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ABSTRACT 

Zinc oxide is of significant importance for many industries due to its versatile properties, which have been 

enhanced with the production of this material in the nanoscale. Recent interest in the preparation of metal 

oxide nanoparticles using biological approaches has been reported in the literature. This technique known 

as “green synthesis” is an environmentally benign process than conventional methods like physical and 

chemical synthesis methods. Zinc oxide nanoparticles (ZnO-NPs) have been successfully obtained by green 

synthesis using different biological substrates like chitosan. Chitosan is biocompatible, biodegradable 

polymer having exclusive physical and chemical properties. Chitosan/metal oxide nanocomposite is a 

promising nanomaterial with enhanced properties for multiple functionalities. Therefore, this review 

discusses favorable approach in the formation of cross-linked Chitosan/ZnO nanocomposites attracting 

significant attention in various fields such biomedical due to their unique biodegradable, biocompatible, non-

toxic nature. The use of biological sources, fabrication of green synthesized ZnO nanoparticles and its 

applications is briefly discussed. Overall, this review is a comprehensive study for the synthesis of ZnO-NPs 

using biological sources counting on their features and applications. 
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1. Introduction 

The nanomaterials are the materials having nanoscale dimension with less than 100 nm size 

ones at least in one dimension [1, 2]. Nanoparticles (NPs) are wide class of materials that include 
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particulate substances, with enhanced catalytic reactivity, thermal conductivity, non-linear optical 

performance and chemical steadiness owing to its large surface area to volume ratio [1, 3]. 

Nanoparticles are of great scientific interest as they bridge the gap between bulk materials and atomic 

or molecular structure. With the development of nanomaterials, metal oxide nanoparticles show 

promising and far-ranging prospect for biomedical field. As an inorganic semiconductor, zinc oxide 

nanoparticles (ZnO-NPs) is an attractive candidate in biomedical applications due to its large binding 

energy, wide band gap, crystal structure (hexagonal wurtzite), biocompatibility, non-toxicity, and 

anticancer properties [4, 5]. The US Food and Drug Administration (21CFR182.8991) stated ZnO as a 

relatively safe and biocompatible material to use in treatments of cancer, diabetes, cardiovascular 

disease, microbial and fungal infection, ischemic, and kidney diseases [6-9]. Variety of condition and 

methods have led to fabricate ZnO nanostructures with varied morphologies include nanoparticles, 

nanowires, nanobelts, nanotubes, nanosheets, nanorods, nanoneedles, and nanowhiskers [10]. ZnO-

NPs can be fabricated through methods of solvothermal and hydrothermal [11], precipitation [12, 13],  

polymerization [14], laser ablation [15], sonochemical [16], and sol–gel [17, 18], microwave 

approaches [19]. The sol–gel procedure has gained much attention to synthesize ZnO-NPs with 

desirable shape modulation, physiochemical properties, and patterning of the nanostructures [18]. 

Green materials have been widely used for the production of various metal and metal oxide NPs. For 

example, Ailanthus altissima fruit extracts [20], phoenix dactylifera waste [21], plant Lawsonia inermis 

[22], Punica granatum [23], and Justicia procumbense leaf extract [24] have been recently used in the 

green synthesis of ZnO-NPs [25]. In addition, polysaccharide hydrocolloids include alginate, starches, 

pectin, pullulan, and gums are high molecular weight macromolecules, low-cost, and easily available 

to use in the green synthesis of ZnO-NPs [18, 26, 27]. Chitosan is the second most abundant 

polysaccharide on earth, with the production of over 100 million tons per year [28, 29]. It may be 

derived from chitin and is a cationic linear and natural amino-polysaccharide containing -(1-4)-linked 

d-glucosamine and N-acetyld-glucosamine in de-acetylated and acetylated form, respectively [30, 

31]. In medically-related applications, one of the popular biocompatible and water-rich coating agents 

on ZnO-NPs is chitosan [32]. Owing to the bio-compatible, eco-friendly, and low cost chitosan/ZnO 

composites should be studied for further applications. In this study, green synthesis of ZnO-NPs and 

potential preparation of cross-linked chitosan/ZnO nanocomposites will be also discussed with its 

production leading to enhanced features. 

