performance metrics while in the case of GA-SVR-CS14 model, the
training phase of the model demonstrates the best performance.

Table 4. Reliability measurement for the early-age and 14-day compressive strength models.

Model Training Testing Validation

Hybrid GA-SVR-CS1
CC 0.9315 0.9779 0.9664

RMSE 2.1655 2.7192 1.8432
MAE 1.5296 2.4756 1.4143

Hybrid GA-SVR-CS3
CC 0.9952 0.6755 0.9084

RMSE 1.1651 3.7007 1.4896
MAE 0.9163 2.5532 1.2969

Hybrid GA-SVR-CS7
CC 0.7039 0.8284 0.6557

RMSE 5.2789 4.6159 5.0503
MAE 3.108 4.0925 4.9916

Hybrid GA-SVR-CS14
CC 0.9768 0.9541 0.934

RMSE 2.1681 2.7784 3.4103
MAE 1.5633 2.3586 2.7793
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3.1.3. Comparison between the Experimentally-Measured Early and 14-Day Compressive
Strength and the Outcomes of the Developed Hybrid Models

A comparison of the predicted early-age compressive strength and the measured
values for AALNM mixtures is presented in Figure 3 for the developed GA-SVR-CS1 and
GA-SVR-CS3 models. The predicted compressive strength is very close to the experimental
values, as shown in Figure 3. Similar closeness is obtained for the other two early-age
compressive strength models (GA-SVR-CS7 and GA-SVR-CS14). The actual values of the
estimated compressive strength for each of the developed early-age compressive strength
models are provided in Appendix A.
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3.2. Modelling the Influence of Constituents of AALNM on the Early-Age and 14-Day
Compressive Strength Using the Developed Hybrid Models

The developed early-age compressive strength models, specifically GA-SVR-CS1 and
GA-SVR-CS3, are implemented for investigating the influence of binary binder ratio and
the fine aggregate to binder ratio on the early-age compressive strength. This application
becomes necessary since the proposed early-age compressive strength models have been
trained, tested, and validated with the experimental data and the performance measuring
parameters recorded are excellent. Figure 4a shows the dependence of one-day compressive
strength on the binary binder ratio (that is, the ratio of limestone powder to natural
pozzolan represented as x) at various molarity (represented by M) of sodium hydroxide
while keeping the curing temperature (T), sodium silicate to sodium hydroxide (NS/NH)
ratio, fine aggregate to binder ratio (FA/B), and alkaline to binder ratio (AK/B) at 75 ◦C, 1,
2, and 0.5, respectively. It was noted that the one-day compressive strength of AALNM
mixture increases with binary binder ratio (except when the molarity of sodium hydroxide
is 6), attains maximum strength, and begins to decrease. The one-day compressive strength
attains maximum value when the molarity of sodium hydroxide is 10 and the ratio of
binary binder ratio is 0.45 [52]. It should be noted here that the developed GA-SVR-CS1
model was only fed with input descriptors while the developed model utilizes its acquired
support vectors during training phase to predict the behavior of AALNM mixture under
the selected conditions. Figure 4b presents the influence of fine aggregate to binder ratio
on one-day compressive strength of AALNM system at various sodium silicate to sodium
hydroxide ratios, keeping binary binder ratio at its optimum value of 0.45.
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The data in Figure 4b indicates that the maximum one-day strength can only be
achieved when FA/B is 2 while NS/NH is kept at 1. The results of similar investigation
are presented in Figure 4c,d for three-days compressive strength using the developed GA-
SVR-CS3 model. Figure 4c presents the dependence of three-days compressive strength on
the binary binder ratio at different molarity of sodium hydroxide while setting the curing
temperature (T), sodium silicate to sodium hydroxide (NS/NH) ratio, fine aggregate to
binder ratio (FA/B) and alkaline to binder ratio (AK/B) at 75 ◦C, 1, 2, and 0.5, respectively.
The behavior of AALNM mixture is parabolic in nature while the strength at molarity of
4 and 6 show minimum points correspond to minimum possible compressive strength.
The results of modeling and simulation as presented in Figure 4c show that the maximum
three-days strength possible could be obtained when the binary binder ratio is set at 0.45
while the molarity of sodium hydroxide is maintained at 10. At this optimum binary binder
ratio, the significance of FA/B on three-days compressive strength at various values of
NS/NH ratio is investigated and the results are presented in Figure 4d. It was observed
that after a maximum possible three-days strength at NS/NH ratio of 1, further increase in
NS/NH lowers the strength.

