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ABSTRACT

AN INTEGRAL EQUATION METHOD FOR CONFORMAL MAPPING

OF DOUBLY AND MULTIPLY CONNECTED REGION

VIA THE KERZMAN-STEIN AND NEUMANN KERNELS

(Keywords: Conformal mapping, Integral equations, Doubly connected

region, Multiply connected regions, Kerzman-Stein kernel, Neumann kernel,

Lavenberg-Marquardt algorithm, Cauchy’s integral formula.)

This research develops some integral equations involving the Kerzman-

Stein and the Neumann kernels for conformal mapping of multiply connected

regions onto an annulus with circular slits and onto a disk with circular slits.

The integral equations are constructed from a boundary relationship satisfied

by a function analytic on a multiply connected region. The boundary integral

equations involve the unknown parameter radii. For numerical experiments,

discretizing each of the integral equations leads to a system of non-linear

equations. Together with some normalizing conditions, a unique solution to

the system is then computed by means of an optimization method. Once

the boundary values of the mapping function are calculated, we can use the

Cauchy’s integral formula to determine the mapping function in the interior of

the region. Typical examples for some test regions show that numerical results

of high accuracy can be obtained for the conformal mapping problem when the

boundaries are sufficiently smooth.
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ABSTRAK

KAEDAH PERSAMAAN KAMIRAN UNTUK PEMETAAN KONFORMAL

BAGI RANTAU BERKAIT GANDA DUA DAN BERKAIT BERGANDA

MELALUI INTI KERZMAN-STEIN DAN NEUMANN

(Katakunci: Pemetaan konformal, Persamaan kamiran, Rantau berkait

ganda dua, Rantau berkait berganda, Inti Kerzman-Stein, Inti Neumann,

Algoritma Lavenberg-Marquardt, Formula kamiran Cauchy.)

Penyelidikan ini membina beberapa persamaan kamiran melibatkan inti

Kerzman-Stein dan Neumann untuk pemetaan konformal bagi rantau berkait

berganda ke atas anulus dengan belahan membulat dan ke atas cakera dengan

belahan membulat. Persamaan kamiran dibangunkan dari hubungan sempadan

yang ditepati oleh fungsi yang analisis dalam rantau berkait berganda. Persaman

kamiran sempadan ini melibatkan parameter jejari yang tidak diketahui.

Untuk kajian berangka, setiap persamaan kamiran berkenaan telah didiskretkan

menghasilkan suatu sistem persamaan tak linear. Bersama dengan beberapa

syarat kenormalan, satu penyelesaian unik kepada sistem berkenaan dikira

dengan kaedah pengoptimuman. Sesudah nilai sempadan bagi fungsi pemetaan

dikira, kita boleh menggunakan formula kamiran Cauchy untuk menentukan

fungsi pemetaan terhadap rantau pedalaman. Contoh tipikal untuk beberapa

rantau ujikaji telah menunjukkan keputusan berangka berketepatan tinggi boleh

diperoleh untuk masalah pemetaan konformal dengan sempadan licin.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Rationale

A conformal mapping, also called a conformal map, a conformal

transformation, angle-preserving transformation, or biholomorphic map is a

transformation w = f(z) that preserves local angle. An analytic function

is conformal at any point where it has nonzero derivatives. Conversely, any

conformal mapping of a complex variable which has continuous partial derivatives

is analytic.

Conformal mappings have been an important tool of science and

engineering since the development of complex analysis. A conformal mapping

uses functions of complex variables to transform a complicated boundary to a

simpler, more manageable configuration. In various applied problems, by means

of conformal maps, problems for certain physical regions are transplanted into

problems on some standardized model regions where they can be solved easily.

By transplanting back we obtain the solutions of the original problems in the

physical regions. This process is used, for example, for solving problems about

fluid flow, electrostatics, heat conduction, mechanics, aerodynamics and image
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processing. For these and other physical problems that use conformal mapping

techniques, see, for example, the books by Henrici (1974), Churchill and Brown

(1984), Schinzinger and Laura (1991) and Kythe (1998). For theoretical aspects

of conformal mappings, see, e.g., Andersen et al. (1962), Hille (1962), Ahlfors

(1979), Goluzin (1969), Nehari (1975), Henrici (1974), and Wen (1992).

A special class of conformal mappings that map any simply connected

region onto a unit disk is called Riemann map. The Riemann mapping function

is closely connected to the Szegö or the Bergman kernels. These kernels can be

computed as a solution of second kind integral equations. Hence to solve the

conformal mapping problem it is sufficient to compute the boundary values of

either the Szegö or the Bergman kernel.

An integral equation of the second kind that expressed the Szegö kernel

as the solution is first introduced by Kerzman and Trummer (1986) using

operator-theoretic approach. Henrici (1986) gave a markedly different derivation

of the Kerzman-Stein-Trummer integral equation based on a function-theoretic

approach. The discovery of the Kerzman-Stein-Trummer integral equation,

briefly KST integral equation, for computing the Szegö kernel later leads to the

formulation of an integral equation for the Bergman kernel as given in Murid

(1997) and Razali et al. (1997). Both integral equations can be used effectively

for numerical conformal mapping of simply connected regions.

The practical limitation of conformal mapping has always been that only

for certain special regions are exact conformal maps known and others have to

be computed numerically.

Henrici (1986), Kythe (1998), Murid (1997), Schinzinger and Laura (1991),

Trefethen (1986), Wegmann (2005) and Wen (1992) have surveyed some methods

for numerical approximation of conformal mapping function such as expansion

methods, iterative methods, osculation methods, integral equation method,
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Cauchy-Riemann equation methods and charge simulation methods. The integral

equation methods mostly deal with computing the boundary correspondence

function for solving numerical conformal mapping. This correspondence refer

to a particular parametric representation of the boundary (Razali et al., 1997;

Henrici, 1986; Kerzman and Trummer, 1986).

Conformal mapping of multiply connected regions suffer form severe

limitations compared to the simply connected region. There is no exact multiply

equivalent of the Riemann mapping theorem that holds in multiply connected

case. This implies that there is no guarantee that any two multiply connected

regions of the same connectivity are conformally equivalent to each other.

Nehari (1975, p. 335), Bergman (1970) and Cohn (1967) described the

five types of slit region as important canonical regions for conformal mapping of

multiply connected regions, namely

(i) the disk with concentric circular slits (Figure 1.1a),

(ii) an annulus with concentric circular slits (Figure 1.1b),

(iii) the circular slit region (Figure 1.1c),

(iv) the radial slit region (Figure 1.1d), and

(v) the parallel slit region (Figure 1.1e).

The former two are bounded slit regions and the latter three are unbounded

slit regions. It is known that any multiply connected region can be mapped

conformally onto these canonical regions. In general the radii of the circular slits

are unknown and have to be determined in the course of the numerical evaluation.

However, exact mapping functions are not known except for some special regions.

By using a boundary relationship satisfied by a function analytic in a

doubly connected region, Murid and Razali (1999) extended the construction to a

doubly connected region and obtained a boundary integral equation for conformal

mapping of doubly connected regions. Special realizations of this boundary

integral equation are the integral equations for conformal mapping of doubly
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Figure 1.1: Canonical regions.

connected regions via the Kerzman-Stein and the Neumann kernels. However,

the integral equations are not in the form of Fredholm integral equations and no

numerical experiments are reported in Murid and Razali (1999).

1.2 Scope and Objectives

This research focuses on the integral equation method for the numerical

computation of the conformal mapping of multiply connected regions. The

theoretical development of the integral equation is based on the approach give by

Murid and Razali (1999) for doubly connected regions.

In this project, some new boundary integral equations will be derived

for conformal mapping of multiply connected regions via the Kerzman-Stein

and the Neumann kernels. These integral equations will be applied to multiply

connected regions onto an annulus with concentric circular slits and the disk with
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concentric circular slits. For numerical experiments, these integral equations will

be discretized that might leads to a system of equations. Some normalizing

conditions might be needed to help achive unique solutions.

The research will also describe a numerical procedure based on Cauchy

integral formula for computing the mapping of interior points. The research will

present numerical examples to highlight the advantages of using the proposed

method.

The objectives of this research are:

1. To improve and extend the construction of integral equation related

to a boundary relationship satisfied by a function analytic in a doubly

connected region by Murid and Razali (1999) to multiply connected regions.

2. To derive new boundary integral equation for conformal mapping of

multiply connected regions onto a disk with concentric circular slits via the

Neumann kernel.

3. To derive new boundary integral equations for conformal mapping of

multiply connected regions onto an annulus with circular slits via the

Neumann kernel and the Kerzman-Stein kernel.

4. To use the integral equations to solve numerically the boundary values of

the conformal mapping of multiply connected regions onto an annulus with

concentric circular slits and the disk with concentric circular slits.

5. To use the Cauchy’s integral formula to determine the interior values of

mapping functions.
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6. To make numerical comparison of the proposed method with exact solution

or with some existing methods.

1.3 Project Outline

This project consists of seven chapters. The introductory Chapter 1

details some discussion on the introduction, background of the problem, problem

statement, objectives of research, scope of the study and chapter organization.

Chapter 2 gives an overview of methods for conformal mapping in

particular of multiply connected regions as well as the conformal mapping of

multiply connected regions. We discuss some theories of the Riemann mapping

function. We also present some exact conformal mapping of doubly connected

regions for certain special regions like annulus, frame of limacon, elliptic frame,

frame of Cassini’s oval and circular frame. Some numerical methods that have

been proposed in the literature for conformal mapping of multiply connected

regions are also presented in the Section 2.6 of Chapter 2. The boundary integral

equation for conformal mapping of doubly regions derived by Murid and Razali

(1999) is also presented.

In Chapter 3, we show how the integral equation for conformal mapping

of doubly connected regions via the Kerzman-Stein kernel derived by Murid and

Razali (1999) can be modified to a numerically tractable integral equation which

involves the unknown inner radius, µ. This integral equation is avoid any prior

knowledge on the zeroes and singularities of a mapping function. Numerical

experiments on some tests are also presented.

In Chapter 4, we construct new boundary integral equation related to a

boundary relationship satisfied by an analytic function on multiply connected



7

regions. The theoretical development is based on the boundary integral equation

for conformal mapping of doubly connected region derived by Murid and Razali

(1999) who have constructed an integral equation for the mapping of doubly

connected regions onto an annulus involving the Neumann kernel. By using the

boundary relationship satisfied by the mapping function, a related system of

integral equation is constructed, including the unknown parameter radii. We

apply the new boundary integral equation for conformal mapping of multiply

connected regions onto a disk with circular slits and onto an annulus with circular

slits via the Neumann and the Kerzman-Stein kernels. Special cases of this result

is the integral equation involving the Kerzman-Stein kernel related to conformal

mapping of doubly connected regions onto an annulus obtained in Chapter 3.

In Chapter 5, we apply the result of Chapter 4 to derive a new boundary

integral equation related to conformal mapping f(z) of multiply connected region

onto an annulus with circular slits. We discretized the integral equation and

imposed some normalizing conditions for the case doubly connected region via

the Kerzman-Stein and the Neumann kernels. We also extend the construction of

the boundary integral equation in Chapter 4 to a triply connected regions. The

boundary values of f(z) is completely determined from the boundary values of

f ′(z) through a boundary relationship. Discretization of the integral equation

leads to a system of non-linear equations. Together with some normalizing

conditions, we show how a unique solution to the system can be computed by

means of an optimization method. We report our numerical results and give

comparisons with existing method for some test regions.

In Chapter 6, we apply the result of Chapter 4 to derive a new boundary

integral equation related to conformal mapping f(z) of multiply connected region

onto a disk with circular slits. Discretization of the integral equation leads to a

system of non-linear equations. Together with some normalizing conditions, we

show how a unique solution to the system can be computed by means of an

optimization method. Once the boundary values of the mapping function f are
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known, we use the Cauchy’s integral formula to determine the interior values

of the mapping function. Numerical experiments on some test regions are also

reported.

Finally the concluding chapter, Chapter 7, contains a summary of all the

main results and several recommendations.



CHAPTER 2

OVERVIEW OF MAPPING OF MULTIPLY CONNECTED

REGIONS

2.1 Introduction

In this chapter, some fundamental ideas of conformal mapping, the

Riemann conformal mapping and the conformal mapping of multiply connected

regions are presented in Section 2.2, 2.3, and 2.4 respectively. In Section 2.5,

we present some exact conformal mappings of doubly connected regions for five

selected regions i.e. annulus, circular frame, elliptic frame, frame of limacon and

frame of Cassini’s oval. These regions are used as test regions in our numerical

experiments in Chapters 3, 5 and 6. Section 2.6 describes some several well-known

numerical methods for conformal mapping of multiply connected regions.

2.2 Ideas of Conformal Mapping

Conformal mapping is a valuable tool in many areas of physics and

engineering. The basic idea of such application is that an analytic mapping
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can be used to map a given region to a simpler region on which the problem can

be solved by inspection. By transforming back to the original region, the desired

answer is obtained.

The graph of a real-valued function of a real variable can often be displayed

on a two-dimensional coordinate diagram. However, for w = f(z), where z and w

are complex variables, a graphical representation of the function f would require

displaying a collection of four real numbers in a four-dimensional coordinate

diagram. A commonly used graphical representation of a complex-valued function

of a complex variable, consists in drawing the domain of definition (z-plane)

and the domain of values (w-plane) in separate complex planes. The function

w = f(z) is then regarded as a mapping of points in the z-plane onto points in

the w-plane. The point w is called the image of the point z. More information

is usually exhibited by sketching the images of specific families of curves in the

z-plane.

The angle of inclination of T (z0) with respect to the positive x-axis is

β = Arg z′(0). The image of C under the mapping w = f(z) is the curve C ′.

γ = Arg f ′(z0) + Arg z′(0) = α + β is the angle of inclination of T ∗(w0) with

respect to the positive u-axis. The effect of the transformation w = f(z) is the

rotation of the angle of inclination of the tangent vector T (z0) at point z0 through

the angle α = Argf ′(z0) to obtain the angle of inclination of the tangent vector

T ∗ at w0 = f(z0). This situation is illustrated in Figure 2.1.

A mapping w = f(z) is said to be angle preserving or conformal at z0, if

it preserves angles between oriented curve in magnitude as well as orientation.

The following theorem exhibits a close relationship between analytic function and

conformal mapping (Marsden, 1973, p. 266). Figure 2.2 shows a mapping by an

analytic function that is conformal.
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Figure 2.1: The tangents at the point z0 and w0, where f(z) is an analytic function

and f ′(z0) 6= 0.

Theorem 2.1

Let f(z) be an analytic function in the domain Ω, and let z0 be a point in Ω. If

f ′(z0) 6= 0, then f(z) is conformal at z0.

Figure 2.2: The analytic mapping w = f(z) is conformal at point z0 and w0,

where f ′(z0) 6= 0 and γ2 − γ1 = β2 − β1.

2.3 The Riemann Conformal Mapping

In various applied problem, problems for certain physical regions are

transplanted into problems on some standardized model regions where they can

be solved easily. In the application of conformal maps, the questions of existence

and uniqueness of conformal maps are important. These equations have long



12

been settled by Bernhard Riemann (1826-1866), to whom the theory of conformal

mapping owes its modern development. The fact that any two simply connected

regions in the complex plane are conformally equivalent is known as the Riemann

mapping theorem. A region Ω1 is said to be conformal equivalent to Ω2 if there

is analytic function R such that R is one-to-one and R(Ω1) = Ω2. If both Ω1 and

Ω2 can be mapped conformally onto the unit disk U , then Ω1 can be mapped

onto Ω2 by first mapping Ω1 onto unit disk U and then mapping the unit disk

onto Ω2.

The following is the famous theorem of Riemann that guarantees the

existence and uniqueness of a conformal map of any simply connected region

in the complex plane onto the unit disk (Henrici, 1986, p. 324).

Theorem 2.2

Let Ω be a simply connected region which is not the whole plane and let a in Ω.

Then there exists a unique one-to-one analytic function R : Ω → U = {w : |w| <
1} satisfying the conditions

R(a) = 0, R′(a) > 0 (2.1)

and assuming every value in the unit disk U exactly once.

The function R of the Riemann mapping theorem is called Riemann

mapping function. Suppose the Jordan curve Γ admits the counterclockwise

parametrization z(t), 0 ≤ t ≤ β. Thus as z(t) traverses along Γ, the image point

R(z(t)) describes the unit circle such that

R(z(t)) = eiθ(t). (2.2)
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1

)(t

R(z(t))z(t)

R

Figure 2.3: Boundary correspondence function θ(t).

The argument of R(z(t)) which is θ(t) is known as the boundary

correspondence function for the map R (See Figure 2.3).

2.4 Conformal Mapping of Multiply Connected Regions

A connected region which is not simply connected is called multiply

connected. Such region has holes in it. A region with one hole is called doubly

connected. A region with two holes is called triply connected and so on.

By the Riemann mapping theorem, all the simply connected regions with

more than one boundary point are conformally equivalent to each other. If we

try to introduce the concept of the standard region or canonical domain into

the theory of conformal mapping of multiply connected regions, we meet two

initial obstacles. The first and less serious is the fact that conformal mapping is

continuous and thus preserves the order of connectivity of a region. For example,

a conformal map of a doubly connected region is again a doubly connected region.

Therefore it becomes necessary to introduce distinct canonical regions for each

order of connectivity. The second difficulty is caused by the fact that no exact

equivalent of the Riemann mapping theorem holds in the multiply connected

case. It is not true that any two regions of the some order of connectivity

are conformally equivalent to each other. Not all regions of the same order of

connectivity are of the same conformal type.
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Let Ω denote a multiply connected region of connectivity M + 1, M =

0, 1, 2, ... such that a Jordan contour Γ0 contains M Jordan contours Γj, j =

1, 2, 3, ..., M , in its interior and the origin is an interior point of Γ1 (see Figure

2.4). The connectivity is taken as M + 1 simply because the value of M tells the

number of holes inside Γ0. The boundary of the multiply connected regions shall

be denoted by Γ = Γ0 ∪ Γ1 ∪ · · · ∪ ΓM .

M

0

21

Figure 2.4: An (M + 1) connected region.

The theorems related to the mapping of multiply connected region are

generally stated in the following form (Kythe, 1998, p. 360; Henrici, 1986, p.

451):

Theorem 2.3

Let Ω be a multiply connected region of connectivity (M + 1) inside the annulus

r < |z| < 1 where Γ0 = |z| = 1 and Γ1 = |z| = r are the two boundary components

of Ω. Then there exists a unique univalent analytic function w = f(z) in Ω such

that (i) it maps Ω conformally onto a region G in the w-plane formed by removing

n concentric circular arcs centered at w = 0 from the annulus ρ < |w| < 1, where

0 < ρ < 1, and (ii) it maps the unit circle Γ0 conformally onto the unit circle

|w| = 1, and the circle |w| < ρ, with f(1) = 1.

Theorem 2.4

Under the hypotheses there exist M real numbers µj, j = 1, 2, 3, ..., M , such that

0 < µM < µj < 1, j = 1, 2, ...,M−1, such that there is an analytic function f that
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maps Ω conformally onto the annulus µM < |w| < 1, cut along M − 1 mutually

disjoint slits Λj located on the circles |w| = µj, j = 1, 2, ..., M − 1. The mapping

function f can be extended analytically to the curves Γj bounding Ω. The images

of Γ0 and of ΓM are the circles Λ0 : |w| = 1 and ΛM : |w| = Γj respectively. The

image of the curves Γj are the slits Λj, j = 1, 2, ...,M − 1, traversed twice. The

function f is determined up to a factor of modulus 1.

The notations used and the assertions of Theorems 2.3 and 2.4 are

illustrated in Figure 2.5 for the case M = 3.

0

2

1

3

0

1

1

3
2

Figure 2.5: Mapping of a region of connectivity 4 onto an annulus with circular

slits.

Theorem 2.5

Let Ω be a multiply connected region of connectivity (M + 1) inside the unit disk

|z| < 1 where Γ = |z| = 1 is boundary component of Ω and 0 ∈ Ω. There exists

a unique, univalent analytic function w = f(z) in Ω such that (i) it maps Ω

conformally onto a region G inside the unit disk |w| < 1 which has M circular

cuts centered at w = 0 and (ii) it maps the unit circle |z| = 1 conformally onto

unit circle |w| = 1 with f(0) = 0 and f(1) = 1.