2. Nanoparticles Synthesis Methods 

The two general approaches that are usually used for the fabrication of nanoparticles are “top-

down” and “bottom-up” approach according to the processes involved in creating nanoscale 

structures as shown in Figure 1. The “top-down” approach involves the thermal, chemical or 

mechanical disintegration of large particles of bulk metal into nanoparticles, while the more common 

“bottom-up” approach involves the generation of metal atoms from the reduction or decomposition 

of a precursor first followed by the agglomeration of the metal to produce the nanoparticles [33]. An 

advantage of top-down method is the possibility of mass production in the industrial environment. 

The main disadvantage of this approach includes long time-consuming processes, high cost of 

production, generation of a large size distribution of characteristics and imperfections or defects of 

the surface morphology generated [34, 35]. Such imperfections within the surface structure can have 
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a significant effect on surface chemistry and physical properties of the metallic nanoparticles because 

of high aspect ratio. The bottom-up approach creates nano-objects that combine the atomic scale 

materials (produced by the reduction of ions) and desired nanostructures. Essentially, this field of 

nanofabrication utilizes atoms and small molecules as the building of multi-level structures that 

perform different operations and amazingly promising. The bottom-up chemical methods can be 

done using electrochemical, templating, sol-gel process, chemical co-precipitation, nanospheric, 

chemical, photochemical, sonochemical, chemical vapour deposition and thermal techniques which 

often lead to the formation of hazardous by products [35, 36]. It can be said that bottom-up approach 

is commonly used for chemical and biological synthesis of nanoparticles. It is important to provide a 

comprehensive platform on these synthesis approaches that might be beneficial for researchers 

seeking development of new techniques, especially for the production of complex and 

multicomponent nanomaterials that could lead to advanced functional applications. Figure 2. 

illustrates the techniques of “bottom-up” and “top-down” approaches in the production of 

nanoparticles. 

 

 

Figure 1:  “Top-down” and “bottom-up” synthesis of nanofabrication [37]. 

 

3. Nanoparticles Synthesis Methods 

Nowadays, metal and metal oxide nanoparticles are intensely studied due to their unique 

optical, electrical and catalytic properties compared to bulk materials. Various techniques in the 

manufacturing of metal nanoparticles including chemical and physical means have been developed 

to produce metal nanoparticles. These include chemical reduction [38, 39], electrochemical reduction 

[40], photochemical reduction [41], heat evaporation [42] and others. However, in most of these 

techniques, the organic solvents, toxic reducing agents and stabilizers used have potential 

environmental and biological risks, and these techniques involve more than one reactive step [43].  

Biosynthesis of nanoparticles is an approach of synthesizing nanoparticles using 

microorganisms and plants having biomedical applications [1]. This approach is an environment-

friendly, cost- effective, biocompatible, safe, green approach. Green chemistry is a set of principles or 

practices that encourage the design of products and processes that reduce or eliminate the use and 

generation of hazardous substances [44]. Current green nanotechnology practices often involve the 
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use of natural sources, non-hazardous solvents, biodegradable and biocompatible materials and 

energy-efficient processes in the preparation of NPs [44]. Therefore, the biological approach for 

synthesis of nanoparticles becomes important to reduce or eliminate the use and generation of 

hazardous substances. A vast array of biological resources available in nature including plants and 

plant products, algae, fungi, yeast, bacteria, and viruses could all be employed for synthesis of 

nanoparticles [45]. They allow large scale production of ZnO NPs free of additional impurities [1, 35]. 

Even though a considerable amount of research has been reported in this field, the mechanism of 

formation of the nanoparticles obtained by green synthesis has still to be defined and understood due 

to the high complexity of the biological extracts [46]. Some of the examples of green synthesized 

nanomaterials are listed in Table 1. 

 

 

Figure 2: Various approached in the fabrication of nanoparticles using “Top-down” and Bottom-

up” techniques. 
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Table 1:     Green synthesized metal and metal oxide nanoparticles. 