3.3. Estimation of 28-Days Compressive Strength Using the Developed Hybrid
GA-SVR-CS28 Model

This research work also developed models that can effectively estimate the 28-days
compressive strength for structural and construction purposes. In this case, five different
models were developed with distinct features, capacities and estimation accuracy. The
developed hybrid GA-SVR-CS28A model estimates the 28-days compressive strength



Materials 2021, 14, 3049 14 of 25

of AALNM mixture using binary binder variation, sodium hydroxide molarity (NH),
curing temperature, sodium silicate to sodium hydroxide (NS/NH) ratio, alkaline to
binder ratio (AK/B), and fine aggregate to binder (FA/BD) ratio as input descriptors
to the model. Furthermore, the developed hybrid GA-SVR-CS28B and GA-SVR-CS28C
models estimate the 28-day compressive strength using one-day and three-day compressive
strength as input descriptor while the seven-days compressive strength serves as the
descriptor to GA-SVR-CS28D model. Another developed hybrid GA-SVR-CS28E model
predicts the 28-day strength using 14-day strength as descriptor. Each of these models have
unique importance and significance. The developed hybrid GA-SVR-CS28B model allows
engineers and practitioners to predict 28-day compressive strength using the results of
one-day compressive strength so as to save precious time and other valuable resources.
Since it saves time and preserves experimental precision, the model can be deployed for
making quick and precise decision in building industries. Similar advantages are attached
to other models, such as GA-SVR-CS28C, GA-SVR-CS28D, and GA-SVR-CS28E. The choice
from these models can be decided on the basis of their accuracies and the urgency of
the application. It is worth noting that mixtures M10, M11, M17, and M25 exhibited a
slight reduction in compressive strength after 14-days. Mixtures M10, M11, M17, and M25
were all synthesized with high concentration of sodium hydroxide NaOH(aq), at higher
concentration of NaOH(aq), the early-days compressive strength values are higher due to
the rapid geopolymerization process caused by high dissolution rate of monomers in the
binder. However, at later stage, excessive presence of OH− in high molar concentration
of NaOH(aq) could cause ionic congestion that might prevent the polymerization process.
This could limit the formation of C-A-S-H in the formed gels leading to a reduction in the
compressive strength as observed in mixtures M10, M11, M17, and M25 [52].

3.3.1. Optimization of SVR Hyper-Parameters for the Developed GA-SVR-CS28 Model

The hyper-parameters of each of the developed 28-days compressive strength models
are optimized using GA. The optimum values of the hyper-parameters are presented
in Table 5, while results showing the convergence of the optimization are presented in
Figure 5a–e. As shown in Figure 5c, the developed model attained local minimum when
fifty of the population were contained within the search space because the space is limited,
while the exploration capacity of the model becomes inefficient. An increase in the number
of probable solutions in the search space to one hundred strengthens the exploration
capacity of the model and the optimum convergence was observed. Among the merits of
the implemented GA is that it avoids local minimum convergence, especially when the
initial population is varied.

Table 5. Optimized hyper-parameters of 28-days compressive strength models.

Model Regularization
Factor Epsilon Kernel

Option
Hyper-Parameter

Lambda
Kernel

Function

Hybrid
GA-SVR-CS28A 689.1925 0.002 0.6379 0.1 Gaussian

Hybrid
GA-SVR-CS28B 15.124 0.5571 2 0.1 Gaussian

Hybrid
GA-SVR-CS28C 7.7528 0.3432 2 0.1 Gaussian

Hybrid
GA-SVR-CS28D 1.000 0.002 2 0.1 Gaussian

Hybrid
GA-SVR-CS28E 13.7523 0.002 2 0.1 Gaussian
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pollution size.