The assertions of Theorem 2.5 is illustrated in Figure 2.6 for the case

M = 3.
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3

2

0

1

1

2

0

31

Figure 2.6: Mapping of a region of connectivity 4 onto a disk with circular slits.

The boundary correspondence function, θ(t) set up for the simply

connected case can also be extended to the doubly connected regions. Let the

outer and inner boundary curves of a doubly connected region Ω be given in

parametric representation as follows (Henrici, 1986, p. 461) :

Γ0 : z = z0(t), 0 ≤ t ≤ β0,

Γ1 : z = z1(t), 0 ≤ t ≤ β1.

If f is a function which maps the region Ω bounded by Γ0 and Γ1 onto the

annulus A : µ < |w| < 1 so that the inner and the outer boundaries correspond

to each other, the boundary correspondence function θ0 (outer boundary) and θ1

(inner boundary) are continuous function satisfying

f(z0(t)) = eiθ0(t), 0 ≤ t ≤ β0, (2.3)

f(z1(t)) = µeiθ1(t), 0 ≤ t ≤ β1, (2.4)

where the expressions on the left are to be understood as the continuous

extensions of the mapping function to the boundary.
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2.5 Exact Mapping Function of Doubly Connected Regions for Some

Selected Regions

In this section, we present some of the exact conformal mapping f(z)

of doubly connected regions onto an annulus A = {z : r̃ < |w1| < 1}, where

0 < r̃ < 1. Later, the exact conformal mapping of annulus onto a unit disk with

a circular slit, denoted by h(z) is given. The composite g = h ◦ f then directly

maps the doubly connected regions onto a disk with a circular slit (see Figure

2.7). The special regions considered are annulus, frame of limacon, circular frame,

elliptic frame and frame of Cassini’s oval.

fhg

r~     1 µ                      1 

f h

Figure 2.7: The composite g = h ◦ f .

2.5.1 Annulus Onto A Disk With A Circular Slit

The exact conformal mapping of doubly connected regions onto a unit

disk with a slit is adapted from von Koppenfels and Stallmann, (1959, p 362).

Consider a frame of circular annulus A = {z : r̃ < |z| < 1}, r̃ > 0,

Γ0 : z(t) = cos t + i sin t,

Γ1 : z(t) = r̃(cos t + i sin t), 0 ≤ t ≤ 2π.

Under the mapping p(z) =
1

2π
log z, the annulus A is mapped onto the rectangle

R =
{

w1 = x + i y : 0 < x < π, 0 < y <
πτ

2

}
. (2.5)
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Suppose q = e−πτ and θ4(z; q) be the Jacobi Theta-functions with the nome q

(Abramowitz and Stegun, 1970; Whittaker and Watson, 1927). Then

d(z) = −e2σ

θ4

(
z +

iπτ

2
− iσ; q

)

θ4

(
z +

iπτ

2
+ iσ; q

) (2.6)

maps R conformally onto the unit disk with a circular slit at radius µ = e−2σ.

The composite function h = d ◦ p maps the annulus A to the unit disk with a

circular slit (see Figure 2.8).

pdh

r~     1 µ                      1 

p 2

0

d

Figure 2.8: The composite function g = h ◦ p.

By choosing real numbers τ > 0, σ > 0, σ < πτ/2, the function

h(z) = (d ◦ p)(z)

= d

[
1

2i
log z

]

= −e2σ

θ4

(
1

2i
log z +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log z +

iπτ

2
+ iσ; q

) (2.7)

with r̃ = q = e−πτ maps Γ0 onto the unit circle, and maps Γ1 onto a concentric

circular slit of radius µ = e−2σ.
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2.5.2 Circular Frame

Consider a pair of circles (see Saff and Snider, 2003, A-21)

Γ0 : z(t) = eit,

Γ1 : z(t) = c + ρeit, 0 ≤ t ≤ 2π

such that the domain bounded by Γ0 and Γ1 is the domain between a unit circle

and a circle center at c with radius ρ.

The mapping function given by

f(z) =
z − λ

λz − 1
(2.8)

with

λ =
2c

1 + (c2 − ρ2) +
√

(1− (c− ρ)2)(1− (c + ρ)2)
,

maps Γ0 onto the unit circle and Γ1 onto a circle of radius

r̃ =
2ρ

1− (c2 − ρ2) +
√

(1− (c− ρ)2)(1− (c + ρ)2)
.

From Section 2.5.1, we set r̃ = q = e−πτ . This implies τ =
ln(r̃)

−π
. We

choose a real number σ such that 0 < σ < πτ/2. Then the mapping function

given by

g(z) = e2σ

θ4

(
1

2i
log f(z) +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log f(z) +

iπτ

2
+ iσ; q

) , 0 < σ <
πτ

2
, (2.9)

maps Γ0 onto the unit circle and Γ1 onto a concentric circular slit of radius

µ = e−2σ.
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2.5.3 Frame of Limacon

Consider a pair of Limacon (see Kythe, 1998, p. 307)

Γ0 : z(t) = a0 cos t + b0 cos 2t + i(a0 sin t + b0 sin 2t), a0 > 0, b0 > 0,

Γ1 : z(t) = a1 cos t + b1 cos 2t + i(a1 sin t + b1 sin 2t), a1 > 0, b1 > 0,

where t : 0 ≤ t ≤ 2π. When b1/b0 = (a1/a0)
2, the mapping function given by

f(z) =

√
a2

0 + 4b0z − a0

2b0

, (2.10)

maps Γ0 onto the unit circle and Γ1 onto a circle of radius r̃ =
a1

a0

.

We set r̃ = q = e−πτ , this implies τ =
ln(r̃)

−π
. We choose a real number σ

satisfying 0 < σ < πτ/2. The mapping function given by

g(z) = −e2σ

θ4

(
1

2i
log f(z) +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log f(z) +

iπτ

2
+ iσ; q

) , 0 < σ <
πτ

2
, (2.11)

then maps Γ0 onto the unit circle and Γ1 onto a concentric circular slit of radius

µ = e−2σ.

2.5.4 Elliptic Frame

Elliptic frame is the domain bounded by two Jordan curves, Γ0 and Γ1

such that

Ω :
x2

a2
0

+
y2

b2
0

< 1,
x2

a2
1

+
y2

b2
1

> 1,

with the complex parametric of its boundary is given by (see Amano, 1994)

Γ0 : z(t) = a0 cos t + ib0 sin t, a0 > 0, b0 > 0,

Γ1 : z(t) = a1 cos t + ib1 sin t, a1 > 0, b1 > 0, 0 ≤ t ≤ 2π.
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When the two ellipses Γ0 and Γ1 are confocal such that a2
0 − b2

0 = a2
1 − b2

1,

the mapping given by

f(z) =
z +

√
z2 − (a2

0 − b2
0)

a0 + b0

, r̃ =
a1 + b1

a0 + b0

, (2.12)

maps Γ0 onto the unit circle and Γ1 onto a circle of radius r̃.

We set r̃ = q = e−πτ , this implies τ =
ln(r̃)

−π
. We choose a real number σ

satisfying 0 < σ < πτ/2. Then the mapping function given by equation (2.11),

maps Γ0 onto the unit circle and Γ1 onto a concentric circular slit of radius

µ = e−2σ.

2.5.5 Frame of Cassini’s Oval

If Ω is the region bounded by two Cassini’s oval, then the complex

parametric equation of its boundary is given by (see Amano, 1994)

Γ0 : z(t) =

√
b2
0 cos 2t +

√
a4

0 − b4
0 sin2 2t eit, a0 > 0, b0 > 0,

Γ1 : z(t) =

√
b2
1 cos 2t +

√
a4

1 − b4
1 sin2 2t eit, a1 > 0, b1 > 0, 0 ≤ t ≤ 2π,

such that

Ω : |z2 − b2
0| < a2

0, |z2 − b2
1| > a2

1.

The boundaries Γ0 and Γ1 are chosen such that (a4
0−b4

0)/b
2
0 = (a4

1−b4
1)/b

2
1.

The mapping given by

f(z) =
a0z√

b2
0z

2 + a4
0 − b4

0

, r̃ =
a0b1

a1b0

, (2.13)

then maps Γ0 onto the unit circle and Γ1 onto a circle of radius r̃.

We set r̃ = q = e−πτ , this implies τ = − ln(r̃)/π. We choose a real number

σ satisfying 0 < σ < πτ/2. Then the mapping function given by equation (2.11),

maps Γ0 onto the unit circle and Γ1 onto a concentric circular slit of radius

µ = e−2σ.
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2.6 Some Numerical Methods for Conformal Mapping of Multiply

Connected Regions

While conformal maps are indispensable tools in many problems of modern

technology, the practical use of conformal maps has always been limited by the

fact that exact conformal maps are only known for certain special regions. Since

conformal maps cannot be obtained in closed form, in general, we have to resort

to numerical approximations of such maps. With the aid of digital computers

which are getting faster and less costly nowadays, much research has been done

to discuss algorithms for the constructions of conformal maps.

Several methods have been proposed in the literature for the numerical

evaluation for conformal mapping of multiply connected regions. For some

perspectives, see Amano (1994), Crowdy and Marshall (2006), Ellacott (1979),

Henrici (1974), Hough and Papmichael (1983), Kokkinos et al. (1990), Mayo

(1986), Murid and Razali (1999), Nasser (2009), Papamicheal and Warby (1984),

Papamicheal and Kokkinos (1984), Okano et al. (2003), Reichel (1986), and

Symm (1969). Generally, these methods fall into three types, namely expansion

method, iterative method, and integral equation method. It is hard to find

methods that are at once fast, accurate, and reliable for conformal mapping

of the multiply connected case because it also involved the unknown conformal

modulus, µ−1 that has to be determined in the course of numerical solution.

The integral equation and iterative methods are more preferable and effective for

numerical conformal mapping.

The classical integral equation method of Symm (1969) is well-known for

computing the conformal maps of doubly connected regions by means of the

singular Fredholm integral equations of the first kind. Some Fredholm integral

equations of the second kind for conformal mapping of doubly connected regions

are of Warschawski and Gerschgorin as discussed in e.g., Henrici (1986). All

these integral equations are extensions of those maps for simply connected regions.
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However, there are two recently derived integral equations for conformal mapping

of simply connected regions which have no analogue for the doubly connected case.

These are the KST integral equation and the integral equation for the Bergman

kernel as derived in Kerzman and Trummer (1986), Henrici (1986) and Razali

et al. (1997). An effort for such extension has been given by Murid and Razali

(1999). These integral equations are based on a boundary relationship satisfied

by a function which is analytic in a doubly connected region. Next, we present

some well-known numerical methods that have been proposed in the literature

and regarded with great favor for solving numerical conformal mapping of doubly

and multiply connected regions.

2.6.1 Wegmann’s Iterative Method

An iterative method by Wegmann (2005) consider the conformal mapping

from an annulus, A = {w : µ < |w| < 1} onto a given doubly connected

region. The method is based on a certain Riemann-Hilbert problem. In view of

its quadratic convergence and its O(n log n) operations count per iteration step,

Wegmann’s method is almost certainly the fastest yet devised for this problem

(see, e.g., Trefethen (1986)).

The conformal mapping Φ : Aµ → Ø, the inverse of the mapping f ,

is uniquely determined up to a rotation of Aµ. To fix this ambiguity one can

impose the condition

Φ(1) = η1(0).

Conjugation on the annulus Aµ is effected by a (real) linear operator Kµ(φ1, φ2)

which is most easily defined in terms of the complex or real Fourier series

φj(t) =
∞∑

n=−∞
An,j eint = a0,j +

∞∑
n=1

(an,j cos nt + bn,j sin nt)
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of the function φj, j = 1, 2. Then

Kµ(φ1, φ2)(t) =
∞∑

n=−∞
Bn eint =

∞∑
n=1

(αn,j cos nt + βn,j sin nt)

with the coefficients

B0 = 0, Bn :=
2iAn,2 − (µ−n − µn)iAn,1

µ−n − µn
for n 6= 0

and

αn :=
2bn,2 − (µ−n − µn)bn,1

µ−n − µn
, βn :=

2an,2 − (µ−n − µn)an,1

µ−n − µn

for l = 1, 2, .... The analytic solution Φ can be constructed in terms of the

conjugation operator

Φ(eit) = φ1(t) + iKµ(φ1, φ2)(t) + iγ,

Φ(µeit) = φ2(t)− iKµ(φ2, φ1)(t) + iγ,

where γ is an arbitrary real constant.

2.6.2 Symm’s Integral Equations

Symm’s integral equation is one of the well-known integral equation

underlying numerical method for conformal mapping which lies on the potential

theoretic formulation.

The pair of integral equations of first kind which still contain the unknown

parameter µ
∫

Γ

log |z − ζ|σ(ζ)|dζ| = − log |z|, z ∈ Γ0,
∫

Γ

log |z − ζ|σ(ζ)|dζ| − log µ = − log |z|, z ∈ Γ1,

and the condition equation ∫

Γ1

σ(ζ)|dζ| = 0

are coupled integral equations for densities σ(ζ) and µ and known as Symm’s

integral equations for conformal mapping of doubly connected regions (Symm,

1969).



25

2.6.3 Charge Simulation Method

For doubly connected region onto an annulus, a pair of conjugate harmonic

functions are approximated by a linear combination of complex logarithmic

potentials without integration. The charges Qi, i = 1, ..., N , are determined

to satisfy the Dirichlet boundary conditions at N1 and N2 collocation points

arranged on the boundary components Γ0 and Γ1 respectively. That is to say,

they are solutions of a system of N simultaneously linear equations

N∑
i=1

Qi log |zj − ζi| =




0, zj ∈ Γ0, j = 1, . . . , N1,

1, zj ∈ Γ1, j = N1 + 1, . . . , N.

(See, e.g., Amano (1994)).

For cases involving mapping of bounded multiply connected regions

mapped onto a disk with concentric circular slits and an annulus with concentric

circular slits , together with some normalizing conditions, they obtain the charge

Q11, ..., QnNn , the approximation of the constants log µ1, ..., log µn, and the the

mapping functions

F (z) =
z − u

v − u
exp

n∑

l=1

Nl∑
j=1

Qlj log
z − ζlj

v − ζlj

.

(See, e.g., Okano et al. (2003)).

2.6.4 Mikhlin’s Integral Equation

Mayo (1986) solves the multiply connected mapping problems by means of

an integral equation of the second kind attributed to Mikhlin. Mikhlin assumes

that the solution of the modified Dirichlet problem can be rewritten as the integral

of a double layer density function, ν given as follows:

u(x, y) =
1

2πi

∫

Γ

ν(s)
∂ log r(x, y, x̃(s), ỹ(s))

∂ns

ds,
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where

r2 = (x− x̃(s))2 + (y − ỹ(s))2.

Mikhlin showed that the solution ν(t) can be determined from the integral

equation

ν(t) +
1

π

∫

Γ

ν(s)

[
∂ log r(s, t)

∂ns

− a(s, t)

]
ds = −2 log |t− α|,

where

a(s, t) =





1, if s, t lie on the same curve,

0, otherwise.

2.6.5 Fredholm Integral Equation

Reichel (1986) describes a fast iterative method for solving Fredholm

integral equations of the first kind whose kernels have a logarithmic principal part

for multiply connected regions. The method is a Fourier-Galerkin method, and

due to the singularity of the kernel, the linear system of simultaneous equations

is block diagonally dominant and can be solved rapidly by an iterative method.

The numerical method involves solving the the system of integral equations

qk +
n∑

j=1

∫

Γj

ln
1

|z − ζ|σj(ζ)|dζ| = fk(z), z ∈ Γk, 1 ≤ k ≤ n,

∫

Γk

σk(ζ)|dζ| = 0, 1 ≤ k ≤ n.

for qj ∈ R, σ∗j ∈ L2(Γj). The mapping function φ(z) is defined by

φ(z) := z exp

(
n∑

j=1

∫

Γj

ln
1

(z − ζ)
σ∗j (ζ)|dζ|

)
.
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2.6.6 Warschawski’s and Gershgorin’s Integral Equations

Henrici (1986) discussed two classical integral equations underlying

numerical conformal mapping for doubly connected regions which are

Warschawski’s and Gershgorin’s integral equations. These well-known integral

equations are stated in Theorem 2.6 and 2.7 (see, Henrici, 1986, p. 466-468).

Theorem 2.6 (Warschawski’s Integral Equations for Doubly Connected Regions)

If the boundary curves are such that z′′i is continuous and the boundary

correspondence functions θ′i have continuous derivatives, then the function θ′0 and

θ′1 satisfy the system of integral equations

θ′0(σ) +

∫ β0

0

v0,0(τ, σ)θ′0(τ) dτ −
∫ β1

0

v0,1(τ, σ)θ′1(τ) dτ = 0,

θ′1(σ) +

∫ β0

0

v1,0(τ, σ)θ′0(τ) dτ −
∫ β1

0

v1,1(τ, σ)θ′1(τ) dτ = 0,

where the kernels vi,j are the Neumann kernels defined as

v0,0(τ, σ) =
1

π
Im

z′0(σ)

z0(σ)− z0(τ)
,

v0,1(τ, σ) =
1

π
Im

z′0(σ)

z0(σ)− z1(τ)
,

v1,0(τ, σ) =
1

π
Im

z′1(σ)

z1(σ)− z0(τ)
,

v1,1(τ, σ) =
1

π
Im

z′1(σ)

z1(σ)− z1(τ)
.

Theorem 2.7 (Gershgorin’s Integral Equations for Doubly Connected Regions)

Under the hypothesis of Theorem 2.6, the functions θ′0 and θ′1 satisfy the system

of integral equations

θ0(σ)−
∫ β0

0

v0,0(σ, τ)θ0(τ) dτ +

∫ β1

0

v1,0(σ, τ)θ1(τ) dτ = 2 arg
z0(σ)− z1(0)

z0(σ)− z0(0)
,

θ1(σ)−
∫ β0

0

v0,1(σ, τ)θ0(τ) dτ +

∫ β1

0

v1,1(σ, τ)θ1(τ) dτ = 2 arg
z1(σ)− z1(0)

z1(σ)− z0(0)
.

Both, the Warschawski’s and Gershgorin’s integral equations do not

involve the modulus µ−1 of the given doubly connected regions. If the functions
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θ0, θ1 and/or their derivatives are known, the modulus may be determined from

the following formula:

Log
1

µ
= log

∣∣∣∣
z0(0)− z

z1(0)− z

∣∣∣∣−
1

2π

∫ β0

0

Re
z′0(τ)

z0(τ)− z
θ0(τ) dτ

+
1

2π

∫ β1

0

Re
z′1(τ)

z1(τ)− z
θ1(τ) dτ, (2.14)

which holds for arbitrary z interior to Γ1.

2.6.7 The Boundary Integral Equation via the Kerzman-Stein and

the Neumann Kernels

Based on a certain boundary relationship satisfied by a function which

is analytic in a region interior to a closed Jordan curve, Murid et al. (1999)

construct a boundary integral equation related to the analytic function. Special

realizations of this integral equation are the integral equations related to the

Szegö kernel, the Bergman kernel, and the Riemann map. The kernels arise in

the integral equations are the Kerzman-Stein kernel and the Neumann kernel.

Murid and Razali (1999) extend the similar construction to a doubly

connected region using a boundary relationship

D(z) = c(z)

[
T (z)Q(z)D(z)

P (z)

]−
, z ∈ Γ, (2.15)

where D(z) is analytic and single-valued with respect to z ∈ Ω and is continuous

on Ω ∪ Γ, while c, P, and Q are complex-valued functions defined on Γ with the

following properties:

(P1) c(z) =





c0, z ∈ Γ0,

c1, z ∈ Γ1,

(P2) P (z) is analytic and single-valued with respect to z ∈ Ω,
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(P3) P (z) is continuous on Ω ∪ Γ,

(P4) P (z) has a finite number of zeroes at a1, a2, . . . , an,

(P5) P (z) 6= 0, Q(z) 6= 0, z ∈ Γ.

The integral equation for D that is related to the boundary relationship (2.15) is

as shown below (Murid and Razali, 1999).