Type of 

Nanomaterials 

Stabilizer Method Solvent Average 

size 

Reference 

 

 

Fe3O4 NPs Garcinia 

mangostana (GM) 

fruit peel extract 

Co-precipitation deionized 

water 

13.42±1.58 

nm 

[47] 

Ag-NPs  B biosynthesis distilled 

water 

32.7 ± 5.7 

nm 

[48] 

Ag-NPs Entada 

spiralis aqueous 

extract 

In-situ 

biosynthesis 

deionized 

water 

4.74 nm [49] 

Ag-NPs Green tea extract 

(Camellia sinensis) 

Biogenic route deionized 

water 

2.17 nm [50] 

Ag-NPs Berberis vulgaris 

leaf and root 

aqueous extract 

Facile green 

synthesis 

- 30 to 70 

nm 

[51] 

 

 

 

Cu-NPs Natural honey Facile green 

synthesis 

double 

distilled 

water 

3.81 ± 

1.135 nm 

[52] 

Cu-NPs Azadirachta indica 

plant extract 

Green synthesis de-ionized 

water 

28-30 nm [53] 

Cu-NPs Cassia 

auriculata leaf 

extract 

Green synthesis double-

distilled 

water 

23 nm [54] 

ZnO-NPs Passiflora 

caerulea fresh leaf 

extract  

Green synthesis - 30–50 nm [55] 

ZnO-NPs Pullulan Sol-gel deionized 

water 

28.86 to 

127.69 nm 

[56] 

Au-NPs Ziziphus zizyphus 

leaf extract 

Simpler and 

Greener method 

- 3 nm [57] 

Au-NPs Dalspinin Greener method deionized 

water 

10.5 nm [58] 

TiO2 NPs leaf extract 

of Trigonella 

foenum-graecum 

Biosynthesized 

methods 

- 20 to 

90 nm 

[59] 

TiO2 NPs leaf extract of 

Jatropha curcas L. 

Green synthesis double 

distilled 

water 

13 nm [60] 

TiO2 NPs Orange peel 

extract 

Green synthesis deionized 

water 

21.61nm 

and 17.30 

nm 

[61] 

ZrO2 NPs Acinetobacter sp. 

KCSI1 

Facile green 

synthesis 

deionized 

water 

44 ± 7 nm [62] 



Journal of Research in Nanoscience and Nanotechnology  

Volume 3, Issue 1 (2021) 1-25 

6 
 

MgFeCrO4-

NPs 

Tragacanth gum green sol-gel 

method 

deionized 

water 

17 nm [63] 

ZnS-NPs Stevia rebaudiana 

extract 

Green synthesis deionized 

water 

8.35 nm [64] 

PbSe-NPs Trichoderma sp. 

WL-Go 

Bio-synthesis - 10-30 nm [65] 

 

 

CdTe-NPs Thevetia peruviana 

leaf extract 

Bio-synthesis distilled 

water 

4 –6 nm [66] 

Pd Plant extract of 

Salvia hydrangea 

Green Synthesis - 9 nm [67] 

Pt Xanthium 

strumarium Leaf 

extract extract 

Green synthesis - 22 nm [68] 

 

4. Synthesis of Zinc Oxide (ZnO) Nanaoparticles 

Zinc oxide nanoparticles can be synthesized using a variety of methods such as chemical, 

physical and biological. Physical and chemical methods consist of precipitation, wet chemical, 

microemulsion, chemical reduction, sonochemical method, solvothermal method, pulsed laser 

deposition, spray pyrolysis, vapor transport and condensation, sputtering, sol-gel, gamma 

irradiation, microemulsion, microwave assisted irradiation, co-precipitation, hydrothermal 

technique [46, 69]. Yet, green synthesis of zinc oxide nanoparticles has many advantageous on 

chemical and physical methods.  

5. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles 

Scientists choose the green synthesis of nanoparticles using plants like fruits, roots, leaves, 

roots and stems and microorganisms like algae, bacteria, yeast and fungi which lead to various 

applications. Green synthesis of nanoparticles shows more catalytic activity and restricts the usage of 

hazardous and expensive chemicals. This green synthesis of zinc oxide nanoparticles has some 

benefits like safe, cost effective, environment benign, non-toxic, bio-compatible, and large-scale 

production is plausible [7, 70]. The development of this new approach and the significant interest in 

it is mainly related to the absence of toxic chemicals or high amount of energy applied to the biological 

synthesis, which makes the process more cost-effective and eco-friendly [46]. Moreover, the main 

advantage of this method is that the raw materials used are naturally rich in amino, carboxyl and 

hydroxyl groups that are often used a stabilizing or capping agents in aqueous medium, triggering 

the formations of nanoparticles [71]. Many available literatures indicate that the green synthesis of 

Zn-NPs is more environmentally friendly than the conventional physical or chemical methods used 

nowadays. Green synthesis of nanoparticles is a methodology for the formation of nanoparticles 

using plants and biopolymers which enhances its biomedical applications. Schematic illustration of 

green synthesis of ZnO-NPs is displaed in Figure 3. below. 
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Figure 3: Schematic illustration of green synthesis of ZnO [5]. 

 

5.1. Plant Mediated Synthesis of ZnO-NPs 

      Biological synthesis of nanoparticles employing plants and their extracts is cheap and eco-

friendly technique as compared to physical and chemical procedures that are expensive and 

hazardous to the environment. Plants are the most common biological substrate used for the green 

synthesis of nanoparticles with metallic ions [46]. Plant parts like leaf, stem, root, fruit, and seed have 

been used for ZnO NPs synthesis because of the exclusive phytochemicals that they produce [1, 25]. 

This may be related to the fact that vegetal substrates are accepted to be more cost-effective, simple 

and less harmful than microorganisms. Plants are most preferred source of NPs synthesis because 

they lead to large- scale production and production of stable, varied in shape and size NPs [1].  

Generally, green synthesis of ZnO-NPs using plants sources like leaves or flowers is washed 

thoroughly in running tap water and sterilized using double distilled water (some use Tween 20 to 

sterilize it). Then, the plant part is dried at room temperature followed by grinding into powder using 

a mortar and pestle. Next, the weighed powder and distilled water mixed to together under 

continuous magnetic stirring to prepare plant extract. The solution is filtered using whatman paper 

to obtain clear solution to be used as plant extract for further process. The specific volume of plant 

extract is mixed with zinc precursors like zinc nitrate, zinc acetate, zinc sulphate or zinc chloride 

solution. Later, the mixture is calcined at a higher temperature resulting in the formation of ZnO-

NPs. The obtained ZnO-NPs are visually confirmed by colour change and the UV-vis spectroscopy 

was used to further confirmation. Table 2. summarizes the different plant sources that are utilized for 

the production of ZnO-NPs. 
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Table 2:     Plant mediated synthesis of ZnO nanoparticles. 

Plant Source Description Precursor Size & Shape Reference 

 

Ferulago angulata 

(schlecht) boiss 

Plant Zinc Acetate 

Dihydrate 

32 and 36 nm 

with spheroid 

shape 

[72] 

Sageretia thea (Osbeck.) Leaf Zinc Acetate 

Dihydrate 

14 nm [73] 

Plectranthus amboinicus Leaf Zinc Nitrate 20–50 nm with 

spherical and 

hexagonal 

[74] 

 

Anisochilus carnosus Leaf Zinc Nitrate 30 and 40 nm 

with hexagonal 

wurtzite 

structure 

[75] 

Limonia acidissima L. Leaf Zinc Nitrate  12 nm and 53 nm 

with spherical 

shape 

[76] 

Syzygium cumini Leaf Zinc Acetate 71 nm with 

spherical-like 

shape 

[77] 

Punica 

granatum (pomegranate) 

 

Plant Zinc Nitrate 

Hexahydrate 

32.98 nm and 

81.84 nm with 

spherical and 

hexagonal shapes 

[78] 

Punica granatum 

(pomegranate) 

Plant Zinc Nitrate 

Hexahydrate 

40-70 nm with 

spherical shape 

[79] 

Salvia officials 

 

Leaf Zinc Nitrate  12 nm with 

hexagonal 

wurtzite 

structure 

[80] 