Materials 2021, 14, 3049 16 of 25

3.3.2. Performance of Hybrid GA-SVR-CS28 at Each Developmental Stage

The generalization and predictive strength of each of the 28-days compressive strength
model are assessed using CC, RMSE, and MAE between the estimated and experimentally
measured values for validation set of data. Figure 6 presents the comparison on the basis
of correlation coefficient between the estimated strength and the measured values for the
validation set of data. The developed hybrid GA-SVR-CS28A model that estimates the
compressive strength of AALNM using six input descriptors which include binary binder
variation (x), sodium hydroxide molarity (NH), curing temperature, sodium silicate to
sodium hydroxide (NS/NH) ratio, alkaline to binder ratio (AK/B), and fine aggregate
to binder (FA/BD) ratio, shows least performance as characterized with lowest value
of CC. The significance of utilizing early-age strength and three-day strength to predict
28-day strength can be observed from the results of GA-SVR-CS28B and GA-SVR-CS28C
as both models predict the 28-day strength with 96.64% and 92.88% accuracy, respectively.
This significantly saves time in predicting the 28-days compressive strength, utilizing the
early-age strength.
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Figure 6. Performance comparison of the developed 28-day compressive strength model using the
correlation coefficient performance metric.

However, hybrid GA-SVR-CS28B model that utilizes one-day strength performs better
than GA-SVR-CS28C model that estimates 28-day strength using the three-day compressive
strength with improvement of 3.89%. Similarly, the developed hybrid GA-SVR-CS28C
model that estimates 28-day strength using seven-day strength as input does this task with
an accuracy of 96.75% while the hybrid GA-SVR-CS28D model that uses fourteen-days
strength for its 28-day estimation is characterized with an accuracy of 97.6%. Despite
the high accuracy that characterizes each of these models, the developed hybrid GA-
SVR-CS28C model that estimates 28-day strength using 14-day-strength shows the best
performance. Figure 7 compares each of the developed 28-day compressive strength models
on the basis of RMSE, while Figure 8 compares the model using MAE as a performance
measuring parameter.
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Figure 7. Performance comparison of the developed 28-day compressive strength model using the
root mean square error performance metric.
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Figure 8. Performance comparison of the developed 28-day compressive strength model using the
mean absolute performance metric.

The developed hybrid GA-SVR-CS28A model also shows the least performance with
the highest RMSE and MAE as respectively presented in Figures 7 and 8. The developed
hybrid GA-SVR-CS28B and GA-SVR-CS28C models estimate the 28-day compressive
strength with very low RMSE of 1.8432 MPa and 2.669 MPa while MAE characterizing the
models is 1.4143 MPa and 2.4128 MPa. In the same vein, the RMSE for implementing the
hybrid GA-SVR-CS28D and GA-SVR-CS28E models on validation set of data is 3.1514 MPa
and 1.4688 MPa, respectively, while the respective values of MAE are 2.758.83 MPa and
1.226 MPa. On the basis of the recorded errors, the developed hybrid GA-SVR-CS28B
model performs better than model GA-SVR-CS28C, while the hybrid model GA-SVR-
CS28E shows the best performance. The error values and the coefficient of correlation for
each of the developed 28-days compressive strength models are presented in Table 6.
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Table 6. Performance measuring parameters for the developed 28-days compressive strength model.

Model Training Testing Validation

Hybrid GA-SVR-CS28A
CC 0.9684 0.9899 0.6548

RMSE 2.2452 0.8442 3.8911
MAE 1.7507 0.6908 3.1246

Hybrid GA-SVR-CS28B
CC 0.9315 0.9779 0.9664

RMSE 2.1655 2.7192 1.8432
MAE 1.5296 2.4756 1.4143

Hybrid GA-SVR-CS28C
CC 0.9502 0.9958 0.9288

RMSE 1.9366 1.442 2.669
MAE 1.4209 1.1161 2.4128

Hybrid GA-SVR-CS28D
CC 0.9392 0.9539 0.9675

RMSE 4.1867 1.0493 3.1514
MAE 3.087 0.8511 2.7583

Hybrid GA-SVR-CS28E
CC 0.9947 0.9945 0.976

RMSE 0.7669 1.0394 1.4688
MAE 0.5998 0.8671 1.226

3.4. Comparison between the Experimentally Measured 28-Day Compressive Strength and the
Outcomes of the Developed Hybrid GA-SVR-CS28 Model