Theorem 2.8

Let u and v be any complex-valued functions that are defined on Γ. Then

1

2

[
v(z) +

u(z)

T (z)Q(z)

]
D(z)

+ PV
1

2πi

∫

Γ

[
u(z)

(w − z)Q(w)
− v(z)T (w)

w − z

]
D(w) |dw|

= −c(z)u(z)


 ∑

ajinsideΓ

Res
w=aj

D(w)

(w − z)P (w)



−

− u(z)(c0 − c1)

[
1

2πi

∫

Γ2

D(w)

(w − z)P (w)
dw

]−
, z ∈ Γ, (2.16)

where the minus sign in the superscript denotes complex conjugation and where

Γ2 =




−Γ1, if z ∈ Γ0,

Γ0, if z ∈ Γ1.

Special realization of this integral equation with the assignment

c(z) = i|f(z)|, P (z) = f(z), D(z) =
√

f ′(z), Q(z) = 1, (2.17)

and the choice of u(z) = T (z)Q(z) and v(z) = 1 is the integral equation with the

Kerzman-Stein kernel, i.e.,

√
f ′(z) +

∫

Γ

A(z, w)
√

f ′(w)|dw|

= −i(1− µ)T (z)

[
1

2πi

∫

Γ2

√
f ′(w)

(w − z)f(w)
dw

]−
, z ∈ Γ, (2.18)
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where

A(z, w) =





H(w, z)−H(z, w), if w, z ∈ Γ, w 6= z,

0, if w = z ∈ Γ,

and

H(w, z) =
1

2πi

T (z)

(z − w)
, w ∈ Ω ∪ Γ, z ∈ Γ, w 6= z.

The kernel A is known as the Kerzman-Stein kernel (Kerzman and Trummer,

1986) and is smooth and skew-Hermitian. The kernel H is usually referred to as

the Cauchy kernel.

Another realization of the boundary integral equation with the assignment

c(z) = −|f(z)|2, P (z) = f(z)2, D(z) = f ′(z), Q(z) = T (z), (2.19)

and the choice of u(z) = T (z)Q(z) and v(z) = 1 is given as

f ′(z)+

∫

Γ

M(z, w)f ′(w)|dw| = (1−µ2)T (z)2

[
1

2πi

∫

Γ2

f ′(w)

(w − z)f(w)
dw

]−
, z ∈ Γ,

(2.20)

where

M(z, w) =





T (w)

2πi

[
T (z)

2

w − z
− 1

w − z

]
, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]
|z′(t)|3 , if w = z ∈ Γ.

Multiplying both sides of (2.20) by T (z) and using the fact that

T (z)T (z) = |T (z)|2 = 1 gives

T (z)f ′(z) +

∫

Γ

N(z, w)T (w)f ′(w)|dw|

= (1− µ2)T (z)

[
1

2πi

∫

Γ2

f ′(w)

(w − z)f(w)2
dw

]−
, z ∈ Γ, (2.21)

where N is the Neumann kernel (see, e.g., Henrici, 1986, p. 282) defined by

N(z, w) =





1

π
Im

[
T (z)

z − w

]
, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]
|z′(t)|3 , if w = z ∈ Γ.

(2.22)
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However, the integral equations (2.18) and (2.21) are not in the form of

Fredholm integral equations and no numerical experiments have been reported in

Murid and Razali (1999). In Chapter 3, we shows the integral equations (2.18)

can be modified to a numerically tractable integral equation which involves the

unknown inner radius, µ.

In this project, we also derive some boundary integral equation satisfied by

a function analytic on a multiply connected regions subject to certain conditions.

This derivation improves the boundary integral equation (2.16) derived by Murid

and Razali (1999) which was limited to doubly connected regions. Furthermore

it leads to a much simpler derivation of a system of an integral equations

developed in Chapter 3. Another two special cases of this result are the integral

equation involving the Neumann kernel related to conformal mapping of multiply

connected regions onto an annulus with circular slits and onto a disk with circular

slits. All these are described in Chapter 4 and the numerical conformal mappings

are discussed in Chapters 5 and 6.



CHAPTER 3

AN INTEGRAL EQUATION METHOD FOR CONFORMAL

MAPPING OF DOUBLY CONNECTED REGIONS VIA THE

KERZMAN-STEIN KERNEL

3.1 Introduction

Let the outer and inner boundary curves be given in parametric

representation as follows:

Γ0 : z = z0(t), 0 ≤ t ≤ β0,

Γ1 : z = z1(t), 0 ≤ t ≤ β1.

If f is a function which maps the region Ω bounded by Γ0 and Γ1

onto the annulus A = {w : µ < |w| < 1} so that the inner and the outer

boundaries correspond to each other, the boundary correspondence function θ0

(outer boundary) and θ1 (inner boundary) are continuous functions satisfying

f(z0(t)) = eiθ0(t), 0 ≤ t ≤ β0, (3.1)

f(z1(t)) = µeiθ1(t), 0 ≤ t ≤ β1. (3.2)



33

If the unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)/|z′(t)|, then it can

be shown that

f(z0(t)) =
1

i
T (z0(t))

f ′(z0(t))

|f ′(z0(t))| , (3.3)

f(z1(t)) =
µ

i
T (z1(t))

f ′(z1(t))

|f ′(z1(t))| . (3.4)

The boundary relationships (3.3) and (3.4) can be combined as

f(z) =
|f(z)|

i
T (z)

f ′(z)

|f ′(z)| , z ∈ Γ, (3.5)

where Γ = Γ0 ∪ Γ1.

3.2 The Integral Equation for conformal Mapping of Doubly

Connected Regions via the Kerzman-Stein kernel

Consider again the boundary integral equation for conformal mapping of

doubly connected regions via Kerzman-Stein kernel as in (2.18), i.e.,

√
f ′(z) +

∫

Γ

A(z, w)
√

f ′(w) |dw|

= −i(1− µ)T (z)

[
1

2πi

∫

Γ2

√
f ′(w)

(w − z)f(w)
dw

]−
, z ∈ Γ, (3.6)

where the minus sign in the superscript denotes complex conjugation, and

A(z, w) =





H(w, z)−H(z, w), w, z ∈ Γ, w 6= z,

0, w = z ∈ Γ,
(3.7)

H(w, z) =
1

2πi

T (z)

(z − w)
, w ∈ Ω ∪ Γ, z ∈ Γ, w 6= z, (3.8)

and

Γ2 =




−Γ1, if z ∈ Γ0,

Γ0, if z ∈ Γ1.
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The single integral equation in (3.6) can be separated into a system of two

integral equations given by

√
f ′(z0) +

∫

Γ

A(z0, w)
√

f ′(w) |dw|

= − i(1−µ)T (z0)

[
1

2πi

∫

−Γ1

√
f ′(w)

(w − z0)f(w)
dw

]−
, z = z0 ∈ Γ0,(3.9)

√
f ′(z1) +

∫

Γ

A(z1, w)
√

f ′(w) |dw|

= − i(1−µ)T (z1)

[
1

2πi

∫

Γ0

√
f ′(w)

(w − z1)f(w)
dw

]−
, z = z1 ∈ Γ1.(3.10)

Taking the boundary relationship (3.5) into account, (3.9) and (3.10)

become

√
f ′(z0) +

∫

Γ

A(z0, w)
√

f ′(w) |dw|

= −i(1−µ)T (z0)


 1

2πi

∫

−Γ1

√
f ′(w)

(w − z0)
[

µ
i
T (w) f ′(w)

|f ′(w)|

]dw



−

, z = z0 ∈ Γ0,

(3.11)
√

f ′(z1) +

∫

Γ

A(z1, w)
√

f ′(w) |dw|

= −i(1−µ)T (z1)


 1

2πi

∫

Γ0

√
f ′(w)

(w − z1)
[

1
i
T (w) f ′(w)

|f ′(w)|

]dw



−

, z = z1 ∈ Γ1.

(3.12)

Using |f ′(w)| =
√

f ′(w)
√

f ′(w) and T (w) |dw| = dw, after some

mathematical manipulations, integral equations (3.11) and (3.12) become

√
f ′(z0) +

∫

Γ

A(z0, w)
√

f ′(w) |dw|

=
1

2πiµ
(1−µ)T (z0)

∫

−Γ1

√
f ′(w)

(w − z0)
|dw|, z = z0 ∈ Γ0, (3.13)

√
f ′(z1) +

∫

Γ

A(z1, w)
√

f ′(w) |dw|

=
1

2πi
(1−µ)T (z1)

∫

Γ0

√
f ′(w)

(w − z1)
|dw|, z = z1 ∈ Γ1. (3.14)
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Since Γ = Γ0 ∪ Γ1 , (3.13) and (3.14) may be written as

√
f ′(z0)+

∫

Γ0

A(z0, w)
√

f ′(w) |dw|−
∫

−Γ1

A(z0, w)
√

f ′(w) |dw|

=
1

2πiµ

∫

−Γ1

T (z0)

(w − z0)

√
f ′(w) |dw| − 1

2πi

∫

−Γ1

T (z0)

(w − z0)

√
f ′(w) |dw|, z = z0 ∈ Γ0,

√
f ′(z1)+

∫

Γ0

A(z1, w)
√

f ′(w) |dw|−
∫

−Γ1

A(z1, w)
√

f ′(w) |dw|

=
1

2πi

∫

Γ0

T (z1)

(w − z1)

√
f ′(w) |dw| − µ

2πi

∫

Γ0

T (z1)

(w − z1)

√
f ′(w) |dw|, z = z1 ∈ Γ1.

Applying definition (3.7) to A(z0, w) in
∫
−Γ1

of the first equation, and to A(z1, w)

in
∫

Γ0
of the second equation, we obtain

√
f ′(z0) +

∫

Γ0

A(z0, w)
√

f ′(w) |dw| −
∫

−Γ1

1

2πi

[
T (z0)

(w − z0)
− T (w)

(w − z0)

] √
f ′(w) |dw|

=
1

2πiµ

∫

−Γ1

T (z0)

(w − z0)

√
f ′(w) |dw| − 1

2πi

∫

−Γ1

T (z0)

(w − z0)

√
f ′(w) |dw|, z = z0 ∈ Γ0,

√
f ′(z1) +

∫

Γ0

1

2πi

[
T (z1)

(w − z1)
− T (w)

(w − z1)

] √
f ′(w) |dw| −

∫

−Γ1

A(z1, w)
√

f ′(w) |dw|

=
1

2πi

∫

Γ0

T (z1)

(w − z1)

√
f ′(w) |dw| − µ

2πi

∫

Γ0

T (z1)

(w − z1)

√
f ′(w) |dw|, z = z1 ∈ Γ1.

After some cancellations, we get

√
f ′(z0) +

∫

Γ0

A(z0, w)
√

f ′(w) |dw|+ 1

2πi

∫

−Γ1

T (w)

(w − z0)

√
f ′(w) |dw|

=
1

2πiµ

∫

−Γ1

T (z0)

(w − z0)

√
f ′(w) |dw|, z = z0 ∈ Γ0, (3.15)

√
f ′(z1) − 1

2πi

∫

Γ0

T (w)

(w − z1)

√
f ′(w) |dw| −

∫

−Γ1

A(z1, w)
√

f ′(w) |dw|

= − µ

2πi

∫

Γ0

T (z1)

(w − z1)

√
f ′(w) |dw|, z = z1 ∈ Γ1. (3.16)

Rearranging, (3.15) and (3.16) yield

√
f ′(z0)+

∫

Γ0

A(z0, w)
√

f ′(w) |dw|

−
∫

−Γ1

1

2πi

[
T (z0)

µ(w − z0)
− T (w)

(w − z0)

]√
f ′(w) |dw| = 0, z = z0 ∈ Γ0, (3.17)
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√
f ′(z1)+

∫

Γ0

1

2πi

[
µT (z1)

(w − z1)
− T (w)

(w − z1)

]√
f ′(w) |dw|

−
∫

−Γ1

A(z1, w)
√

f ′(w) |dw| = 0, z = z1 ∈ Γ1. (3.18)

Note that there are three unknown quantities in the integral equations

(3.17) and (3.18), namely,
√

f ′(z0) ,
√

f ′(z1) and µ. For numerical purposes,

a third equation involving µ is needed so that the system of integral equations

above can be solved simultaneously.

Consider equations (3.1) and (3.2) which on differentiation give

f ′(z0(t))z
′
0(t) = eiθ0(t)iθ′0(t),

f ′(z1(p))z′1(p) = µeiθ1(p)iθ′1(p).

Taking the modulus on both sides of the equations, we obtain

|f ′(z0(t))z
′
0(t)| = |eiθ0(t)iθ′0(t)| = |eiθ0(t)|i|θ′0(t)|, (3.19)

|f ′(z1(t))z
′
1(p)| = |µeiθ1(p)iθ′1(p)| = |µ||eiθ1(p)|i|θ′1(p)|. (3.20)

The absolute values of eiθ0(t) and eiθ1(p) are both equal to 1. The boundary

correspondence functions θ0(t) and θ1(p) are increasing monotone functions and

thus the derivative of them are never negative which imply |θ′0(t)| = θ′0(t) and

|θ′1(p)| = θ′1(p). The quantity µ is the inner radius of the annulus A = {w : µ <

|w| < 1} where 0 < µ < 1 . Thus (3.19) and (3.20) can now be written as

|f ′(z0(t))z
′
0(t)| = θ′0(t), (3.21)

|f ′(z1(t))z
′
1(p)| = µθ′1(p). (3.22)

Upon integrating (3.21) and (3.22) with respect to t and p respectively from 0 to

2π gives

∫ 2π

0

|f ′(z0(t))z
′
0(t)| dt =

∫ 2π

0

θ′0(t) dt = θ′0(t)|2π
0 = 2π, (3.23)

∫ 2π

0

|f ′(z1(p))z′1(p)| dp = µ

∫ 2π

0

θ′1(p) dp = µθ′1(p)|2π
0 = µ2π. (3.24)
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Subtracting (3.23) from (3.24) multiplied by µ, we obtain

µ

∫ 2π

0

|f ′(z0(t))z
′
0(t)| dt−

∫ 2π

0

|f ′(z1(p))z′1(p)| dp = 0. (3.25)

Observe that no knowledge of zeroes or singularities of f(z) is required in

constructing equations (3.17) and (3.18). Note also that the system of integral

equations in (3.17), (3.18) and (3.25) is homogeneous and does not have a

unique solution; if {µ,
√

f ′(z)} is the solution set, then so is {µ, κ
√

f ′(z)} for

arbitrary complex number κ. A technique for determining a unique solution will

be described in the next section.

Defining

g(z) =
√

f ′(z),

B(z, w) =
1

2πi

[
T (z)

µ(w − z)
− T (w)

(w − z)

]
,

D(z, w) =
1

2πi

[
µT (z)

(w − z)
− T (w)

(w − z)

]
,

(3.17), (3.18) and (3.25) can be written briefly as

g(z0)+

∫

Γ0

A(z0, w)g(w) |dw|−
∫

−Γ1

B(z0, w)g(w) |dw| = 0, z = z0 ∈ Γ0, (3.26)

g(z1)+

∫

Γ0

D(z1, w)g(w) |dw|−
∫

−Γ1

A(z1, w)g(w) |dw| = 0, z = z1 ∈ Γ1, (3.27)

µ

∫ 2π

0

|g(z0(t))
2z′0(t)| dt−

∫ 2π

0

|g(z1(p))2z′1(p)| dp = 0. (3.28)
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3.3 Numerical Implementation

Using parametric representation z0(t) of Γ0 for t : 0 ≤ t ≤ β0 and z1(p) of

Γ1 for p : 0 ≤ p ≤ β1, (3.26) and (3.27) become

g(z0(t)) +

∫ β0

0

A(z0(t), z0(s))g(z0(s))|z′0(s)| ds

−
∫ β1

0

B(z0(t), z1(q))g(z1(q))|z′1(q)| dq = 0, z0(t) ∈ Γ0, (3.29)

g(z1(p)) +

∫ β0

0

D(z1(p), z0(s))g(z0(s))|z′0(s)| ds

−
∫ β1

0

A(z1(p), z1(q))g(z1(q))|z′1(q)| dq = 0, z1(p) ∈ Γ1. (3.30)

Multiply (3.29) and (3.30) respectively by |z′0(t)|1/2 and |z′1(p)|1/2 gives

|z′0(t)|1/2g(z0(t)) +

∫ β0

0

|z′0(t)|1/2|z′0(s)|1/2A(z0(t), z0(s))g(z0(s))|z′0(s)|1/2 ds

−
∫ β1

0

|z′0(t)|1/2|z′1(q)|1/2B(z0(t), z1(q))g(z1(q))|z′1(q)|1/2 dq = 0, z0(t) ∈ Γ0,

(3.31)

|z′1(p)|1/2g(z1(p)) +

∫ β0

0

|z′1(p)|1/2|z′0(s)|1/2D(z1(p), z0(s))g(z0(s))|z′0(s)|1/2 ds

−
∫ β1

0

|z′1(p)|1/2|z′1(q)|1/2A(z1(p), z1(q))g(z1(q))|z′1(q)|1/2 dq = 0, z1(p) ∈ Γ1.

(3.32)

Defining

φ0(t) = |z′0(t)|1/2g(z0(t)),

φ1(p) = |z′1(p)|1/2g(z1(p)),

K00(t, s) = |z′0(t)|1/2|z′0(s)|1/2A(z0(t), z0(s)),

K01(t, q) = |z′0(t)|1/2|z′1(q)|1/2B(z0((t), z1(q)),

K10(p, s) = |z′1(p)|1/2|z′0(s)|1/2D(z1(p), z0(s)),

K11(p, q) = |z′1(p)|1/2|z′1(q)|1/2A(z1(p), z1(q)),

and so (3.31) and (3.32) become

φ0(t) +

∫ β0

0

K00(t, s) φ0(s) ds−
∫ β1

0

K01(t, q) φ1(q) dq = 0, z0(t) ∈ Γ0, (3.33)
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φ1(p)+

∫ β0

0

K10(p, s) φ0(s) ds−
∫ β1

0

K11(p, q) φ1(q) dq = 0, z1(p) ∈ Γ1. (3.34)

Note that the kernel K00(t, s) and K11(p, q) preserve the skew-Hermitian

properties. Applying the same procedure to the third equation (3.28), we get

µ

∫ 2π

0

|φ0(t)| 2 dt−
∫ 2π

0

|φ1(p)| 2 dp = 0. (3.35)

which is the third equation involving µ that can be solved simultaneously with

integral equations (3.33) and (3.34).

Choosing n equidistant collocation points ti = (i − 1)β0/n, 1 ≤ i ≤ n

and m equidistant collocation points pı = (ı −1)β1/m , 1 ≤ ı ≤ m and applying

the trapezoidal rule for Nyström’s method to discretize (3.33), (3.34) and (3.35),

we obtain

φ0(ti) +
β0

n

n∑
j=1

K00(ti, tj) φ0(tj)− β1

m

m∑
=1

K01(ti, p) φ1(p) = 0, (3.36)

φ1(pı) +
β0

n

n∑
j=1

K10(pı, tj) φ0(tj) − β1

m

m∑
=1

K11(pı, p)φ1(p) = 0, (3.37)

µ
β0

n

n∑
i=1

|φ0(ti)|2 − β1

m

m∑
ı=1

|φ1(pı)|2 = 0. (3.38)

Note that in the third equation (3.38),

|φ0| =
√

(Re φ0)2 + (Im φ0)2,

|φ1| =
√

(Re φ1)2 + (Im φ1)2.

Equations (3.36), (3.37) and (3.38) lead to a system of (n + m + 1) non-

linear complex equations in n unknowns φ0(ti), m unknowns φ1(pı) and µ. By

defining the matrices

Bij =
β0

n
K00(ti, tj),

Ciı =
β1

m
K01(ti, p),

Eıj =
β0

n
K10(pı, tj),

Dıı =
β1

m
K11(pı, p),
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x0i = φ0(ti),

x1ı = φ1(pı),

the system of equations in (3.36) and (3.37) can be written as n + m by n + m

system

[Inn + Bnn] x0n − Cnmx1m = 00n, (3.39)

Emnx0n + [ Imm −Dmm] x1m = 01m. (3.40)

In addition, equation (3.38) becomes

µ
β0

n

n∑
i=1

((Re x
0i
)2 + (Im x

0i
)2)− β1

m

m∑
ı=1

((Re x1ı)
2 + (Im x1ı)

2) = 0. (3.41)

The result in matrix form for system of equations (3.39) and (3.40) is




Inn + Bnn
... −Cnm

· · · · · · · · ·
Emn

... Imm −Dmm







x0n

· · ·
x1m


 =




00n

· · ·
01m


 .