Carica papaya 

 

Leaf Zinc Acetate 

Dihydrate 

14 nm with  semi-

spherical 

[81] 

Arthrospira platensis Plant Zinc Acetate 

Dihydrate 

30.0 to 55.0 nm 

with spherical 

shape 

[82] 

Bergenia ciliata Rhizome Plant Zinc Acetate 

Dihydrate 

30 nm with 

flower shaped 

structure 

[83] 

Acalypha fruticosa Leaf Zinc Acetate 

Dihydrate 

50–60 nm with 

Spherical and 

hexagonal shape 

[84] 

Medicago sativa Leaf Zinc Nitrate 

Hexahydrate 

13.94 ± 1.08 nm 

with hexagonal 

structure 

[85] 
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Green tea Leaf Zinc Acetate 

Dihydrate 

30–40nm with 

irregular and 

uniform 

hexagonal plates 

[86] 

Garcinia gummi-gutta Seed Zinc Nitrate 

Hexahydrate 

10–20nm with 

hexagonal 

irregularity 

[87] 

Achyranthes aspera Leaf Zinc Nitrate 30–40 nm with 

flake like shape 

[88] 

Couroupita guianensis Leaf Zinc Nitrate 5–10 nm with 

spherical shape 

[88] 

Emblica officinalis Leaf Zinc Nitrate 30-40 nm with 

quasi–spherical 

shape 

[89] 

Azadirachtaindica Leaf Zinc Acetate 50 nm with 

spherical shape 

[89] 

Mentha spicata Leaf Zinc Acetate 11 to 88 nm with 

spherical shape 

[90] 

Lagerstroemia Speciosa Leaf Zinc Acetate 40 nm with 

hexagonal shape 

[91] 

Tecoma castanifolia Leaf Zinc Sulphate 70–75 nm with 

spherical shape 

[92] 

Swertia chirayita Leaf Zinc Nitrate 2 to 10 nm with 

spherical shape 

[93] 

Populus ciliata Leaf Zinc Nitrate 

Hexahydrate 

60-70 nm in form 

of spheres 

[94] 

 

5.2. Biopolymer Mediated Synthesis of ZnO-NPs 

      The use of natural polymers in the synthesis of nanomaterials have a low cost and eco-

friendly approach [5, 95]. Many natural polymers have been used in the synthesis of nanoparticles as 

a green stabilizer [96]. Cts is one of the promising natural biopolymer and has adapted with a suitable 

properties of biocompatibility, biodegradability, non-hazardous, odourless, metal ion adsorption. 

Chitosan's primary amine and hydroxyl groups have a very powerful affinity (like a chelating agent) 

to metal ion to decrease particle size and stop agglomeration [97]. Pullulan is also another biopolymer 

that is produced from starch by growing yeast like fungus Aureobasidium pullulans. The advantage 

of pullulan is it is water soluble. Pullulan is non-toxic, non-mutagenic, odourless, biocompatible and 

biodegradable [98]. Next, tragacanth gum (TG) is a natural, nontoxic and biocompatible polymer 

widely used as an emulsifier and thickener in the food and drug industries due to stability in a wide 

range of temperature and pH. There are studies applied the gum as an eco-friendly and cost effective 

polymer to synthesize zinc oxide nanoparticles. Another type of biopolymer is alginate, it is a 

naturally occurring poly-anionic polysaccharide derived and commercially extracted from brown 

marine algae (Phaeophyceae) [99]. As a low-cost, abundantly available, biocompatible and 

environmentally friendly biopolymer, it has been used as a green stabilizer as stated in numerous 
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studies. Last but not least, carrageenan is an eco-friendly polymer derived from a class of red 

seaweed. Carrageenan is known to have valuable biological functions, due to the superior gelling and 

high viscosity properties of the native carrageenan[100]. There are several biological properties of 

biopolymers such as antiviral activity, anticoagulant activity, antitumor activity, antioxidant activity, 

anti-inflammation and immunomodulatory activity that might bring more benefits in medical 

application [101]. Table 3. summarizes the various biopolymer sources that are utilized for the 

production of ZnO-NPs. 