Comparison between the experimentally measured 28-day compressive strength and
the estimated values as obtained from each of the developed models are presented in
Figures 9–11. The actual values of the estimated compressive strength for each of the
developed 28-day compressive strength model are provided in Appendix B. In mixtures
M1 to M9, presented in Figure 9, the results of each of the model are very close to the
experimental values, except the estimates of the hybrid GA-SVR-CSD for mixture M6 to M9
that show slight deviation from the measured values. For mixtures M10 to M18, presented
in Figure 10, the results of each of the developed hybrid models agree excellently well with
the measured values, except the results of hybrid GA-SVR-CS28A for mixtures M24 to M26
as shown in Figure 11. In all, the results of each of the models are excellent, while some
models perform better than the others.
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3.5. Modeling the Influence of Constituents of AALNM on the Compressive Strength Using the
Developed Hybrid GA-SVR-CS28A Model

In order to further validate and justify the reported potentials and excellence of the
developed 28-day compressive strength model, the influence of binary binder ratio on the
28-day strength of AALNM was investigated at different molarity of sodium hydroxide
using the developed hybrid GA-SVR-CS28A. The results of investigation are presented
in Figure 12, keeping the curing temperature (T), sodium silicate to sodium hydroxide
(NS/NH) ratio, fine aggregate to binder ratio (FA/B), and alkaline to binder ratio (AK/B)
at 75 ◦C, 1, 2, and 0.5, respectively. 28-days compressive strength decreases in a parabolic
form characterized with minimum point as the ratio of binary binder increases for lower
sodium hydroxide molarity of 4, 6, and 8. A sudden rise in 28-day strength was observed
when the molarity of sodium hydroxide was 10M after which further increase in the
molarity decreased the strength. It should be noted that the developed hybrid GA-SVR-
CS28A model was only supplied with input descriptors while the model implements its
acquired and saved support vectors during the training phase of model development for
its estimation as presented in Figure 12. The result of similar investigation is revealed
in Figure 13 where the dependence of the 28-day strength on fine aggregate to binder
ratio at different sodium silicate to sodium hydroxide (NS/NH) ratio is conducted. The
maximum 28-day achievable strength increases with an increase in NS/NH ratio and
begins to decrease thereafter.
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4. Conclusions

The compressive strength of alkali-activated natural pozzolan/limestone powder
mortar (AALNM) is modelled through hybridization of support vector regression (SVR)
and genetic algorithm (GA) using binary binder variation, sodium hydroxide molarity
(NH), curing temperature, sodium silicate to sodium hydroxide (NS/NH), alkaline to
binder ratio [AK/B], and fine aggregate to binder ratio (FA/BD) as descriptive features. The
developed hybrid GA-SVR-CS1, GA-SVR-CS3, and GA-SVR-CS14 models are capable of
estimating one-day strength, three-day strength, seven-day strength, and 14-day strength of
AALNM, respectively, with accuracy of 96.64%, 90.84%, and 93.4% measured on the basis of
correlation coefficient between the estimated strength and experimentally measured values.
The developed 28-day strength models include the hybrid GA-SVR-CS28A model with six
descriptive features, GA-SVR-CS28B model that uses one-day strength, GA-SVR-CS28C
model that employs three-day strength, GA-SVR-CS28D model that implements seven-day
strength and GA-SVR-CS28E that estimates 28-day strength using 14-day strength as its
input. Each of the developed 28-day strength is characterized with excellent predictive and
generalization strength. The developed hybrid models were also employed to model the
behavior of AALNM and the obtained behavior agree perfectly well with the experimental
data. The hybrid models proposed and developed in this research are meritorious because
of their strengths, accuracy, and precision, coupled with their ability to save appreciable
experimental time and other valuable resources.
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Appendix A

Table A1. Experimental and actual values of estimated early-day compressive strength models.