Defining

A =




Inn + Bnn
... −Cnm

· · · · · · · · ·
Emn

... Imm −Dmm


 and x=




x0n

· · ·
x1m


 ,

the previous (n+m)× (n+m) complex system can be written briefly as Ax = 0.

Separating A and x in terms of the real and imaginary parts, the system can be

written as

Re A Re x−Im A Im x+i (Re A Im x+Im A Re x) =0 + 0i.

Thus, the single (n + m)× (n + m) complex linear system above is equivalent to

the 2(n + m) × 2(n + m) real system involving the Re and Im of the unknown

functions, i.e.,



ReA
... −ImA

· · · · · · · · ·
ImA

... ReA







Rex

· · ·
Imx


 =




0

· · ·
0


 . (3.42)
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Therefore, the linear system above can be solved simultaneously with the

non-linear equation (3.41) which also involves the Re and Im parts of the unknown

functions. Since the system of integral equations (3.17), (3.18) and (3.25) has no

unique solution, the system of equations (3.42) and (3.41) also in general has no

unique solution. For uniqueness, we turn to the conditions f ′(a) > 0 or f ′(z∗) = 1.

Since we are dealing with boundary values, the condition f ′(z∗) = 1 looks

more appropriate for our numerical purpose. However, it leads to a difficulty as

discussed next. We first assume that z0(t1) = z0(0) is to be mapped onto 1 under

the mapping function f . For the test regions that we have chosen in Section 2.5,

the unit tangent vector T (z0(t1)) is equal to i. For z = z0(t1) , the boundary

relationship (3.5) yields

1 =
f ′(z0(t1))

|f ′(z0(t1))| ,

or

f ′(z0(t1)) = |f ′(z0(t1))|. (3.43)

Making use of |f ′(z0(t))z
′
0(t)| = θ′0(t) and (3.43) give

Rex01 + iImx01 = φ0(t1) =
√

f ′(z0(t1))|z′0(t1)| =
√

θ′0(t1), (3.44)

which yields immediately the conditions




Rex01 =
√

θ′0(t1),

Imx01 = 0.
(3.45)

But θ′0(t1) is unknown in advance. By knowing only the imaginary part of x01

without its real part will not yield a unique solution of equations (3.42) and (3.41).

A different strategy for getting the required uniqueness condition is described

next.

As is well known that the mapping function, f exists up to a rotation of

the annulus, that is up to a factor of modulus 1. For a given f , suppose f is

made unique by prescribing f(z0(0)) = 1, then, the function, F such that

F (z) = eiαf(z), (3.46)
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for arbitrary α ∈ <, also maps a doubly connected region onto an annulus.

Differentiating (3.46) gives

F ′(z) = eiαf ′(z) or
√

F ′(z) =
√

eiαf ′(z). (3.47)

Note that if {µ,
√

f ′(z)} is a solution set of (3.17), and (3.18), then so is

{µ, κ
√

F ′(z)} = {µ, κ
√

eiαf ′(z)} where κ is any complex number, C.

Suppose

F ∗(z) = reiαf(z), r, α ∈ <. (3.48)

is a mapping function that maps a doubly connected region onto an annulus

A∗ = {w : rµ < |w| < r}. Thus Arg(F ∗(z)). Thus Arg(f(z)) differ by α.

Differentiating (3.48), gives

F ∗′(z) = reiαf ′(z) or
√

F ∗′(z) =
√

reiαf ′(z). (3.49)

Since
√

r ∈ < ⊆ C, then {µ,
√

F ∗′(z)} is also a solution set of our integral

equations (3.17) and (3.18). Note that F ∗′ also satisfies (3.25).

The boundary relationship (3.5) implies

eiαf(z) =
|eiαf(z)|

i
T (z)

reiαf ′(z)

|reiαf ′(z)| , z ∈ Γ. (3.50)

Since eiαf(z) = F (z) and reiαf(z) = F ∗(z), (3.50) can also be written as

F (z) =
|F (z)|

i
T (z)

F ∗′(z)

|F ∗′(z)| , z ∈ Γ, (3.51)

where |F (z)| is either 1 or µ. The idea now is to solve for the unique solution
√

F ∗′(z) from the system of integral equations (3.17), (3.18) and (3.25) with a

prescribing value of F ∗′(z0(0)). If F ∗′(z0(0)) = B∗, then

φ0(t1) = Re x01 + iIm x01 =
√

F ∗′(z0(t1))|z′0(t1)| =
√

B∗ |z′0(t1)|.
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or 



Re x01 = Re
√

B∗ |z′0(t1)|,
Im x01 = Im

√
B∗ |z′0(t1)|.

(3.52)

The boundary values of F (z) are then computed according to equation (3.51).

By means of equation (3.46), we then have

f(z) = e−iαF (z), z ∈ Γ.

It remains to determine α. Observe that

F ∗(z0(t)) = reiαf(z0(t)) = reiαeiθ0(t). (3.53)

Differentiating (3.53), we obtain

F ∗′(z0(t))z
′
0(t) = reiαiθ′0(t)e

iθ0(t).

Substituting t1 = 0, gives

F ∗′(z0(0))z′0(0) = reiαiθ′0(0).

Since F ∗′(z0(0)) = B∗, α is then calculated by the formula

α = Arg[−iz′0(0)B∗]. (3.54)

The system of equations (3.42), (3.41) and (3.52) is an over-determined

system of non-linear equations involving 2(n + m) + 3 equations in 2(n + m) + 1

unknowns. Method for solving system having unequal number of equations and

unknowns are best dealt with as problems in optimization (Woodford, 1992, p.

146). The solution of this system of equations will coincide with the minimizer of

a function which is produced by taking the sum of squares of the left-hand sides

of the over-determined system of the non-linear equations (the right-hand sides

of the equations being zero). We use Gauss-Newton algorithm to solve this non-

linear least square problem which is a modification of Newton’s method. Some

discussion on this method can be found in, see e.g., Antia (1991, pp. 271-345),

Murray (1972, pp. 29-55) and Wolfe (1978, pp. 218-247).
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Our non-linear least squares problem consists in finding the vector p for

which the function S : R2(n+m)+3 → R1 defined by the sum

S(p) = fT f =

2(n+m)+3∑
i=1

(fi(p))2

is minimal. Here, p stands for the (2n+2m+1)-vector (Rex01, Rex02, ..., Rex0n,

Rex11, Rex12, ..., Rex1m, Imx01, Imx02, ..., Imx0n, Imx11, Imx12, ..., Imx1m, µ),

and f = (f1, f2, ..., f2n+2m+3).

The Gauss-Newton algorithm is an iterative procedure and we have to

provide an initial guess for the vector p , denoted as p0.This initial approximation,

which, if at all possible, should be a well-informed guess and generate a sequence

of approximations p1,p2,p3, ... based on the formula

pk+1 = pk − ((Jf (p
k))TJf (p

k))−1(Jf (p
k))Tf(pk), (3.55)

where Jf (p) denotes the Jacobian of f at p (note that Jf (p) is not square but

(2n + 2m + 3)× (2n + 2m + 1) matrix). It is reasonable to use the convergence

criterion

||p(k+1) − p(k)|| ≤ ε, and |S(k+1) − S(k)| ≤ ε,

where ε is predefined tolerances expressing the desired level of accuracy which

has been chosen as 1× 10−13 and || || is the vector norm.

The numerical implementations on some test regions show that the Gauss-

Newton method is successful for all test regions except for the frame of Cassini’s

oval. This problem occurs since our initial estimation is quite far off the final

minimum. The strategy for getting the initial estimation is based on (3.1) and

(3.2) where upon differentiating and squaring the two equations, we obtain

φ0(t) =
√

f ′(z0(t))z′0(t) =
√

iθ′0(t)eiθ0(t),

φ1(t) =
√

f ′(z1(p))z′1(p) =
√

µiθ′1(p)eiθ1(p).

The boundary correspondence functions θ0(t) and θ1(p) are initially

approximated by θ0(t) ≈ t and θ1(p) ≈ p respectively which implies θ′0(t) ≈
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θ′1(p) ≈ 1. The inner radius , µ is initially approximated by µ ≈ 0.5 for all

regions, except for circular frame which is approximated by ρ. These initial

guesses are applied for the lowest number of n and m of our experiments. In all

our numerical experiments, we have chosen the number of collocation points on

Γ0 and Γ1 being equal, i.e., n = m. The information from the solution of lower

n is then exploited to calculate the starting vector p0 related to 2n number of

collocation points.

It has been discussed in the literature (see, e.g., Wolfe (1978, pp. 218-247),

Fletcher (1986)) that the Gauss-Newton method is too naive for the solution

of the least squares problems. Most of the effective methods for solving the

least squares problem which are currently in use are, however, modifications of

the Gauss-Newton method. As a general rule, if one faces with a convergence

problem with the Gauss-Newton algorithm, then it is recommended to use

the one of the modification of the Gauss-Newton named Lavenberg-Marquardt

with the Fletcher’s algorithm (see, e.g., Wolfe (1978, pp. 233-246)). This

method is more robust than the Gauss-Newton algorithm and is reasonably

efficient and reliable. The Lavenberg-Marquardt algorithm combines the Gauss-

Newton method and steepest descent method. Whereas Gauss-Newton method

converges quadratically in a neighborhood of the root, the steepest descent

method converges only linearly. However, the steepest descent method converges

to one of the local minima starting from almost arbitrary starting values while

the Gauss-Newton method requires a good initial approximation.

The key to the Lavenberg-Marquardt algorithm is to replace (3.55) by

pk+1 = pk −H(pk)f(pk), λk ≥ 0, (3.56)

where H(pk) = ((Jf (p
k))TJf (p

k) + λk)−1(Jf (p
k))T.

For λk = 0, it yields the Gauss-Newton method, whereas as λk increases,

the direction specified by H(pk) tends to that of the steepest descent method.
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Thus, in this algorithm, we start with a large value of λk and go on reducing it as

the solution is approached, so as to switch from the method of steepest descent

to the Newton’s method. This Lavenberg-Marquardt with Fletcher’s algorithm

is applied in our numerical implementation. The difference between the methods

of original Lavenberg-Marquardt algorithm and with Fletcher’s algorithm lies in

the technique used to determined suitable values for the λk.

By means of (3.46), the boundary correspondence function θ(t) is

computed by

θ(t) = Arg(e−iαF (z(t))) = −α + ArgF (z(t)).

Applying (3.51), we have

θ(t) = −α + Arg[−iz′(t)F ∗′(z(t))].

Having computed the values of φ0(ti) = Rex0i + iImx0i =
√

F ∗′(z0(ti))|z0
′(ti)|,

and φ1(pı) = Rex1ı + iImx1ı =
√

F ∗′(z1(pı))|z1
′(pı)|, we can then compute the

indicated boundary correspondence functions θ0(t) and θ1(p) by the formula

θ0(t) = −α + Arg(−i z′0(t) φ2
0(t)),

θ1(p) = −α + Arg(−i z′1(p)φ2
1(p)).

The computed values of θ0(t) and θ1(p) are then compared with the exact

boundary correspondence functions for four selected regions, namely frame of

limacon, frame of Cassini’s oval, elliptic frame and circular frame.

3.4 Examples and Numerical Results

In our numerical experiments, we have used four test regions whose exact

boundary correspondence functions are known as discussed in Section 2.5. The

results for the sub-norm error of the boundary correspondence functions θ0(t)
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and θ1(p) and the value µ are shown in Tables 3.1 to 3.4. All the computations

are done using MATHEMATICA package (Wolfram, 1991) in single precision (16

digit machine precision).

The numerical computations for the elliptic frame and frame of Cassini’s

oval are compared with those obtained by Amano (1994), though his distribution

is different from ours. The notations EM and EA that are used by Amano are

defined as follows:

EM = max{max
i
||f(z0(ti)| − 1|, max

i
||f(z1(ti)| − µ|},

EA = max{‖τ0(t)− τ0n(t)‖∞, ‖τ1(p)− τ1m(p)‖∞}.

Example 3.1. Frame of Limacon:

Table 3.1: Error Norm (frame of limacon).

n = m ‖τ0(t)− τ0n(t)‖∞ ‖τ1(p)− τ1m(p)‖∞ ‖µ− µm‖∞
16 9.7(−06) 5.1(−06) 2.8(−05)

32 4.2(−10) 3.1(−10) 2.1(−10)

64 1.3(−15) 1.8(−15) 1.1(−16)

Example 3.2. Frame of Cassini’s Oval:

Table 3.2 shows the results using the proposed approach. The results

obtained using Amano’s method (1994) are also shown in Table 3.3 for

comparison.
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Table 3.2: Error Norm (frame of Cassini’s Oval) using the proposed method.

n = m ‖τ0(t)− τ0n(t)‖∞ ‖τ1(p)− τ1m(p)‖∞ ‖µ− µm‖∞
16 6.4(−03) 2.5(−03) 2.1(−03)

32 6.9(−05) 2.7(−05) 2.1(−05)

64 1.1(−08) 3.7(−09) 3.9(−09)

Table 3.3: Error Norm (frame of Cassini’s oval) using Amano’s method.

n = m EA EM

16 9.7(−03) 9.1(−03)

32 3.8(−04) 3.4(−04)

64 5.0(−07) 6.9(−07)

Example 3.3. Circular Frame:

Table 3.4: Error Norm (circular frame).

n = m ‖τ0(t)− τ0n(t)‖∞ ‖τ1(p)− τ1m(p)‖∞ ‖µ− µm‖∞
8 9.8(−11) 4.6(−09) 1.4(−06)

16 8.9(−16) 7.1(−15) 9.5(−11)
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Example 3.4. Elliptic Frame:

Tables 3.5 and 3.6 shows our results and Amano’s results (1994)

respectively.

Table 3.5: Error Norm (elliptic frame) using the proposed method.

n = m ‖τ0(t)− τ0n(t)‖∞ ‖τ1(p)− τ1m(p)‖∞ ‖µ− µm‖∞
16 4.0(−04) 3.2(−04) 3.7(−05)

32 5.1(−06) 1.0(−05) 3.7(−06)

64 2.7(−09) 5.9(−09) 2.2(−09)

128 3.6(−15) 5.8(−15) 1.8(−15)

Table 3.6: Error Norm (elliptic frame) using Amano’s method.

n = m EA EM

16 3.8(−03) 2.8(−02)

32 7.0(−04) 3.2(−03)

64 2.7(−05) 8.4(−05)



CHAPTER 4

AN INTEGRAL EQUATION RELATED TO A BOUNDARY

RELATIONSHIP

4.1 Introduction

Murid et al. (1999) have derived boundary integral equations for conformal

mapping of simply connected region via the Kerzman-Stein and the Neumann

kernels. These integral equations have been used effectively for numerical

conformal mapping. In Chapter 2, the boundary integral equations for conformal

mapping of doubly connected regions via the Kerzman-Stein and the Neumann

kernels have been discussed. These boundary integral equations are the extensions

from those of simply connected region. In this chapter, we focus on improving and

extending the boundary integral equation derived by Murid and Razali (1999) in

Section 2.6.7 to the case of multiply connected regions.

4.2 The Boundary Integral Equation

Let Γ0, Γ1, . . ., ΓM be M +1 smooth Jordan curves in the complex z-plane

such that Γ1, Γ2, . . ., ΓM lies in the interior of Γ0. Denote by Ω the bounded
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(M + 1)-connected region bounded by Γ0, Γ1, . . ., ΓM . The positive direction of

the contour Γ = Γ0 ∪ Γ1 ∪ · · · ∪ ΓM is usually that for which Ω is on the left as

one traces the boundary (see Figure 2.4).

It is well known that if h is analytic and single-valued in Ω and continuous

on Ω ∪ Γ, we have (Hille, 1973, p. 176)

1

2πi

∫

Γ

h(w)

w − z
dw =

1

2
h(z), z ∈ Γ. (4.1)

Suppose D(z) is analytic and single-valued with respect to z ∈ Ω and

is continuous on Ω ∪ Γ. Furthermore, suppose that D satisfies the boundary

relationship

D(z) = c(z)

[
T (z)Q(z)D(z)

P (z)

]−
, z ∈ Γ, (4.2)

where the minus sign in the superscript denotes complex conjugation, T (z) =

z′(t)/|z′(t)| is the complex unit tangent function at z ∈ Γ, while c, P , and Q are

complex-valued functions defined on Γ with the following properties:

(P1) D(z) and P (z) are analytic and single-valued with respect to z ∈ Ω,

(P1) D(z) and P (z) are continuous on Ω ∪ Γ,

(P1) P (z) has a finite number of zeroes at a1, a2, ..., aM in Ω,

(P1) c(z) 6= 0, P (z) 6= 0, Q(z) 6= 0, D(z) 6= 0, z ∈ Γ.

Note that the boundary relationship (4.2) also has the following equivalent

form:

P (z) = c(z)
T (z)Q(z)D(z)2

|D(z)|2 , z ∈ Γ. (4.3)

By means of (4.1), an integral equation for D may be constructed that is related

to the boundary relationship (4.2) as shown below:
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Theorem 4.1

Let u and v be any complex-valued functions that are defined on Γ. Then

1

2

[
v(z) +

u(z)

T (z)Q(z)

]
D(z) +

PV
1

2πi

∫

Γ

[
c(z)u(z)

c(w)(w − z)Q(w)
− v(z)T (w)

w − z

]
D(w)|dw|

= −c(z)u(z)


 ∑

aj inside Γ

Res
w=aj

D(w)

(w − z)P (w)



−

, z ∈ Γ, (4.4)

where the minus sign in the superscript denotes complex conjugation.

Proof. Consider the integral

I1(z) = PV
1

2πi

∫

Γ

v(z)T (w)D(w)

w − z
|dw|, z ∈ Γ. (4.5)

Using T (w)|d(w)| = dw and (4.1), since D is analytic on Ω, we obtain

I1(z) =
1

2
v(z)D(z), z ∈ Γ. (4.6)

Next we consider the integral

I2(z) = PV
1

2πi

∫

Γ

c(z)u(z)D(w)

c(w)(w − z)Q(w)
|dw|, z ∈ Γ. (4.7)

Using the boundary relationship (4.3), |D(w)|2 = D(w)D(w) and T (w)|dw| = dw,

we get

I2(z) = −c(z)u(z)

[
1

2πi

∫

Γ

D(w)

(w − z)P (w)
dw

]−
. (4.8)

Applying the residue theory and formula (4.1) to the integral in (4.8), I2(z)

becomes

I2(z) = −c(z)u(z)


1

2

D(z)

P (z)
+

∑

ajinsideΓ

Res
w=aj

D(w)

(w − z)P (w)



−

. (4.9)

Applying the boundary relationship (4.2) to the first term on the right-hand side

yields

I2(z) = − u(z)D(z)

2T (z)Q(z)
− c(z)u(z)


 ∑

ajinsideΓ

Res
w=aj

D(w)

(w − z)P (w)



−

. (4.10)
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Finally looking at I2(z)− I1(z), yields

PV
1

2πi

∫

Γ

c(z)u(z)D(w)

c(w)(w − z)Q(w)
|dw| − PV

1

2πi

∫

Γ

v(z)T (w)D(w)

(w − z)
|dw|

= − u(z)D(z)

2T (z)Q(z)
− c(z)u(z)


 ∑

ajinsideΓ

Res
w=aj

D(w)

(w − z)P (w)



−

− 1

2
v(z)D(z), z ∈ Γ. (4.11)

Rearrangement of (4.11), gives (4.4). This completes the proof. ¥

Remark 1. If P (z) does not have any zeroes in Ω, then the right-hand side

of (4.4) becomes zero.