Table 3: Biopolymer mediated synthesis of ZnO nanoparticles. 

Biopolymer Description Precursor Size & Shape Reference 

 

 

Carrageenan Red Seaweed Zinc Nitrate 

Hexahydrate 

49 nm with spherical 

shape 

[27] 

Carrageenan  Zinc Acetate   

Kappa 

Carrageenan 

Marine Red 

Algae 

Zinc Acetate 97.03 ± 9.05 nm with 

spherical and 

hexagonal shape 

[102] 

Starch Polysaccharides Zinc Acetate 

Dihydrate 

10 and 15 nm in 

spherical shape 

[103] 

Collagen Type 1 Collagen Zinc Acetate 

Dehydrate 

20 and 50 nm with 

hexagonal wurtzite 

structure 

[104] 

Pullulan Polysaccharide 

Fungus 

Zinc Nitrate 

Hexahydrate 

28.86 to 127.69 nm with 

hexagonal wurtzite 

structure 

[18] 

Agar Hydrophilic 

Polysaccharide 

Zinc Acetate 

Dehydrate 

20 nm in paddy shape [105] 

Sodium Alginate Linear 

Polysaccharide 

Zinc Nitrate 40 nm in spherical 

shape 

[106] 

Exopolysaccharides 

(EPS) 

Microbial 

Polysaccharides 

Zinc Acetate 10–100 nm in 

hexagonal shape 

[107] 

Chitosan Linear 

Polysaccharide 

Zinc 

Sulphate 

20 to 150 nm, rod 

shaped 

[108] 

Chitosan Linear 

Polysaccharide 

Zinc   Nitrate   

Hexahydrate 

50.6- 

61.7 nm with spherical 

shaped 

 

[109] 

Chitosan Linear 

Polysaccharide 

Zinc Nitrate 

Hexahydrate 

50 to 130 nm in 

spherical shape 

[110] 

Guar Gum Galactomannan 

Polysaccharide 

Zinc Acetate 35 nm in hexagonal 

shape 

[111] 

Xanthan Gum and 

Konjac Gum 

Polysaccharides Zinc Nitrate 

Hexahydrate 

20-40 nm  [112] 
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Gelatin Non-

Carbohydrate 

(Polysaccharide) 

Zinc Acetate   200 to 400 nm in 

irregular shape 

[113] 

Gelatin Non-

Carbohydrate 

(Polysaccharide) 

Zinc Nitrate 200 to 400 nm in 

elliptical shape 

[113] 

  

6. Nanocomposites 

There is a growing interest in the composites of polymers, semiconducting materials with 

inorganic or organic nanoparticles. Nanocomposite materials are hybrid materials of two or more 

materials with very dissimilar physical and chemical properties that remain separate and distinct on 

a macroscopic level and with one of the constituents having at least one dimension in between 1 and 

100 nm size range [114].  Nanocomposites are produced to enhance the efficiency of the main matrix 

material by improving its physical, chemical, and biological properties [115]. This enhancement in 

the physico-chemical and biological properties also widens up the application areas of the newly 

produced nanocomposites in comparison with singly applied nanomaterials [115]. There are two 

components of a nanocomposite material, one is the matrix or the bulk material and other one is the 

inorganic nanofiller. The catalytic, optical, mechanical, electrical, thermal, electrochemical properties 

of the nanocomposite will differ markedly from that of the component materials [116]. Also, 

inorganic-organic hybrid materials play a major part within the advancement of future oriented 

enhanced functional materials. Interestingly, nanocomposite materials offer the opportunity to 

incorporate in the same host matrix multiple functions deriving from distinct types of nanocatalysts 

such as semiconductor nanoparticles (NPs) (i.e. TiO2 or ZnO), metals, (i.e. plasmonic NPs), magnetic 

oxides, or carbon nanotubes and graphene [116]. The importance of nanocomposite materials is clear 

from the integrated development of nanomaterials with multifunctional properties of optical, 

catalytic, electrical, mechanical, electrochemical and thermal [117]. 