Mix
Experimentally

Measured
CS 1 (MPa)

Hybrid
GA-SVR

CS1 (Mpa)

Experimentally
Measured
CS3 (MPa)

Hybrid
GA-SVR

CS3 (Mpa)

Experimentally
Measured

CS-14 (MPa)

Hybrid
GA-SVR-

CS14 (MPa)

M1 4.430 7.351 4.850 5.600 5.200 19.904

M2 18.620 15.926 18.680 16.770 21.850 19.639

M3 20.720 21.579 23.890 23.309 24.300 19.292

M4 20.900 19.498 23.950 22.378 25.180 18.870

M5 12.870 12.546 13.980 15.079 14.500 18.387

M6 5.330 6.980 5.570 7.253 5.800 17.857

M7 4.320 5.726 4.430 5.218 4.790 11.022

M8 4.730 6.098 4.850 5.600 5.030 5.935

M9 7.850 12.657 8.360 8.791 9.010 9.533

M10 20.150 18.821 24.310 23.287 24.730 24.361

M11 21.550 20.094 23.560 22.605 24.670 24.116

M12 6.850 8.026 7.730 13.080 10.550 16.778

M13 10.680 12.657 12.470 13.080 12.760 13.174

M14 17.060 16.012 19.340 13.080 20.360 16.778

M15 23.350 21.730 24.130 23.124 24.370 23.631

M16 9.580 10.530 14.430 14.350 13.170 18.625

M17 15.380 14.600 18.320 18.326 18.860 18.806

M18 17.060 16.012 19.130 21.657 19.040 18.854

M19 18.320 17.608 18.920 18.559 18.800 18.854

M20 10.900 14.628 12.340 13.097 13.410 18.806

M21 15.400 13.837 18.250 17.926 20.100 20.680

M22 17.600 15.790 20.640 20.383 22.400 20.121

M23 18.200 18.285 21.220 22.183 23.600 19.512

M24 19.500 18.285 21.320 20.779 22.800 18.216

M25 20.300 19.415 22.180 22.146 23.650 18.870

M26 21.500 19.415 23.600 22.473 22.840 18.870
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Appendix B

Table A2. Experimental and actual values of estimated 28-day compressive strength models.

Mix
Experimentally

Measured
CS 28 (MPa)

Hybrid
GA-SVR

CS-28A (MPa)

Hybrid
GA-SVR

CS-28B (MPa)

Hybrid
GA-SVR

CS-28C (MPa)

Hybrid
GA-SVR

CS-28D (MPa)

Hybrid
GA-SVR

CS-28E (MPa)

M1 8.920 14.300 8.363 8.577 14.540 8.871

M2 22.600 19.558 23.197 21.550 22.521 22.898

M3 25.000 22.197 22.931 23.374 23.464 24.961

M4 27.000 20.925 23.547 23.341 21.942 25.623

M5 15.700 16.191 17.124 15.981 16.163 16.068

M6 6.300 9.947 8.162 9.041 14.517 6.970

M7 6.000 6.746 8.540 8.631 14.666 7.040

M8 7.610 8.207 8.040 8.577 14.581 6.890

M9 11.620 11.860 14.673 12.284 15.252 11.983

M10 22.750 21.983 23.580 23.104 22.543 25.191

M11 22.690 21.924 23.648 23.533 22.615 24.321

M12 13.000 14.230 12.023 11.693 15.253 13.941

M13 14.130 14.230 15.040 14.663 15.505 15.190

M14 22.000 21.292 22.107 22.066 20.217 22.007

M15 25.920 24.855 24.499 23.231 22.946 25.333

M16 15.570 15.819 15.439 16.581 15.621 15.642

M17 18.880 20.433 20.756 21.316 18.193 19.757

M18 20.420 21.869 22.107 21.887 18.380 20.286

M19 16.170 17.439 23.011 21.722 18.134 16.082

M20 10.900 12.845 15.056 14.595 15.702 12.743

M21 23.500 23.453 20.776 21.272 19.805 22.719

M22 24.300 23.693 22.501 23.294 23.118 23.515

M23 25.000 22.197 22.931 23.374 23.464 24.961

M24 24.400 18.649 23.541 23.733 23.392 23.614

M25 23.650 21.063 23.573 23.884 23.447 25.492

M26 22.500 20.747 23.633 23.516 23.411 23.345
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