4.3 Application to Conformal Mapping of Doubly Connected Regions

onto an Annulus via the Kerzman-Stein Kernel

Let w = f(z) be the analytic function which maps the doubly connected

region Ω bounded by the two smooth Jordan curves Γ0 and Γ1 onto the annulus

A = {w : µ < |w| < 1} so that Γ0 and Γ1 correspond respectively to |w| = 1

and |w| = µ (see Figure 4.1). As is well known such a mapping function f exists

up to a rotation of the annulus, and the function f could be made unique by

prescribing that

f(a) = 0, f ′(a) > 0 or f(z∗) = 1, (4.12)

where a ∈ Ω and z∗ ∈ Γ0 are fixed points.

The boundary values of f can be represented in the form

f(z0(t)) = eiθ0(t), Γ0 : z = z0(t), 0 ≤ t ≤ β0, (4.13)

f(z1(t)) = µeiθ1(t), Γ1 : z = z1(t), 0 ≤ t ≤ β1, (4.14)
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Figure 4.1: Mapping of a doubly connected region Ω onto an annulus.

where θ0(t) and θ1(t) are the boundaries correspondence functions of Γ0 and Γ1

respectively.

The unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)/|z′(t)|. Thus

it can be shown that

f(z0(t)) =
1

i
T (z0(t))

θ′0(t)
|θ′0(t)|

f ′(z0(t))

|f ′(z0(t))| =
1

i
T (z0(t))

f ′(z0(t))

|f ′(z0(t))| , z0 ∈ Γ0, (4.15)

f(z1(t)) =
µ

i
T (z1(t))

θ′1(t)
|θ′1(t)|

f ′(z1(t))

|f ′(z1(t))| =
µ

i
T (z1(t))

f ′(z1(t))

|f ′(z1(t))| , z1 ∈ Γ1. (4.16)

The boundary relationships (4.15) and (4.16) can be unified as

f(z) =
|f(z)|

i
T (z)

f ′(z)

|f ′(z)| , z ∈ Γ. (4.17)

Note that the values of |f(z)| is either 1 or µ for z ∈ Γ = Γ0 ∪ Γ1. Also

note that since f ′(z) is different from 0 and analytic in Ω ∪ Γ, thus an analytic

square root, denoted by
√

f ′(z), may be defined on Ω ∪ Γ. Comparing (4.17)

with (4.3) leads to a choice of c(z) = i|f(z)|, P (z) = f(z), D(z) =
√

f ′(z),

Q(z) = 1, u(z) = T (z)Q(z) and v(z) = 1. With these assignments, Theorem 4.1

and Remark 1, imply

√
f ′(z) + PV

1

2πi

∫

Γ

[
|f(z)|T (z)

|f(w)|(w − z)
− T (w)

(w − z)

] √
f ′(w)|dw| = 0, z ∈ Γ.

(4.18)
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Note that (4.18) does not posses a unique solution. If f(z) satisfies (4.18),

then so is reiαf(z), i.e.

√
[reiαf(z)]′ + PV

1

2πi

∫

Γ

[
|reiαf(z)|T (z)

|reiαf(w)|(w − z)
− T (w)

(w − z)

]√
[reiαf(w)]′|dw| = 0,

z ∈ Γ, (4.19)

for any real constant r > 0 and α.

To achieve uniquenee, several condition need to be imposed. Suppose

F (z) = reiαf(z), r, α ∈ < (4.20)

is a mapping function that maps a doubly connected regions onto an annulus

Ã = w : rµ < |w| < r. The Arg(F (z)) and Arg(f(z)) differ by α.

As is well known such a mapping function F (z) exists up to a rotation

and the rotation could be fixed by prescribing F (z∗) = r, where z∗ ∈ Γ0 is fixed

point.

1
z*

0

1

r r

f(z)

F(z)=re
i

f(z)

Figure 4.2: Mapping of doubly connected region onto an annulus

The equation (4.20) with z = z∗ implies

F (z∗) = reiαf(z∗) = r,
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and Figure 4.2 implies





Re [F ′(z∗)] = 0,

Im [F ′(z∗)] > 0.
(4.21)

Note that

F ′(z∗) = reiαf ′(z∗)

= reiα(Re f ′(z∗) + i Im f ′(z∗))

= −r sin α Im f ′(z∗) + i r cos α Im f ′(z∗). (4.22)

Applying the condition in (4.21), we obtain

sin α Im f ′(z∗) = 0,

cos α Im f ′(z∗) > 0,

which admit the solution α = 0 since Im f ′(z∗) > 0. Thus α is now fixed.

So the equation (4.20) becomes

F (z) = rf(z). (4.23)

To fix r, we observe that

F (z0(t)) = reiθ0(t), z0(t) ∈ Γ0. (4.24)

Differentiating and taking modulus on both sides of equation (4.24), we obtain

|F ′(z0(t))z
′
0(t)| = |riθ′0(t)eiθ0(t)| = |θ′0(t)|. (4.25)

The boundary correspondence function θ0(t) is an increasing monotone function

and it’s derivative is positive, we have |θ′0(t)| = θ′0(t). Thus, integrating (4.25)

with respect to t to 2π gives

∫ 2π

0

|F ′(z0(t))z
′
0(t)|dt = |r|

∫ 2π

0

θ′0(t)dt = 2π|r|,
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Setting the condition ∫ 2π

0

|F ′(z0(t))z
′
0(t)|dt = 2π,

implies r = 1. Hence F (z) = f(z).

The integral equation (4.18) can also be written briefly as

√
f ′(z) +

∫

Γ

A∗(z, w)
√

f ′(w)|dw| = 0, z ∈ Γ, (4.26)

where

A∗(z, w) =
1

2πi

[
|f(z)|T (z)

|f(w)|(w − z)
− T (w)

(w − z)

]
.

This result has already been given in Chapter 3 but the derivation

presented here is much simpler. The integral equation will be used in Section

5.2, Chapter 5 for the numerical conformal mapping of doubly connected region

onto an annulus with some normalizing conditions different from Chapter 3.

4.4 Application to Conformal Mapping of Multiply Connected

Regions onto an Annulus with Circular Slits via the Neumann

Kernel

This section gives an application of Theorem 4.1 to conformal mapping of

multiply connected region Ω of connectivity M +1. Let w = f(z) be the analytic

function which maps Ω conformally onto an annulus (µ1 < |w| < 1) with circular

slits of radii µ2 < 1, ..., µM < 1 (see Figure 4.3). The mapping function f is

determined up to a rotation of the annulus. The function f could be made unique

by prescribing (4.12).

The boundary values of f can be represented in form

f(z0(t)) = eiθ0(t), Γ0 : z = z0(t), 0 ≤ t ≤ β0, (4.27)

f(zp(t)) = µpe
iθp(t), Γp : z = zp(t), 0 ≤ t ≤ βp, p = 1, 2, ..., M, (4.28)
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Figure 4.3: Mapping of a multiply connected region Ω of connectivity M +1 onto

an annulus with circular slits.

where θ0(t), θ1(t), ..., θM(t) are the boundaries correspondence functions of Γ0, Γ1,

..., ΓM respectively.

The unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)/|z′(t)|. Thus

it can be shown that

f(z0(t)) =
1

i
T (z0(t))

θ′0(t)
|θ′0(t)|

f ′(z0(t))

|f ′(z0(t))| =
1

i
T (z0(t))

f ′(z0(t))

|f ′(z0(t))| , z0 ∈ Γ0,

(4.29)

f(z1(t)) =
µ1

i
T (z1(t))

θ′1(t)
|θ′1(t)|

f ′(z1(t))

|f ′(z1(t))| =
µ1

i
T (z1(t))

f ′(z1(t))

|f ′(z1(t))| , z1 ∈ Γ1,

(4.30)

f(zp(t)) =
µp

i
T (zp(t))

θ′p(t)

|θ′p(t)|
f ′(zp(t))

|f ′(zp(t))| = ±µp

i
T (zp(t))

f ′(zp(t))

|f ′(zp(t))| , zp ∈ Γp,

(4.31)

for p = 2, ..., M. If M = 1, then relationship (4.31) does not exist; i.e., only (4.29)

and (4.30) hold. Note that θ′0(t) > 0 and θ′1(t) > 0 while θ′p(t) may be positive

or negative since each circular slit f(Γp) is traversed twice (see Figure 4.3). Thus

θ′p(t)/|θ′p(t)| = ±1.

The boundary relationships (4.29), (4.30) and (4.31) can be unified as

f(z) = ±|f(z)|
i

T (z)
f ′(z)

|f ′(z)| , z ∈ Γ, (4.32)
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where Γ = Γ0 ∪ Γ1 ∪ · · · ∪ ΓM . Note that the value of |f(z)| is either 1, µ1 or

µp for z ∈ Γ. However we cannot compare (4.32) with (4.3) due to the presence

of the ± sign. To overcome this problem, we square both sides of the boundary

relationship (4.32) to get

f(z)2 = −|f(z)|2T (z)2 f ′(z)2

|f ′(z)|2 , z ∈ Γ. (4.33)

Comparison of (4.3) and (4.33) leads to a choice of c(z) = −|f(z)|2, P (z) =

f(z)2, D(z) = f ′(z), Q(z) = T (z), u(z) = T (z)Q(z) and v(z) = 1. Substituting

these assignments into (4.4) leads to an integral equation satisfied by f ′(z), i.e.,

f ′(z) + PV
1

2πi

∫

Γ

[
|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]
f ′(w)|dw|

= |f(z)|2T (z)2


 ∑

ajinsideΓ

Res
w=aj

f ′(w)

(w − z)f(w)2



−

, z ∈ Γ. (4.34)

For the case where Ω is a multiply connected regions being mapped onto

an annulus with concentric circular slits, f(z) does not have any zeroes in Ω. Thus

the right-hand side of (4.34) vanishes and the integral equation (4.34) becomes

f ′(z) + PV
1

2πi

∫

Γ

[
|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]
f ′(w)|dw| = 0, z ∈ Γ.

(4.35)

Multiply both sides by T (z) and using the fact T (z)T (z) = |T (z)|2 = 1 gives

T (z)f ′(z) + PV
1

2πi

∫

Γ

[
|f(z)|2T (z)

|f(w)|2(w − z)
− T (z)

(w − z)

]
T (w)f ′(w)|dw| = 0,

z ∈ Γ. (4.36)

Note that (4.36) does not posses a unique solution. If f(z) satisfies (4.36),

then so is reiαf(z), i.e.

T (z)[reiαf(z)]′

+ PV
1

2πi

∫

Γ

[
|reiαf(z)|2T (z)

|reiαf(w)|2(w − z)
− T (z)

(w − z)

]
T (w)[reiαf(w)]′|dw| = 0,

z ∈ Γ. (4.37)



60

for any real constants r > 0 and α.

Suppose

F (z) = reiαf(z), r, α ∈ < (4.38)

is a mapping function that maps a multiply connected regions onto an annulus

(rµ1 < |w| < r) with circular slits of radii rµ2 < r, ..., rµM < 1 and the Arg(F (z))

and Arg(f(z)) differ by α. As is well known such a mapping function F (z) exists

up to a rotation and the rotation could be fixed by prescribing F (z∗) = f , where

z∗ ∈ Γ0 is fixed point. Using the same ideas presented in Section 4.3, imposing

the conditions

sin α Im f ′(z∗) = 0,

cos α Im f ′(z∗) > 0,
∫ 2π

0

|F ′(z0(t))z
′
0(t)|dt = 2π,

lead to α = 0 and r = 1. Hence F (z) = f(z).

The integral equation (4.36) can also be written briefly as

g(z) +

∫

Γ

N∗(z, w)g(w)|dw| = 0, z ∈ Γ, (4.39)

where

g(z) = T (z)f ′(z),

N∗(z, w) =
1

2πi

[
T (z)

(z − w)
− |f(z)|2T (z)

|f(w)|2(z − w)

]
. (4.40)

This integral equation will be used in Sections 5.3 and 5.4 for the numerical

conformal mapping of doubly connected region onto an annulus and triply

connected region onto an annulus with a slit.

Comparing (4.3) and (4.33) yields still another possible assignments, i.e.,

c(z) = −1, P (z) = 1, D(z) = f ′(z)/f(z) and Q(z) = T (z).
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Application of Theorem 4.4 with Remark 1 to these assignments, along with the

choice of u(z) = T (z)Q(z) and v(z) = 1, gives

f ′(z)

f(z)
+ PV

1

2πi

∫

Γ

[
T (z)2

(w − z)T (w)
− T (w)

(w − z)

]
f ′(w)

f(w)
|dw| = 0, z ∈ Γ. (4.41)

If we multiply both sides of (4.41) by T (z), we obtain

T (z)
f ′(z)

f(z)
+ PV

1

2πi

∫

Γ

[
T (z)

(w − z)
− T (z)

(w − z)

]
T (w)

f ′(w)

f(w)
|dw| = 0, z ∈ Γ.

(4.42)

The integral equation (4.42) can also be written briefly as

Φ(z) +

∫

Γ

N(z, w)Φ(w)|dw| = 0, z ∈ Γ, (4.43)

where Φ(z) = T (z)f ′(z)/f(z) and N is again the Neumann kernel (2.22).

From (4.27) and (4.28), we see that

f ′(z0(t))z
′
0(t) = iθ′0(t)e

iθ0(t) = if(z0(t))θ
′
0(t), 0 ≤ t ≤ β0, (4.44)

f ′(zp(t))z
′
p(t) = iµpθ

′
p(t)e

iθp(t) = if(zp(t))θ
′
p(t), 0 ≤ t ≤ βp. (4.45)

In other words,

f ′(z(τ))z′(τ) = if(z(τ))θ′(τ), z(τ) ∈ Γ, 0 ≤ τ ≤ β,

which implies

f ′(z(τ))

f(z(τ))
z′(τ) = iθ′(τ), z(τ) ∈ Γ, 0 ≤ τ ≤ β.

Substituting this result into (4.43) and using the definition that T (z(τ)) =

z′(τ)/|z′(τ)|, we get

θ′(τ) +

∫ β

0

k(τ, σ)θ′(σ)dσ = 0, 0 ≤ τ ≤ β, (4.46)
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where

k(τ, σ) = |z′(τ)|N(z(τ), z(σ)) =





1

π
Im

[
z′(τ)

z(τ)− z(σ)

]
, if τ 6= σ,

1

2π
Im

[
z′′(t)
z′(τ)

]
, if τ = σ.

For doubly connected regions, the integral equation (4.46) is also known

as the Warschawski’s equation (see Section 2.6.6).

4.5 Application to Conformal Mapping of Multiply Connected

Regions onto a Disk with Circular Slits via the Neumann Kernel

This section gives an application of Theorem 4.1 to conformal mapping

of multiply connected region Ω of connectivity M + 1 onto a disk with circular

slits. Let w = f(z) be the analytic function which maps Ω conformally onto a

disk |w| < r with circular slits of radii µpr, where 0 < µp < 1, p = 1, 2, ..., M (see

Figure 4.4). The function f could be made unique by prescribing (4.12).

 !!!

"1 "2

"M

!!!

 r#M  r#2r#1
$

r

"0

$ z*

Figure 4.4: Mapping of a multiply connected region Ω of connectivity M +1 onto

a disk with circular slits.
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The boundary values of f can be represented in form

f(z0(t)) = reiθ0(t), Γ0 : z = z0(t), 0 ≤ t ≤ β0, (4.47)

f(zp(t)) = µpre
iθp(t), Γp : z = zp(t), 0 ≤ t ≤ βp, p = 1, 2, ...,M, (4.48)

where θ0(t), θ1(t), ..., θM(t) are the boundaries correspondence functions of Γ0,

Γ1, ..., ΓM respectively.

Thus it can be shown that

f(z0(t)) =
r

i
T (z0(t))

θ′0(t)
|θ′0(t)|

f ′(z0(t))

|f ′(z0(t))| =
r

i
T (z0(t))

f ′(z0(t))

|f ′(z0(t))| , z0 ∈ Γ0, (4.49)

f(zp(t)) =
µpr

i
T (zp(t))

θ′p(t)

|θ′p(t)|
f ′(zp(t))

|f ′(zp(t))| = ±µpr

i
T (zp(t))

f ′(zp(t))

|f ′(zp(t))| , zp ∈ Γp,

(4.50)

for p = 1, 2, ..., M . Note that θ′0(t) > 0 while θ′p(t) may be positive or negative

since the circular slit f(Γp) is traversed twice. Thus θ′p(t)/|θ′p(t)| = ±1.

The boundary relationships (4.49) and (4.50) can be unified as

f(z) = ±|f(z)|
i

T (z)
f ′(z)

|f ′(z)| , z ∈ Γ, (4.51)

where Γ = Γ0 ∪ Γ1 ∪ · · · ∪ ΓM . Note that the value of |f(z)| is either r or µpr for

z ∈ Γ. Squaring both sides of the boundary relationship (4.51) gives

f(z)2 = −|f(z)|2T (z)2 f ′(z)2

|f ′(z)|2 , z ∈ Γ. (4.52)

Comparing (4.52) with (4.3), leads to a choice of c(z) = −|f(z)|2, P (z) =

f(z)2, D(z) = f ′(z), Q(z) = T (z), u(z) = T (z)Q(z) and v(z) = 1. Substituting

these assignments into (4.4) leads to an integral equation satisfied by f ′(z), i.e.,

f ′(z) + PV
1

2πi

∫

Γ

[
|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]
f ′(w)|dw|

= |f(z)|2T (z)2


 ∑

ajinsideΓ

Res
w=aj

f ′(w)

(w − z)f(w)2



−

, z ∈ Γ. (4.53)
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To evaluate the residue in equation (4.53) we use the fact that if f(w) =

g(w)/h(w) where g and h are analytic at a, and g(a) 6= 0, h(a) = h′(a) = 0,

h′′(a) 6= 0, which means a is a double pole of f(w), then (Gonzalez, 1992)

Res
w=a

f(w) = 2
g′(a)

h′′(a)
− 2

3

h′′′(a)g(a)

h′′(a)2
. (4.54)

Applying (4.54) to the residue in (4.53) and after several algebraic manipulations,

we obtain

Res
w=a

f ′(w)

(w − z)f(w)2
= − 1

(a− z)2f ′(a)
. (4.55)

Thus integral equation (4.53) becomes

f ′(z) + PV
1

2πi

∫

Γ

[
|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]
f ′(w)|dw|

= −|f(z)|2 T (z)2

(a− z)2f ′(a)
, z ∈ Γ. (4.56)

Multiply both sides of the equation by f ′(a)T (z) and use the fact that T (z)T (z) =

|T (z)|2 = 1 gives

f ′(a)T (z)f ′(z)

+ PV
1

2πi

∫

Γ

[
|f(z)|2T (z)

|f(w)|2(w − z)
− T (z)

(w − z)

]
f ′(a)T (w)f ′(w)|dw|

= −|f(z)|2 T (z)

(a− z)2
, z ∈ Γ. (4.57)

Equation (4.57) can also be written as

g(z, a) +

∫

Γ

N∗(z, w)g(w, a)|dw| = |f(z)|2h(a, z), z ∈ Γ. (4.58)

where the kernel N∗ is as given in (4.40) and

g(z, a) = f ′(a)T (z)f ′(z),

h(a, z) = − T (z)

(a− z)2
.

This integral equation will be used in Chapter 6 for the numerical

conformal mapping of multiply connected regions onto a disk with slits.



CHAPTER 5

NUMERICAL CONFORMAL MAPPING OF MULTIPLY

CONNECTED REGIONS ONTO AN ANNULUS WITH

CIRCULAR SLITS

5.1 Introduction

We have discussed in Chapter 4 the theoretical aspects of constructing

some integral equations for conformal mapping of doubly connected region onto

an annulus via the Kerzman-Stein kernel and conformal mapping of multiply

connected regions onto an annulus with circular slits via the Neumann kernel.

In this chapter, we shall discuss the numerical aspects of conformal mapping of

multiply connected regions based on the integral equation developed in Chapter

4.