6. Cross-linked Chitosan Nanoparticles 

In the last decades, chitosan has become one of the most appealing polymers in the biomedical 

and pharmaceutical fields [118]. For pharmaceutical applications, physical cross-linking is more 

promising since the cross-linking is reversible and may largely avoid potential toxicity of the reagents 

[119]. Chitosan nanoparticles have many advantages, including the ability to cross biological barriers, 

stabilizing macromolecules from degradation in the biological media, and modulating their release 

rate [120]. Chitosan nanoparticles has been intensively investigated as the carrier of drug delivery 

system, and chitosan nanoparticles have the functions of sustained and controlled release, increasing 

drug absorption, increasing targeting of anti-cancer drugs, reducing side effects of drug and 

improving drug stability and so on [121]. Chitosan promotes cross-linkage with various cross-linking 

agents to prepare an effective network to entrap the drug molecules [31, 122]. Chitosan carriers have 

the advantage of slow/controlled drug release, which improve drug solubility and stability, increase 

efficiency, and decrease toxicity [122]. The small size of these carriers makes them capable of passing 

https://www.sciencedirect.com/topics/chemistry/nanocomposites
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cross-link
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/drug-solubility
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through biological barriers in vivo and delivering drugs to the lesion site to enhance applicability 

[122]. Thus, it has attracted much attention in the field of drug controlled release technology and 

targeted drug delivery here and abroad. Using different cross-linkers (glutaraldehyde, 

tripolyphosphate, glutaric acid, glyceraldehyde, formaldehyde, and genipin), chitosan 

micro/nanoparticles are prepared by various techniques [123]. Tripolyphosphate (TPP) is particularly 

attractive as ionic cross-linker, since it has the advantages of stable performance, simple process 

control and safety [121]. Within this frame, an important number of reports have addressed the 

capacity of chitosan, in solution or in the form of nanoparticles or microspheres, to facilitate the 

absorption of peptide/protein therapeutics by the mucosal routes [118]. Table 4. summarizes the list 

of produced cross-linked chitosan nanoparticles. 

Table 4: Synthesis of cross-linked chitosan nanoparticles. 

Nanoparticle Cross-linker Size & Shape Application Reference 

 

Chitosan TPP 321 nm, core-

shell structure 

Cytotoxicity [119] 

Chitosan Sodium TPP 88.92 nm 

amorphous 

Antibacterial [121] 

Chitosan Pentasodium 

Tripolyphosphate 

(TPP) 

- In vivo gene 

delivery 

[118] 

Chitosan TPP Mean diameter 

around 150 nm 

Pulmonary 

delivery 

[124] 

Chitosan TPP 331 nm Pickering 

emulsifiers 

[125] 

Chitosan Glutaraldehyde 167–190 nm Pulmonary drug 

delivery 

[123] 

Chitosan Glutaraldehyde 201-233 nm Brain targeting 

drug delivery 

[126] 

Chitosan TPP 200 nm Immunoadjuvant [127] 

Chitosan Genipin, TPP Diameter of 

~100–150 nm 

Antibacterial [128] 

Chitosan TPP <200 nm Immunotherapy [120] 

Chitosan TPP 100 nm Drug loading [129] 

Chitosan Sodium 

Tripolyphosphate 

172.6 nm to 

479.65 nm 

drug delivery [130] 

Chitosan 1-Ethyl-3-(3-

Dimethylaminopr

opyl) 

Carbodiimide 

Space (EDC) 

- Bonding quality of 

fiber posts in root 

canals 

[131] 
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Chitosan Sodium 

Tripolyphosphate 

(TPP) 

< 160 nm in 

spherical shape 

antifungal [132] 

Chitosan Sodiuum Citrate lower than 

5 nm 

Drug carrier [122] 

Chitosan Sodium 

Tripolyphosphate 

(TPP) 

159.2–220.7 nm Cancer treatment 

as a drug delivery 

[122] 

Chitosan Cinnamaldehyde 550.1 nm and 

531 nm 

Anticancer activity 

as drug delivery 

[133] 

Chitosan Cinnamaldehyde  80–150 nm Antibacterial 

activity 

[134] 

Chitosan Sodium 

Tripolyphosphate 

(TPP) 