5.2 Conformal Mapping of Doubly Connected Regions onto an

Annulus via the Kerzman-Stein Kernel

5.2.1 A System of Integral Equations

Suppose Ω is a doubly connected region bounded by Γ0 and Γ1 as shown

in Figure 4.1. Since Ω is a doubly connected region, the single integral equation
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in (4.26) can be separated into a system of equations

η(z0) +

∫

Γ0

A(z0, w)η(w)|dw| −
∫

−Γ1

P (z0, w)η(w)|dw| = 0, z0 ∈ Γ0, (5.1)

η(z1) +

∫

Γ0

Q(z1, w)η(w)|dw| −
∫

−Γ1

A(z1, w)η(w)|dw| = 0, z1 ∈ Γ1, (5.2)

where

η(z) =
√

f ′(z),

P (z, w) =
1

2πi

[
T (z)

µ(w − z)
− T (w)

(w − z)

]
,

Q(z, w) =
1

2πi

[
µT (z)

(w − z)
− T (w)

(w − z)

]
,

A(z, w) =





H(w, z)−H(z, w), w, z ∈ Γ, w 6= z,

0, w = z ∈ Γ,

H(w, z) =
1

2πi

T (z)

(z − w)
, w ∈ Ω ∪ Γ, z ∈ Γ, w 6= z.

The kernel A is known as the Kerzman-Stein kernel (Kerzman and

Trummer, 1986) and is smooth and skew-Hermitian. The kernel H is usually

referred to as the Cauchy kernel. The integral equations (5.1) and (5.2) involve

the unknown parameter µ. To obtain a unique solution, we first consider applying

the condition f(z0(0)) = 1. For the test regions that we have chosen, the

unit tangent vector T (z0(0)) is equal to i. From equation (4.15), this implies

η(z0(0))2/|η(z0(0))|2 = 1, which means

Re [η(z0(0))2/|η(z0(0)|2] = 1, (5.3)

Im [η(z0(0))2] = 0. (5.4)

Next we consider equation (4.13), which upon differentiation and taking

modulus on both sides, gives

|f ′(z0(t))z
′
0(t)| = |eiθ0(t)iθ′0(t)| = |θ′0(t)|. (5.5)
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Since the boundary correspondence function θ0(t) is an increasing monotone

function and it’s derivative is positive, we have |θ′0(t)| = θ′0(t). Thus, upon

integrating (5.5) with respect to t form 0 to 2π gives
∫ 2π

0

|f ′(z0(t))z
′
0(t)|dt =

∫ 2π

0

θ′0(t)dt = θ0(t)|2π
0 = 2π. (5.6)

We note that, in Chapter 3 however did not use the conditions (5.3), (5.4)

and (5.6) to achieve uniqueness, but instead

µ

∫ 2π

0

|η(z0(t))z
′
0(t)|dt−

∫ 2π

0

|η(z1(t))z
′
1(t)|dt = 0

and

f ′(z∗) = B∗

where B∗ is predetermined.

Thus the system of integral equations comprising of (5.1), (5.2) with the

conditions (5.3), (5.4) and (5.6) has a unique solution.

5.2.2 Numerical Implementation

In Chapter 3 have shown how to treat the equations (5.1) and (5.2)

numerically and obtained the system (3.42) i.e.



Re A · · · Im A
...

. . .
...

Im A · · · Re A







Re x
...

Im x


 =




0
...

0


 . (5.7)

The system of equations (5.6), (5.3) and (5.4) can be written briefly as
∫ β0

0

|φ0(s)|2ds = 2π, (5.8)

Re [φ0(0)2/|φ0(0)|2] = 1, (5.9)

Im [φ0(0)2] = 0. (5.10)
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where

φ0(t) = |z′0(t)|1/2η(z0(t)),

φ1(t) = |z′1(t)|1/2η(z1(t)).

Since φ = Re φ + i Im φ, equations (5.8), (5.9) and (5.10) become

n∑
j=1

((Re x0j)
2 + (Im x0j)

2) = n, (5.11)

Re [x2
01/((Re x01)

2 + (Im x01)
2)] = 1, (5.12)

Im x2
01 = 0. (5.13)

Therefore, the real nonlinear system in (5.7) can be solved simultaneously with

the equations (5.11), (5.12) and (5.13) which also involves the Re and Im parts of

the unknown functions. This system is an over-determined system of nonlinear

equations involving 2(n + m) + 3 equations in 2(n + m) + 1 unknowns. As in

Chapter 3, we also use Gauss-Newton method to solve this nonlinear least square

problem.

5.2.3 Numerical Results

For our numerical experiments, we have used three test regions i.e. frame

of Cassini’s oval, ellipse/circle and elliptical domain with circular hole. The exact

boundary correspondence function for Cassini’s oval is discussed in Section 2.5.5.

All the computations are done using MATHEMATICA package (Wolfram, 1991)

in single precision (16 digit machine precision). We also show the comparisons

of our numerical computations for the test regions with with those obtained

by Amano (1994), Ellacott (1979), Papamicheal and Warby (1984) and Symm

(1969).
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Example 5.1. Frame of Cassini’s Oval:

Let

Γ0 : z(t) =

√
b2
0 cos 2t +

√
a4

0 − b4
0 sin2 2t eit, a0 > 0, b0 > 0,

Γ1 : z(t) =

√
b2
1 cos 2t +

√
a4

1 − b4
1 sin2 2t eit, a1 > 0, b1 > 0, 0 ≤ t ≤ 2π.

The exact mapping function is

f(z) =
a0z√

b2
0z

2 + a4
0 − b4

0

, µ =
a0b1

a1b0

.

Figure 5.1 shows the region and image based on our method. The results

for the sub-norm error between the exact values of θ0(t), θ1(t), µ and their

corresponding approximations θ0n(t), θ1n(t), µn are shown in Table 4.1. Table

4.2 shows the results obtained in Chapter 3 with different normalizing conditions

from ours. Table 4.3 shows the results calculated by Amano (1994) and Symm

(1969), though their distributions are different from ours. The notations EM and

EA that are used by Amano or Symm are defined as follows:

EM = max{max
i
||f(z0(ti))| − 1|, max

i
||f(z1(ti))| − µ|}, (5.14)

EA = max{‖θ0(t)− θ0n(t)‖∞, ‖θ1(t)− θ1n(t)‖∞}. (5.15)
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Figure 5.1: Frame of Cassini’s Oval with a0 = 2
√

14, a1 = 2, b0 = 7, and b1 = 1.
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Table 5.1: Error norm (frame of Cassini’s oval) using our method

n = m minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞ ‖µ− µn‖∞
16 8.4(−31) 6.4(−03) 2.5(−03) 2.1(−03)

32 8.4(−30) 6.9(−05) 2.7(−05) 2.1(−05)

64 5.5(−30) 1.1(−08) 4.1(−09) 3.1(−09)

128 3.4(−28) 2.7(−15) 8.9(−16) 1.1(−16)

Table 5.2: Error norm (frame of Cassini’s oval) in Chapter 3 with different

conditions

n = m ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞ ‖µ− µn‖∞
16 6.4(−03) 2.5(−03) 2.1(−03)

32 6.9(−05) 2.7(−05) 2.1(−05)

64 1.1(−08) 3.7(−09) 3.9(−09)

Table 5.3: Error Norm (frame of Cassini’s oval) using Amano’s method and

Symm’s method

Amano’s Method Symm’s Method

n = m EM EA n = m EM

16 9.1(−03) 9.7(−03) 64 1.94(−02)

32 3.4(−04) 3.8(−04) 128 3.00(−03)

64 6.9(−07) 5.0(−08) 256 7.00(−04)

128 7.7(−11) 7.7(−11)

Example 5.2. Ellipse/Circle:

Let

Γ0 : z(t) = 2 cos t + i sin t,

Γ1 : z(t) = 0.5 (cos t + i sin t), 0 ≤ t ≤ 2π.
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We have adopted this example problem from Ellacott (1979) with µE =

0.4141 for comparison. See Table 4.4 for radius comparisons. Figure 5.2 shows

the region and its image based on our method.
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Figure 5.2: Conformal mapping ellipse/circle onto an annulus

Table 5.4: The radius comparison for ellipse/circle

minimal Radius Comparison Value of

n = m S(x) µ− µE µ

8 3.0(−31) 2.7(−02) 0.441484

16 4.9(−30) 3.8(−04) 0.4144811

32 4.2(−30) 2.0(−05) 0.4141199465

64 9.3(−28) 2.0(−05) 0.414119807860853

Example 5.3. Elliptical Region with Circular Hole:

Let

Γ0 = {(x, y) : (x +
1

2
a0)

2/a2
0 + y2 = 1},

Γ1 = {(x, y) : x2 + y2 =
1

9
a2

0}, 1 < a0 ≤ 2.

We have adopted this example problem from Papamichael and Warby

(1984) for comparison of µ. Since the conditions of the problem are somewhat

different, A = w : µ < |w| < 1 in ours and a = w : 1 < |w| < M in Papamichael

and Warby (1984), our radius µ should be multiplied by M for comparison (See
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Table 4.5). In Table 4.6, we list the computed approximations of µ based on

our method and the computed approximations to the modulus M based on

Papamichael and Warby method. The notation EN that is used by Papamichael

and Warby is defined as

EN = max{max
i
||f(z0(ti))| −M ||, max

i
||f(z1(ti))| − 1||}, (5.16)

Figure 5.3 shows the region and its image based on our method.
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Figure 5.3: Conformal mapping elliptical region with circular hole onto an annulus

with a0 = 0.20.

Table 5.5: The computed approximations of µ and M for elliptical region with

circular hole

Our Method Papamichael and Warby Method

a0 µ M 1/M

1.04 0.4803797010421916 2.081686628 0.4803797010315426

1.08 0.4869154853494373 2.053744500 0.4869154853488348

1.20 0.5080480086200778 1.968317921 0.5080480085716803

1.40 0.5480734581257742 1.824572938 0.5480734582724585

1.60 0.5938360511745354 1.683966719 0.5938359640467455

1.80 0.6455396040618700 1.549091634 0.6455396040180280

2.00 0.7043817963286256 1.419684616 0.7043817963017217
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Table 5.6: The radius comparison for elliptical region with circular hole

a0 n = m minimal S(x) ‖µ− 1/M‖∞ n = m EN

1.04 32 4.6(−29) 2.0(−06) 31 2.1(−05)

1.08 32 8.4(−31) 1.4(−06) 31 8.7(−06)

1.20 32 5.2(−30) 3.0(−07) 29 7.5(−08)

1.40 32 1.4(−29) 1.9(−08) 29 2.0(−06)

1.60 32 3.7(−29) 2.4(−06) 25 3.2(−05)

1.80 32 1.3(−29) 3.5(−05) 23 3.9(−04)

2.00 32 2.3(−29) 1.1(−04) 27 2.0(−03)

5.3 Conformal Mapping of Doubly Connected Regions onto an

Annulus via the Neumann Kernel

5.3.1 A System of Integral Equations

Suppose Ω is a doubly connected region bounded by Γ0 and Γ1 (see Figure

4.3 with M = 1). For the special case where Ω is a doubly connected region, the

single integral equation in (4.39) can be separated into a system of equations

g(z0) +

∫

Γ0

N(z0, w)g(w)|dw| −
∫

−Γ1

P0(z0, w)g(w)|dw| = 0, z0 ∈ Γ0, (5.17)

g(z1) +

∫

Γ0

P1(z1, w)g(w)|dw| −
∫

−Γ1

N(z1, w)g(w)|dw| = 0. z1 ∈ Γ1, (5.18)

where

g(z) = T (z)f ′(z),

P0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

µ2
1(z − w)

]
,

P1(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

1T (z)

(z − w)

]
,

N(z, w) =





1

π
Im

[
T (z)

z − w

]
, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]
|z′(t)|3 , if w = z ∈ Γ.
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The kernel N is also known as the Neumann kernel (Henrici, 1974).

Note that the PV symbols are no longer required in (5.17) and (5.18) since

the integrands are continuous along their respective paths of integrations. The

integral equations (5.17) and (5.18) also involve the unknown parameter µ1.

Naturally it is also required that the unknown mapping function f(z) be single-

valued in the problem domain (Henrici, 1974, p. 217), i.e.,
∫

−Γ1

f ′(w)dw = 0 (5.19)

which implies ∫

−Γ1

g(w)|dw| = 0. (5.20)

Note that the system of integral equations consisting of (5.17), (5.18) and

(5.20) is homogeneous and does not have a unique solution. To obtain a unique

solution, we need to impose some conditions on g(z). First, we consider applying

the condition f(z0(0)) = 1. From (4.29), this implies g(z0(0))/|g(z0(0))| = i,

which means

Re [g(z0(0))] = 0, (5.21)

Im [g(z0(0))/|g(z0(0)|] = 1. (5.22)

Next we consider equations (4.27) and (4.28). Upon differentiation and

taking modulus to both sides of equations (4.27) and (4.28), gives

|T (z0(t))f
′(z0(t))z

′
0(t)| = |T (z0(t))e

iθ0(t)iθ′0(t)| = |θ′0(t)|. (5.23)

|T (z1(t))f
′(z1(t))z

′
1(t)| = |T (z1(t))µ1e

iθ1(t)iθ′1(t)| = µ1|θ′1(t)|. (5.24)

Since the boundary correspondence functions θ0(t) and θ1(t) are increasing

monotone functions, their derivatives are positive which implies |θ′0(t)| = θ′0(t)

and |θ′1(t)| = θ′1(t). Upon integrating (5.23) and (5.24) with respect to t form 0

to 2π gives
∫ 2π

0

|g(z0(t))z
′
0(t)|dt =

∫ 2π

0

θ′0(t)dt = θ0(t)|2π
0 = 2π, (5.25)

∫ 2π

0

|g(z1(t))z
′
1(t)|dt = µ1

∫ 2π

0

θ′1(t)dt = µ1θ1(t)|2π
0 = µ12π. (5.26)
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Thus the system of integral equations comprising of (5.17), (5.18), (5.20)

with the conditions (5.21), (5.22), (5.25) and (5.26) has a unique solution.

5.3.2 Numerical Implementation

Suppose Γ0 and Γ1 be given in parametric representations as follows:

Γ0 : z = z0(t), 0 ≤ t ≤ β0,

Γ1 : z = z1(t), 0 ≤ t ≤ β1.

Then the system of integral equations (5.17), (5.18), (5.20), (5.25) and (5.26)

become

g(z0(t)) +

∫ β0

0

N(z0(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

P0(z0(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z0(t) ∈ Γ0, (5.27)

g(z1(t)) +

∫ β0

0

P1(z1(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

N(z1(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z1(t) ∈ Γ1, (5.28)

∫ β1

0

g(z1(s))|z′1(s)|ds = 0, (5.29)

∫ β0

0

|g(z0(s))z
′
0(s)|ds = 2π, (5.30)

∫ β1

0

|g(z1(s))z
′
1(s)|ds = 2πµ1. (5.31)

Multiply (5.27) and (5.28) respectively by |z′0(t)| and |z′1(t)| gives

|z′0(t)|g(z0(t)) +

∫ β0

0

|z′0(t)|N(z0(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

|z′0(t)|P0(z0(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z0(t) ∈ Γ0, (5.32)

|z′1(t)|g(z1(t)) +

∫ β0

0

|z′1(t)|P1(z1(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

|z′1(t)|N(z1(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z1(t) ∈ Γ1. (5.33)



76

Defining

φ0(t) = |z′0(t)|g(z0(t)),

φ1(t) = |z′1(t)|g(z1(t)),

K00(t0, s0) = |z′0(t)|N(z0(t), z0(s)),

K01(t0, s1) = |z′0(t)|P0(z0(t), z1(s)),

K10(t1, s0) = |z′1(t)|P1(z1(t), z0(s)),

K11(t1, s1) = |z′1(t)|N(z1(t), z1(s)),

the system of equations (5.32), (5.33), (5.29), (5.30), (5.31), (5.21) and (5.22) can

be briefly written as

φ0(t) +

∫ β0

0

K00(t0, s0)φ0(s)ds−
∫ β1

0

K01(t0, s1)φ1(s)ds = 0, (5.34)

φ1(t) +

∫ β0

0

K10(t1, s0)φ0(s)ds−
∫ β1

0

K11(t1, s1)φ1(s)ds = 0, (5.35)

∫ β1

0

φ1(s)ds = 0, (5.36)

∫ β0

0

|φ0(s)|ds = 2π, (5.37)

∫ β1

0

|φ1(s)|ds = 2πµ1, (5.38)

Re φ0(0) = 0, (5.39)

Im [φ0(0)/|φ0(0)|] = 1. (5.40)

Since the functions φ and K in the above systems are β-periodic, a reliable

procedure for solving (5.34) to (5.38) numerically is by using the Nyström’s

method. We choose β0 = β1 = 2π and n equidistant collocation points

ti = (i − 1)β0/n, 1 ≤ i ≤ n on Γ0 and m equidistant collocation points

t̃i = (̃i − 1)β1/m, 1 ≤ ĩ ≤ m, on Γ1. Applying the Nyström’s method with

trapezoidal rule to discretize (5.34) to (5.38), we obtain

φ0(ti) +
β0

n

n∑
j=1

K00(ti, tj)φ0(tj)− β1

m

m∑

j̃=1

K01(ti, tj̃)φ1(tj̃) = 0, (5.41)

φ1(t̃i) +
β0

n

n∑
j=1

K10(t̃i, tj)φ0(tj)− β1

m

m∑

j̃=1

K11(t̃i, tj̃)φ1(tj̃) = 0, (5.42)
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m∑

j̃=1

φ1(tj̃) = 0, (5.43)

n∑
j=1

|φ0(tj)| = n, (5.44)

m∑

j̃=1

|φ1(tj̃)| = mµ1. (5.45)

Equations (5.41) to (5.45) lead to a system of (n + m + 3) non-linear complex

equations in n unknowns φ0(ti), m unknowns φ1(t̃i) and µ1. By defining the

matrices

x0i = φ0(ti),

x1̃i = φ1(t̃i),

Bij =
β0

n
K00(ti, tj),

Cij̃ =
β1

m
K01(ti, tj̃),

Dĩj =
β0

n
K10(t̃i, tj),

Eĩj̃ =
β1

m
K11(t̃i, tj̃),

the system of equations (5.41) and (5.42) can be written as n + m by n + m

system of equations

[Inn + Bnn]x0n − Cnmx1m = 0, (5.46)

Dmnx0n + [Imm − Emm]x1m = 0. (5.47)

The result in matrix form for the system of equations (5.46) and (5.47) is




Inn + Bnn · · · −Cnm

... · · · ...

Dmn · · · Imm − Emm







x0n

...

x1m


 =




00n

...

01m


 . (5.48)

Defining

A =




Inn + Bnn · · · −Cnm

... · · · ...

Dmn · · · Imm − Emm


 , x=




x0n

...

x1m


 and 0 =




00n

...

01m


,
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the (n + m) × (n + m) system can be written briefly as Ax = 0. Separating A

and x in terms of the real and imaginary parts, the system can be written as

ReARex− ImA Imx + i( ImARex + ReA Imx) = 0 + 0i. (5.49)

The single (n + m) × (n + m) complex system (5.49) above is equivalent to the

2(n + m)× 2(n + m) system matrix involving the real (Re) and imaginary (Im)

of the unknown functions, i.e.,




Re A · · · Im A
... · · · ...

Im A · · · Re A







Re x
...

Im x


 =




0
...

0


 . (5.50)

Note that the matrix in (5.50) contains the unknown parameter µ1.

Since φ = Re φ + i Im φ, equations (5.43), (5.44), (5.45), (5.39) and (5.40)

becomes

m∑

j̃=1

(Re x1j̃ + i Im x1j̃) = 0, (5.51)

n∑
j=1

√
(Re x0j)2 + (Im x0j)2 = n, (5.52)

m∑

j̃=1

√
(Re x1j̃)

2 + (Im x1j̃)
2 = mµ1, (5.53)

Re x01 = 0, (5.54)

Im [x01/
√

(Re x01)2 + (Im x01)2] = 1. (5.55)

We next proceed to solve simultaneously the real nonlinear system in (5.50)

with the equations (5.51) to (5.55) which also involves the Re and Im parts of

the unknown functions. This system is an over-determined system of nonlinear

equations involving 2(n + m) + 5 equations in 2(n + m) + 1 unknowns.

We tried using the Gauss-Newton algorithm for solving this system.