172–217 nm antioxidant and ant

icancer activities 

[135] 

Chitosan Glutaraldehyde 0.87(±0.07) mm Au(III) adsorption [136] 

7. Cross-linked Chitosan/Metal Oxide Nanocomposites 

Surface modification of metal oxide nanoparticles or preparation of cross-linked polymer 

metal oxide nanocomposites are significant phenomena for the enhanced properties of 

nanocomposites that will lead to multiple functionalities. To improve these functionalities, physical 

and chemical crosslinking is applied for the design of efficient Cts-based biopharmaceuticals. Cross-

linked chitosan-based nanomaterials have also been produced using different type of organic and 

inorganic nanoparticles [137]. Consequently, chitosan has been modified using carbon nanotube, 

graphene, nanoclay, and metal nanoparticles [137]. These nanocomposites have several improved 

properties such as porosity, surface area, electrical conductivity, photoluminescence, tensile strength, 

morphology, and antibacterial and bio-properties [137]. Subsequently, these nanocomposite have 

been applied in several technical fields including sensors and devices, textiles, packaging, membrane 

technology, antimicrobial and biomedical materials [137]. Chitosan nanocomposites formed between 

chitosan and metal oxide via physical or chemical interaction and their applications in various areas 

such as medicinal, paints, and environmental fields are summarized in Table 5. 

Table 5:  Cross-linked chitosan/metal oxide nanocomposites and it applications. 

Nanocomposites Cross-linker Size & Shape Application Reference 

 

Cts/Fe2O3 Sodium 

tripolyphosphate 

(STPP) 

A diameter of 

about 3–4 mm with 

spherical shape 

Drug delivery [138] 

Cts/Fe2O3 STPP 3.9–4.3 nm Magnetic 

properties study 

[139] 

Cts/Fe3O4 Tripolyphosphate/Sul

phate 

250-900 nm  [140] 

https://www.sciencedirect.com/topics/chemistry/antioxidant-agent
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/antineoplastic-activity
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/antineoplastic-activity
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chitosan-

glyoxal/ZnO/Fe3O4 

Glyoxal Average pore size 

of 6-7 nm 

Adsorption of 

organic dye 

[141] 

CoFe2O4/Chitosan Glutaraldehyde mesoporosity 

range 2–50 nm 

Adsorption of 

indigotine blue 

dye 

[142] 

Cs/ZnO TPP size < 100 nm photocatalytic 

activity 

[143] 

Chitosan/CuO STPP 10–25 nm antibacterial and 

swelling 

[144] 

Chitosan/TiO2 Genipin Spherical shape 

with diameter of 

40-60 nm 

Antibacterial 

activity 

[145] 

n-TiO2-enabled 

chitosan 

Copper (CuTICB)  - photocatalytic 

activity 

[146] 

 

7. Conclusion 

Numerous studies report the possibility of obtaining ZnO-NPs through a green synthesis process 

using a variety of plants, and biopolymers. Green sources act as both stabilizing and reducing agent 

for the synthesis of shape and size controlled nanoparticles. Although the complexity of biological 

substrates still poses a challenge to evaluate the green synthesis of nanoparticles, further 

investigations on the mechanism of formation of the biological synthesis of ZnO-NPs are necessary 

to achieve a better understanding of the chemical processes and reactions that occur during the 

synthesis. It seems that with the designation of the mentioned mechanism, it will be possible to 

control and optimize the green synthesis process, which is essential for the large-scale production of 

ZnO-NPs. ZnO-NPs is also obtained great attention to biomedical researchers due to several factors, 

especially tunable physicochemical properties such as size, morphology, surface charge, etc., that 

could be helpful for their medicinal applications. The FDA considers ZnO as generally recognized as 

safe. However, this designation is mainly for bulk substances (micron to larger size). Therefore, 

despite having versatile biomedical applications of ZnO nanoparticles, researchers simultaneously 

have concern about their toxicity in living systems. Therefore, this review also highlights the 

favourable approach to enhance the biocompatibility of ZnO-NPs with chitosan using different cross-

linkers for multiple applications. 
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