However, it turns out that this algorithm failed to converge. Following the
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recommendation given in Wolfe (1978, p. 233-246), we then applied one of the

modifications of the Gauss-Newton namely the Lavenberg-Marquardt with the

Fletcher’s algorithm on this problem. This Lavenberg-Marquardt algorithm is

more robust than the Gauss-Newton algorithm and is reasonably efficient and

reliable for all the least-squares problem. However, it tends to be a bit slower

than the Gauss-Newton algorithm.

Our nonlinear least square problem consists in finding the vector x for

which the function S : R2(n+m)+5 → R1 defined by the sum of squares

S(x) = fTf =

2(n+m)+5∑
i=1

(fi(x))2

is minimal. Here, x stands for the 2(n+m)+1 vector (Re x01, Re x02, ..., Re x0n,

Re x11, Re x12, ..., Re x1m, Im x01, Im x02, ..., Im x0n, Im x11, Im x12, ..., Im x1m,

µ1), and f = (f1, f2, ..., f2(n+m)+5).

The Lavenberg-Marquardt algorithm is an iterative procedure with

starting value denoted as x0. This initial approximation, which, if at all possible,

should be well-informed guess and generate a sequence of approximations x1, x2,

x3, ... base on the formula

xk+1 = xk −H(xk)f(xk), λk ≥ 0, (5.56)

where H(xk) = ((Jf (xk))
TJf (xk) + λkI)−1(Jf (xk))

T.

Our strategy for getting the initial estimation x0 is based on (4.27) and

(4.28) which upon differentiating, we obtain

φ0(t) = f ′(z0(t))z
′
0(t) = iθ′0(t)e

iθ0(t),

φ1(t) = f ′(z1(t))z
′
1(t) = µ1iθ

′
1(t)e

iθ1(t).

For initial estimation, we assume θ0(t) = θ1(t) = t which implies θ′0(t) =

θ′1(t) = 1 and choose µ1 = 0.5 as our initial guess of the inner radius. In all our
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experiments, we have chosen the number of collocation points on Γ0 and Γ1 being

equal, i.e., n = m. Having solved the system of equations for the unknown

functions φ0(t) = |z′0(t)|T (z0(t))f
′(z0(t)), φ1(t) = |z′1(t)|T (z1(t))f

′(z1(t)) and

µ1, the boundary correspondence functions θ0(t) and θ1(t) are then computed

approximately by the formulas

θ0(t) = Arg f(z0(t)) ≈ Arg (−iφ0(t)),

θ1(t) = Arg f(z1(t)) ≈ Arg (−iφ1(t)).

We note that the numerical implementation described here are basically the same

as in Mohamed and Murid (2007b) but with set of conditions different from (5.36)

to (5.40).

Once the boundary values of the mapping function f are known, the values

of the mapping function can be calculated by quadrature at any interior points of

its domain of definition through Cauchy’s integral formula for doubly connected

region which read as follows:

Theorem 5.1 (Cauchy’s Integral Formula)

Let f be analytic on the boundaries Γ = Γ0 ∪ Γ1 and the region Ω bounded by Γ0

and Γ1. If ζ is any point on Ω, then

f(ζ) =
1

2πi

∫

Γ

f(z)

z − ζ
dz

=
1

2πi

∫

Γ0

f(z)

z − ζ
dz − 1

2πi

∫

−Γ1

f(z)

z − ζ
dz. (5.57)

The Cauchy’s integral formula (5.57) can be also written in the

parametrized form, i.e.

f(ζ) =
1

2πi

∫ β0

0

f(z0(t))z
′
0(t)

z0(t)− ζ
dt− 1

2πi

∫ β1

0

f(z1(t))z
′
1(t)

z1(t)− ζ
dt. (5.58)

By using of (4.27) and (4.28), the Cauchy’s integral formula (5.57) can

then be written in the form

f(ζ) =
1

2πi

∫ β0

0

eiθ0(t)z′0(t)
z0(t)− ζ

dt− 1

2πi

∫ β1

0

µ1e
iθ1(t)z′1(t)

z1(t)− ζ
dt. (5.59)
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For the points which are not close to the boundary, the integrands are well

behaved. However for the points near the boundary, the numerical integration

is inaccurate due to the influence of the singularity. This difficulty is overcome

through the introduction of an iterative technique as given in Swarztrauber (1972,

p. 303). If we define f0(ζ) to be f(z) where z is a point on the boundary which

is closest to ζ, then we can define

fk+1(ζ) =
1

2πi

∫

Γ

f(z)− fk(ζ)

z − ζ
dz + fk(ζ). (5.60)

In practice the iteration converges rapidly. Using this technique, we are able to

maintain the same accuracy throughout the region Ω.

5.3.3 Numerical Results

For numerical experiments, we have used seven common test regions based

on the examples given in Amano (1994), Ellacott (1979), and Symm (1969). All

the computations are done using MATHEMATICA package (Wolfram, 1991) in

single precision (16 digit machine precision).

There are four test regions whose exact boundary correspondence functions

are known i.e. circular frame, frame of Limacon, elliptic frame and frame of

Cassini’s oval as discussed in Section 2.5. N number of collocation points on

each boundary has been chosen. The results for the sub-norm error between

the exact values of θ0(t), θ1(t), µ1, f(ζ) and their corresponding approximations

θ0n(t), θ1n(t), µ1n, fk(ζ) are shown in Tables 5.7, 5.8, 5.10, 5.11, 5.13, 5.14, 5.16

and 5.17. We also compare our numerical results with those obtained by Amano

(1994), Symm (1969) and Ellacott (1979), though their distribution are different

from ours (see equations (5.14), (5.15) and (5.16)).

Some integral equations do not involve the modulus µ−1
1 of the given

doubly connected region such as the Warschawski’s and Gershgorin’s integral
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equations (See Section 2.6.6). In such cases, the functions θ0(t), θ1(t) are

determined first. Then, the modulus is computed using formula (2.14)

Log
1

µ1

= Log

∣∣∣∣
z0(0)− ω

z1(0)− ω

∣∣∣∣−
1

2π

∫ β0

0

Re
z′0(t)

z0(t)− ω
θ0(t)dt

+
1

2π

∫ β1

0

Re
z′1(t)

z1(t)− ω
θ1(t)dt, (5.61)

for ω is a any arbitrary point z interior to Γ1.

In this thesis we have used our computed solutions θ0n(t) and θ1n(t) to

approximate µ1, represented by µ∗1n, based on the formula (5.61). Since θ0n(t)

and θ1n(t) are computed based on Nyström’s method with trapezoidal rule, the

approximation µ∗1n is calculated by means of

Log
1

µ∗1n

= Log

∣∣∣∣
z0(0)− ω

z1(0)− ω

∣∣∣∣−
1

n

n∑
i=1

Re
z′0(ti)

z0(ti)− ω
θ0(ti)

+
1

n

n∑
i=1

Re
z′1(ti)

z1(ti)− ω
θ1(ti). (5.62)

The error norm ‖µ1 − µ∗1n‖ are also displayed in the tables.

Example 5.4. Frame of Cassini’s Oval:

Γ0 : z(t) =

√
b2
0 cos 2t +

√
a4

0 − b4
0 sin2 2t eit, a0 > 0, b0 > 0,

Γ1 : z(t) =

√
b2
1 cos 2t +

√
a4

1 − b4
1 sin2 2t eit, a1 > 0, b1 > 0, 0 ≤ t ≤ 2π.

The exact mapping function is

f(z) =
a0z√

b2
0z

2 + a4
0 − b4

0

, µ1 =
a0b1

a1b0

.

Figure 5.4 shows the region and image based on our method. Tables 5.7,

5.8 and 5.9 show our results together with the results of Amano (1994) and Symm

(1969).
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Figure 5.4: Frame of Cassini’s Oval : a rectangular grid in Ω with grid size 0.25

and its image with a0 = 2
√

14, a1 = 2, b0 = 7, and b1 = 1.

Table 5.7: Error Norm (Frame of Cassini’s oval) using our method

N minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞
16 3.2(−28) 6.3(−03) 1.9(−03)

32 3.1(−28) 6.0(−05) 1.6(−05)

64 7.2(−30) 3.2(−08) 1.2(−08)

128 2.3(−28) 1.9(−08) 7.1(−09)

N ‖µ1 − µ1n‖∞ ‖µ1 − µ∗1n‖∞
16 1.5(−03) 3.7(−03)

32 1.3(−05) 2.0(−03)

64 1.8(−09) 5.4(−04)

128 0 1.3(−04)

Table 5.8: Error Norm (Interior of Frame of Cassini’s oval) using our method

N ‖fk(ζ)− f(ζ)‖∞
32 9.3(−05)

64 3.8(−08)

128 1.1(−08)



84

Table 5.9: Error Norm (Frame of Cassini’s oval) using Amano’s method and

Symm’s method

Amano’s Method Symm’s Method

N EM EA N EM

16 9.1(−03) 9.7(−03) 64 1.94(−02)

32 3.4(−04) 3.8(−04) 128 3.00(−03)

64 6.9(−07) 5.0(−08) 256 7.00(−04)

128 7.7(−11) 7.7(−11)

Example 5.5. Elliptic Frame:

Γ0 : z(t) = a0 cos t + i b0 sin t, a0 > 0, b0 > 0,

Γ1 : z(t) = a1 cos t + i b1 sin t, a1 > 0, b1 > 0, 0 ≤ t ≤ 2π.

The exact mapping function is

f(z) =
z +

√
z2 − (a2

0 − b2
0)

a0 + b0

, µ1 =
a1 + b1

a0 + b0

.

Figure 5.5 shows the region and image based on our method. Tables 5.10,

5.11 and 5.12 show our results together with the results of Amano (1994) and

Symm (1969).
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Figure 5.5: Elliptic Frame : a rectangular grid in Ω with grid size 0.25 and its

image with a0 = 7, a1 = 5, b0 = 5 and b1 = 1.
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Table 5.10: Error Norm (Elliptic Frame) using our method

N minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞
16 5.6(−31) 2.3(−03) 6.6(−03)

32 2.8(−19) 3.5(−06) 9.9(−06)

64 3.2(−29) 1.9(−08) 1.7(−08)

128 4.9(−30) 7.6(−09) 6.7(−09)

N ‖µ1 − µ1n‖∞ ‖µ1 − µ∗1n‖∞
16 2.0(−03) 9.4(−03)

32 3.0(−06) 1.1(−03)

64 7.0(−12) 1.9(−04)

128 5.6(−17) 4.7(−05)

Table 5.11: Error Norm (Interior of Elliptic Frame) using our method

N ‖fk(ζ)− f(ζ)‖∞
32 1.2(−04)

64 3.1(−08)

128 3.3(−09)

Table 5.12: Error norm (Elliptic frame) using Amano’s method and Symm’s

method

Amano’s Method Symm’s Method

N EM EA N EM

16 2.8(−02) 3.8(−03) 64 2.52(−02)

32 3.2(−03) 7.0(−04) 128 3.90(−03)

64 8.4(−05) 2.7(−05) 256 6.00(−04)

128 1.2(−07) 1.8(−07)



86

Example 5.6. Frame of Limacon:

Γ0 : z(t) = a0 cos t + b0 cos 2t + i(a0 sin t + b0 sin 2t), a0 > 0, b0 > 0,

Γ1 : z(t) = a1 cos t + b1 cos 2t + i(a1 sin t + b1 sin 2t), a1 > 0, b1 > 0.

The exact mapping function is

f(z) =

√
a2

0 + 4b0z − a0

2b0

, µ1 =
a1

a0

.

Figure 5.6 shows the region and image based on our method. Table 5.13,

5.14, and 5.15 show our results together with the result of Symm (1969).
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Figure 5.6: Frame of Limacons : a rectangular grid in Ω with grid size 0.4 and

its image with a0 = 10, a1 = 5, b0 = 3 and b1 = b0/4.
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Table 5.13: Error Norm (Frame of Limacon) using our method

N minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞
8 1.1(−12) 7.4(−04) 4.8(−04)

16 1.3(−24) 4.2(−06) 1.5(−06)

32 7.5(−30) 7.3(−11) 2.5(−11)

64 6.8(−29) 8.9(−16) 8.9(−16)

N ‖µ1 − µ1n‖∞ ‖µ1 − µ∗1n‖∞
8 4.1(−03) 1.7(−03)

16 1.5(−05) 4.1(−04)

32 2.4(−10) 1.0(−04)

64 0 2.6(−05)

Table 5.14: Error Norm (Interior of Frame of Limacon) using our method

N ‖fk(ζ)− f(ζ)‖∞
32 1.5(−10)

64 3.4(−14)

Table 5.15: Error Norm (Frame of Limacon) using Symm’s method

N 64 128 256

EM 6.3(−03) 1.0(−03) 2.0(−04)

Example 5.7. Circular Frame:

Γ0 : z(t) = eit,

Γ1 : z(t) = c + ρeit, 0 ≤ t ≤ 2π.
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The exact mapping function is

f(z) =
z − λ

λz − 1
, λ =

2c

1 + (c2 − ρ2) +
√

(1− (c− ρ)2)(1− (c + ρ)2)
,

µ1 =
2ρ

1− (c2 − ρ2) +
√

(1− (c− ρ)2)(1− (c + ρ)2)
.

Figure 5.7 shows the region and image based on our method. Tables 5.16

and 5.17 show the results.
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Figure 5.7: Circular Frame : a rectangular grid in Ω with grid size 0.05 and its

image with c = 0.3 and ρ = 0.1.

Table 5.16: Error Norm (Circular Frame) using our method

N minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞
4 1.6(−07) 5.1(−02) 1.1(−01)

8 2.4(−14) 8.7(−04) 1.7(−04)

16 8.7(−29) 1.3(−07) 2.5(−08)

32 1.6(−30) 1.3(−15) 8.9(−16)

N ‖µ1 − µ1n‖∞ ‖µ1 − µ∗1n‖∞
4 2.6(−03) 1.6(−02)

8 3.7(−05) 3.7(−03)

16 4.7(−09) 8.8(−04)

32 4.2(−17) 2.2(−04)
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Table 5.17: Error Norm (Interior of Circular Frame) using our method

N ‖fk(ζ)− f(ζ)‖∞
16 4.6(−08)

32 2.7(−12)

64 1.6(−15)

Example 5.8. Ellipse/Ellipse:

Γ0 : z(t) = 2 cos t + i sin t,

Γ1 : z(t) = cos t + i 0.5 sin t, 0 ≤ t ≤ 2π.

We have adopted this example problem from Ellacott (1979) with µE =

0.5650 for comparison. See Table 5.18 for radius comparisons. Figure 5.8 shows

the region and its image based on our method.
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Figure 5.8: Ellipse/Ellipse : a rectangular grid in Ω with grid size 0.25 and its

image.
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Table 5.18: The radius comparison for ellipse/ellipse

minimal Value of Radius Comparison

N S(x) µ µ− µE

8 2.6(−25) 0.598436 3.3(−02)

16 5.1(−31) 0.5648148 1.9(−04)

32 3.0(−30) 0.5645690618 4.3(−04)

64 9.3(−30) 0.564569038602491 4.3(−04)

Example 5.9. Ellipse/Circle:

Γ0 : z(t) = 2 cos t + i sin t,

Γ1 : z(t) = 0.5 (cos t + i sin t), 0 ≤ t ≤ 2π.

We have adopted this example problem from Ellacott (1979) with µE =

0.4141 for comparison. See Table 5.19 for radius comparisons. Figure 5.9 shows

the region and its image based on our method.
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Figure 5.9: Ellipse/circle : a rectangular grid in Ω with grid size 0.25 and its

image.
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Table 5.19: The radius comparison for ellipse/circle

minimal Value of Radius Comparison

N S(x) µ µ− µE

8 5.3(−31) 0.469081 5.5(−02)

16 8.6(−31) 0.4156028 1.5(−03)

32 2.1(−30) 0.4141208357 2.1(−05)

64 6.4(−30) 0.414119807861178 2.0(−05)

Example 5.10. Elliptical Region with Circular Hole:

Γ0 = {(x, y) : (x +
1

2
a0)

2/a2
0 + y2 = 1},

Γ1 = {(x, y) : x2 + y2 =
1

9
a2

0}, 1 < a0 ≤ 2.

We have adopted this example problem from Papamichael and Warby

(1984) for comparison of µ1. Since the conditions of the problem are somewhat

different, A = w : µ1 < |w| < 1 in ours and AP = w : 1 < |w| < M in

Papamichael and Warby (1984), our radius µ1 should be multiplied by M for

comparison (See Table 5.21). In Table 5.20, we list the computed approximations

of µ1 based on our method and the computed approximations to the modulus M

based on Papamichael and Warby method. The notation EN that is used by

Papamichael and Warby is defined as (5.16). Figure 5.10 shows the region and

its image based on our method.
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Figure 5.10: Elliptical region with circular hole : a rectangular grid in Ω with

grid size 0.05 and its image with a0 = 2.0.

Table 5.20: The computed approximations of µ and M for elliptical region with

circular hole

Our Method Papamichael and Warby Method

a0 µ M 1/M

1.04 0.4803797010444083 2.081686628 0.4803797010315426

1.08 0.4869154853494394 2.053744500 0.4869154853488348

1.20 0.5080480086200779 1.968317921 0.5080480085716803

1.40 0.5480734581257743 1.824572938 0.5480734582724585

1.60 0.5938360511745342 1.683966719 0.5938359640467455

1.80 0.6455396040618699 1.549091634 0.6455396040180280

2.00 0.7043817963288784 1.419684616 0.7043817963017217

5.4 Conformal Mapping of Triply Connected Regions onto an

Annulus with a Circular Slit Via the Neumann Kernel

5.4.1 A System of Integral Equations

Suppose Ω is a triply connected region bounded by Γ0, Γ1 and Γ2 (see

Figure 4.3 with M = 2). For the special case where Ω is a triply connected

regions being mapped onto an annulus with a concentric circular slit, the single
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Table 5.21: The radius comparison for elliptical region with circular hole

a0 N minimal S(x) ‖µ1 ×M − 1‖∞ N EN

1.04 32 5.1(−12) 3.3(−06) 31 2.1(−05)

1.08 32 3.2(−12) 2.2(−06) 31 8.7(−06)

1.20 32 1.3(−13) 4.1(−07) 29 7.5(−08)

1.40 32 6.1(−17) 2.3(−08) 29 2.0(−06)

1.60 32 1.8(−13) 3.0(−06) 25 3.2(−05)

1.80 32 4.3(−10) 3.9(−05) 23 3.9(−04)

2.00 32 6.4(−06) 2.5(−04) 27 2.0(−03)

integral equation in (4.39) can be separated into a system of equations

g(z0) +

∫

Γ0

N(z0, w)g(w)|dw| −
∫

−Γ1

P0(z0, w)g(w)|dw|

−
∫

−Γ2

Q0(z0, w)g(w)|dw| = 0, z0 ∈ Γ0, (5.63)

g(z1) +

∫

Γ0

P1(z1, w)g(w)|dw| −
∫

−Γ1

N(z1, w)g(w)|dw|

−
∫

−Γ2

Q1(z1, w)g(w)|dw| = 0, z1 ∈ Γ1, (5.64)

g(z2) +

∫

Γ0

P2(z2, w)g(w)|dw| −
∫

−Γ1

Q2(z2, w)g(w)|dw|

−
∫

−Γ2

N(z2, w)g(w)|dw| = 0, z2 ∈ Γ2, (5.65)

where N is the Neumann kernel (2.22) and

g(z) = T (z)f ′(z),

P0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

µ2
1(z − w)

]
,

Q0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

µ2
2(z − w)

]
,

P1(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

1T (z)

(z − w)

]
,
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Q1(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

1

µ2
2

T (z)

(z − w)

]
,

P2(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

2T (z)

(z − w)

]
,

Q2(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

2

µ2
1

T (z)

(z − w)

]
.

As in the doubly connected case, several additional conditions are required

to help achieve uniqueness. The single-valuedness requirement on the mapping

function f(z) implies

∫

−Γ1

g(w)|dw| = 0, (5.66)

∫

−Γ2

g(w)|dw| = 0. (5.67)

The set of equations (5.63) to (5.67) does not guarantee a unique solution.

The conditions (5.21), (5.22), (5.25) and (5.26) are also valid for the triply

connected case under consideration. If the triply connected region is symmetric

with respect to the axes, we can also impose the conditions

Re [g(z1(0))] = 0, (5.68)

Re [g(z2(0))] = 0. (5.69)

Thus the system of integral equations comprising of (5.63), (5.64), (5.65),

(5.66), (5.67) with the conditions (5.21), (5.22), (5.25), (5.26), (5.68) and (5.69)

has a unique solution.

5.4.2 Numerical Implementation

In this section we describe a numerical method for computing the mapping

function f(z), µ1 and µ2 for the case of a triply connected regions. Suppose Γ0,
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Γ1 and Γ2 be given in parametric representations as follows:

Γ0 : z = z0(t), 0 ≤ t ≤ β0,

Γ1 : z = z1(t), 0 ≤ t ≤ β1,

Γ2 : z = z2(t), 0 ≤ t ≤ β2.

Then the system of integral equations (5.63), (5.64), (5.65), (5.66), (5.67), (5.25)

and (5.26) become

g(z0(t)) +

∫ β0

0

N(z0(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

P0(z0(t), z1(s))g(z1(s))|z′1(s)|ds

−
∫ β2

0

Q0(z0(t), z2(s))g(z2(s))|z′2(s)|ds = 0, z0(t) ∈ Γ0, (5.70)

g(z1(t)) +

∫ β0

0

P1(z1(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

N(z1(t), z1(s))g(z1(s))|z′1(s)|ds

−
∫ β2

0

Q1(z1(t), z2(s))g(z2(s))|z′2(s)|ds = 0, z1(t) ∈ Γ1, (5.71)

g(z2(t)) +

∫ β0

0

P2(z2(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

Q2(z2(t)), z1(s))g(z1(s))|z′1(s)|ds

−
∫ β2

0

N(z2(t), z2(s))g(z2(s))|z′2(s)|ds = 0, z2(t) ∈ Γ2, (5.72)

∫ β1

0

g(z1(s))|z′1(s)|ds = 0, (5.73)

∫ β2

0

g(z2(s))|z′2(s)|ds = 0, (5.74)

∫ β0

0

|g(z0(s))z
′
0(s)|ds = 2π, (5.75)

∫ β1

0

|g(z1(s))z
′
1(s)|ds = 2πµ1. (5.76)
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Multiply (5.70), (5.71) and (5.72) by |z′0(t)|, |z′1(t)| and |z′2(t)| respectively gives

|z′0(t)|g(z0(t)) +

∫ β0

0

|z′0(t)|N(z0(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

|z′0(t)|P0(z0(t), z1(s))g(z1(s))|z′1(s)|ds

−
∫ β2

0

|z′0(t)|Q0(z0(t), z2(s))g(z2(s))|z′2(s)|ds = 0, z0(t) ∈ Γ0,(5.77)

|z′1(t)|g(z1(t)) +

∫ β0

0

|z′1(t)|P1(z1(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

|z′1(t)|N(z1(t), z1(s))g(z1(s))|z′1(s)|ds

−
∫ β2

0

|z′1(t)|Q1(z1(t), z2(s))g(z2(s))|z′2(s)|ds = 0, z1(t) ∈ Γ1.(5.78)

|z′2(t)|g(z2(t)) +

∫ β0

0

|z′2(t)|P2(z2(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

|z′2(t)|Q2(z2(t)), z1(s))g(z1(s))|z′1(s)|ds

−
∫ β2

0

|z′2(t)|N(z2(t), z2(s))g(z2(s))|z′2(s)|ds = 0, z2(t) ∈ Γ2. (5.79)

We next define

φ0(t) = |z′0(t)|g(z0(t)),

φ1(t) = |z′1(t)|g(z1(t)),

φ2(t) = |z′2(t)|g(z2(t)),

K00(t0, s0) = |z′0(t)|N(z0(t), z0(s)),

K01(t0, s1) = |z′0(t)|P0(z0(t), z1(s)),

K02(t0, s2) = |z′0(t)|Q0(z0(t), z2(s)),

K10(t1, s0) = |z′1(t)|P1(z1(t), z0(s)),

K11(t1, s1) = |z′1(t)|N(z1(t), z1(s)),

K12(t1, s2) = |z′1(t)|Q1(z1(t), z2(s)),

K20(t2, s0) = |z′2(t)|P2(z2(t), z0(s)),

K21(t2, s1) = |z′2(t)|Q2(z2(t), z1(s)),

K22(t2, s2) = |z′2(t)|N(z2(t), z2(s)).
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Thus equations (5.77), (5.78), (5.79), (5.73), (5.74), (5.75) and (5.76) can be

briefly written as

φ0(t) +

∫ β0

0

K00(t0, s0)φ0(s)ds−
∫ β1

0

K01(t0, s1)φ1(s)ds

−
∫ β2

0

K02(t0, s2)φ2(s)ds = 0, z0(t) ∈ Γ0, (5.80)

φ1(t) +

∫ β0

0

K10(t1, s0)φ0(s)ds−
∫ β1

0

K11(t1, s1)φ1(s)ds

−
∫ β2

0

K12(t1, s2)φ2(s)ds = 0, z1(t) ∈ Γ1, (5.81)

φ2(t) +

∫ β0

0

K20(t2, s0)φ0(s)ds−
∫ β1

0

K21(t2, s1)φ1(s)ds

−
∫ β2

0

K22(t2, s2)φ2(s)ds = 0, z2(t) ∈ Γ2, (5.82)

∫ β1

0

φ1(s)ds = 0, (5.83)

∫ β2

0

φ2(s)ds = 0, (5.84)

∫ β0

0

|φ0(s)|ds = 2π, (5.85)

∫ β1

0

|φ1(s)|ds = 2πµ1. (5.86)

We choose β0 = β1 = β2 = 2π and n equidistant collocation points ti =

(i− 1)β0/n, 1 ≤ i ≤ n on Γ0, m equidistant collocation points t̃i = (̃i− 1)β1/m,

1 ≤ ĩ ≤ m, on Γ1 and l equidistant collocation points t̂i = (̂i− 1)β2/l, 1 ≤ î ≤ l,

on Γ2. Applying the Nyström’s method with trapezoidal rule to discretize (5.80)

to (5.86), we obtain

φ0(ti) +
β0

n

n∑
j=1

K00(ti, tj)φ0(tj)− β1

m

m∑

j̃=1

K01(ti, tj̃)φ1(tj̃)

− β2

l

l∑

ĵ=1

K02(ti, tĵ)φ2(tĵ) = 0, (5.87)

φ1(t̃i) +
β0

n

n∑
j=1

K10(t̃i, tj)φ0(tj)− β1

m

m∑

j̃=1

K11(t̃i, tj̃)φ1(tj̃)

− β2

l

l∑

ĵ=1

K12(t̃i, tĵ)φ2(tĵ) = 0, (5.88)



98

φ2(t̂i) +
β0

n

n∑
j=1

K20(t̂i, tj)φ0(tj)− β1

m

m∑

j̃=1

K21(t̂i, tj̃)φ1(tj̃)

− β2

l

l∑

ĵ=1

K22(t̂i, tĵ)φ2(tĵ) = 0, (5.89)

m∑

j̃=1

φ1(tj̃) = 0, (5.90)

l∑

ĵ=1

φ2(tĵ) = 0, (5.91)

n∑
j=1

|φ0(tj)| = n, (5.92)

m∑

j̃=1

|φ1(tj̃)| = mµ1. (5.93)

Equations (5.87) to (5.93) lead to a system of (n + m + l + 4) non-linear

complex equations in n unknowns φ0(ti), m unknowns φ1(t̃i), l unknowns φ2(t̂i),

µ1 and µ2, as well as the unknown parameters µ1 and µ2. By defining the matrix

x0i = φ0(ti), x1̃i = φ1(t̃i), x2̂i = φ2(t̂i),

Bij =
β0

n
K00(ti, tj), Cij̃ =

β1

m
K01(ti, tj̃), Diĵ =

β2

l
K02(ti, tĵ),

Eĩj =
β0

n
K10(t̃i, tj), Fĩj̃ =

β1

m
K11(t̃i, tj̃), Gĩĵ =

β2

l
K12(t̃i, tĵ),

Hîj =
β0

n
K20(t̂i, tj), Jîj̃ =

β1

m
K21(t̂i, tj̃), Lîĵ =

β2

l
K22(t̂i, tĵ),

the system of equations (5.87), (5.88) and (5.89) can be written as n + m + l by

n + m + l system of non-linear equations

[Inn + Bnn]x0n − Cnmx1m −Dnlx2l = 0, (5.94)

Emnx0n + [Imm − Fmm]x1m −Gmlx2l = 0, (5.95)

Hlnx0n − Jlmx1m + [Ill − Lll]x2l = 0. (5.96)
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The result in matrix form for the system of equations (5.94), (5.95) and (5.96) is




Inn + Bnn · · · −Cnm · · · −Dnl

...
. . .

...
. . .

...

Emn · · · Imm − Fmm · · · Gml

...
. . .

...
. . .

...

Hln · · · −Jlm · · · Ill − Lll







x0n

...

x1m

...

x2l




=




00n

...

01m

...

02l




. (5.97)

Defining

A =




Inn + Bnn · · · −Cnm · · · −Dnm

...
. . .

...
. . .

...

Emn · · · Imm − Fmm · · · −Gmm

...
. . .

...
. . .

...

Hln · · · −Jlm · · · Ill − Lll




,

x=




x0n

...

x1m

...

x2l




, and 0 =




00n

...

01m

...

02l




,

the (n+m+ l)× (n+m+ l) system can be written briefly as Ax = 0. Separating

A and x in terms of the real and imaginary parts, the system can be written as

ReARex− ImA Imx + i( ImARex + ReA Imx) = 0 + 0i. (5.98)

The single (n + m + l)× (n + m + l) complex system (5.98) can also be written

as 2(n + m + l)× 2(n + m + l) system matrix




Re A · · · Im A
...

. . .
...

Im A · · · Re A







Re x
...

Im x


 =




0
...

0


 . (5.99)
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Note however that the 2(n+m+ l)×2(n+m+ l) matrix in (5.99) contains

the unknown parameters µ1 and µ2. Since φ = Re φ + i Im φ, equations (5.90),

(5.91), (5.92), (5.93), (5.21), (5.22), (5.68) and (5.69) become

m∑

j̃=1

(Re x1j̃ + i Im x1j̃) = 0, (5.100)

l∑

ĵ=1

(Re x2ĵ + i Im x2ĵ) = 0, (5.101)

n∑
j=1

√
(Re x0j)2 + (Im x0j)2 = n, (5.102)

m∑

j̃=1

√
(Re x1j̃)

2 + (Im x1j̃)
2 = mµ1, (5.103)

Re x01 = 0, (5.104)

Im [x01/
√

(Re x01)2 + (Im x01)2] = 1, (5.105)

Re x11 = 0, (5.106)

Re x21 = 0, (5.107)

Thus a unique solution can be obtained from the system of equations (5.99)

to (5.107). This system is an over-determined system of nonlinear equations

involving 2(n + m + l) + 8 equations in 2(n + m + l) + 2 unknowns. We use a

modification of the Gauss-Newton called the Lavenberg-Marquardt algorithm to

solve this nonlinear least square problem. The Lavenberg-Marquardt algorithm

which is stated in (5.56), i.e.

xk+1 = xk −H(xk)f(xk), λk ≥ 0,

where H(xk) = ((Jf (xk))
T Jf (xk)+λkI)−1(Jf (xk))

T and Jf (x). Here, x stands for

the 2(n + m + l) + 2 vector (Re x01, Re x02, ..., Re x0n, Re x11, Re x12, ..., Re x1m,

Re x21, Re x22, ..., Re x2l, Im x01, Im x02, ..., Im x0n, Im x11, Im x12, ..., Im x1m,

Im x21, Im x22, ..., Im x2l, µ1, µ2), and f = (f1, f2, ..., f2(n+m+l)+8).

Our strategy for getting the initial estimation x0 is based on (4.27) and
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(4.28) where upon differentiating, we obtain

φ0(t) = f ′(z0(t))z
′
0(t) = iθ′0(t)e

iθ0(t),

φ1(t) = f ′(z1(t))z
′
1(t) = µ1iθ

′
1(t)e

iθ1(t),

φ2(t) = f ′(z2(t))z
′
2(t) = µ2iθ

′
2(t)e

iθ2(t).

For initial estimation, we assume θ0(t) = θ1(t) = θ2(t) = t which implies

θ′0(t) = θ′1(t) = θ′2(t) = 1 and choose µ1 = µ2 = 0.5 as our initial guess of the

inner radii. In our experiments, we have chosen the number of collocation points

on Γ0, Γ1 and Γ2 being equal, N , i.e., n = m = l. After solving this system

of equation for the unknown functions φ0(t) = |z′0(t)|T (z0(t))f
′(z0(t)), φ1(t) =

|z′1(t)|T (z1(t))f
′(z1(t)), φ2(t) = |z′2(t)|T (z2(t))f

′(z2(t)), µ1 and µ2, the boundary

correspondence functions θ0(t), θ1(t) and θ2(t) are then computed approximately

by the formulas

θ0(t) = Arg f(z0(t)) ≈ Arg (−iφ0(t)),

θ1(t) = Arg f(z1(t)) ≈ Arg (−iφ1(t)),

θ2(t) = Arg f(z2(t)) ≈ Arg (±iφ2(t)).

5.4.3 Interior of Triply Connected Region

Section 5.4.2 deal with conformal mapping on the boundary of triply

connected regions. In this section, we describe a numerical procedure for

computing the mapping of interior points. Once the boundary values of the

mapping function f are known, the values of the mapping function for triply

connected regions may be calculated by quadrature at any interior points of its

domain of definition through Cauchy’s integral formula (see Theorem 5.1).
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Let f be analytic on the boundaries Γ = Γ0 ∪ Γ1 ∪ Γ2 and the region Ω

bounded by Γ0, Γ1 and Γ2. If ζ is any point on Ω, then

f(ζ) =
1

2πi

∫

Γ

f(z)

z − ζ
dz

=
1

2πi

∫

Γ0

f(z)

z − ζ
dz − 1

2πi

∫

−Γ1

f(z)

z − ζ
dz − 1

2πi

∫

−Γ2

f(z)

z − ζ
dz.(5.108)

The Cauchy’s integral formula (5.108) can be also written in the parametrized

form, i.e.

f(ζ) =
1

2πi

∫ β0

0

f(z0(t))z
′
0(t)

z0(t)− ζ
dt− 1

2πi

∫ β1

0

f(z1(t))z
′
1(t)

z1(t)− ζ
dt

− 1

2πi

∫ β2

0

f(z2(t))z
′
2(t)

z2(t)− ζ
dt. (5.109)

By means of (4.27) and (4.28), the Cauchy’s integral formula (5.108) can then be

written in the form

f(ζ) =
1

2πi

∫ β0

0

eiθ0(t)z′0(t)
z0(t)− ζ

dt− 1

2πi

∫ β1

0

µ1e
iθ1(t)z′1(t)

z1(t)− ζ
dt

− 1

2πi

∫ β2

0

µ2e
iθ2(t)z′2(t)

z2(t)− ζ
dt. (5.110)

For the points which are not close to the boundary, the integrands are

well behaved. However for points near the boundary, the numerical integration is

inaccurate due to the influence of the singularity. This difficulty is overcome

through the introduction of an iterative technique as given in (5.60) (see

Swarztrauber (1972)).

5.4.4 Numerical Results

For numerical experiment, we have used two test regions. We have not

found any exact mapping function documented in the literature. These test

region are chosen base on the example in the Reichel (1986), Okano et al. (2003),
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Kokkinos et al. (1990) and Ellacott (1979). We have adopted the example

problem from the above literature for comparison. All the computations were

done using MATHEMATICA package (Wolfram, 1991) in single precision (16

digit machine precision).

Example 5.11. Ellipse/two circles:

Let

Γ0 : z0(t) = 2 cos t + i sin t,

Γ1 : z1(t) = 0.5 (cos t + i sin t),

Γ2 : z2(t) = 1.2 + 0.3 (cos t + i sin t), t : 0 ≤ t ≤ 2π.

We have adopted the example problems from Reichel (1986) and Kokkinos

et al. (1990) for comparison of µ1 and µ2 (see Tables 5.22 and 5.23). We obtain

the results µ1 = 0.42588654195460685 and µ2 = 0.810970795718853. Since the

conditions of the problems are somewhat different, µ0 = 1 in ours, µ0 = 1.5 in

Reichel’s and µ0 = 2 in Kokkinos et al., our radii µ1 and µ2 should be multiplied

by 1.5 and 2 respectively. Values of µ1 and µ2 in Reichel are denoted here by

µ1,R and µ2,R respectively. While the values of µ1 and µ2 in Kokkinos et al . are

denoted here by µ1,K and µ2,K respectively. Figure 5.11 shows the region and its

image based on our method.

-2 -1 1 2
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-0.5

0.5

1
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-0.5
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1

Figure 5.11: Ellipse/two circles : a rectangular grid in Ω with grid size 0.05 and

its image.
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Table 5.22: Radii comparison with Reichel (1986) for Ellipse/two circles.

minimal Radii Comparison

N S(x) ‖µ1 × 1.5− µ1,R‖∞ ‖µ2 × 1.5− µ2,R‖∞
16 3.3(−11) 1.4(−03) 1.3(−02)

32 6.8(−22) 9.8(−07) 6.6(−06)

64 1.1(−23) 8.6(−09) 4.3(−09)

Table 5.23: Radii comparison with Kokkinos et al. (1990) for Ellipse/two circles

Radii Comparison

N ‖µ1 × 2− µ1,K‖∞ ‖µ2 × 2− µ2,K‖∞
16 1.4(−03) 1.3(−02)

32 9.7(−07) 6.6(−06)

64 2.0(−09) 7.2(−10)

Example 5.12. Ellipse/Circle/Ellipse:

Let

Γ0 : z0(t) = 2 cos t + i sin t,

Γ1 : z1(t) = 0.25 (cos t + i sin t),

Γ2 : z2(t) = 1 + 0.5 cos t + 0.25 i sin t, t : 0 ≤ t ≤ 2π.

We have adopted the example problems from Ellacott (1979) for

comparison of µ1 and µ2 (see Table 5.24). We have chosen n = m = l = 64

number of collocation points. Figure 5.12 and 5.13 shows the region and its

image based on our method and Ellacott method respectively.
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Table 5.24: Radii comparison for Ellipse/two circles

Our Method Ellacott (1979)

Radius Radius ‖µp − µp,E‖∞
µ1 = 0.24061238546734354 µ1,E = 0.25 9.4(−03)

µ2 = 0.6859816257842841 µ2,E = 0.68 6.0(−03)
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Figure 5.12: Ellipse/Circle/Ellipse : a rectangular grid in Ω with grid size 0.05

and its image.

Figure 5.13: Conformal mapping of Ellipse/circles/ellipse onto an annulus with

a concentric circular slit base on Ellacott method.



CHAPTER 6

NUMERICAL CONFORMAL MAPPING OF MULTIPLY

CONNECTED REGIONS ONTO A DISK WITH CIRCULAR SLITS

6.1 Introduction

We have shown in Chapter 5 that the proposed method for the

numerical conformal mapping of multiply connected regions onto an annulus

with circular slits via the Kerzman-Stein and the Neumann kernels can produced

approximations of high accuracy. In this chapter, we shall discuss numerical

aspects of conformal mapping of multiply connected regions onto a disk with

circular slits based on the integral equation developed in Chapter 4.

6.2 Conformal Mapping of Doubly Connected Regions onto a Disk

with a Circular Slit Via the Neumann Kernel

6.2.1 A System of Integral Equations

Suppose Ω is a doubly connected region bounded by Γ0 and Γ1 (see Figure

4.4 with M = 1). For the special case where Ω is a doubly connected region being
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mapped onto a disk with a circular slit, the single integral equation in (4.58) can

be separated into a system of equations

g(z0, a) +

∫

Γ0

N(z0, w)g(w, a)|dw| −
∫

−Γ1

P0(z0, w)g(w, a)|dw|

= r2h(a, z0), z0 ∈ Γ0, (6.1)

g(z1, a) +

∫

Γ0

P1(z1, w)g(w, a)|dw| −
∫

−Γ1

N(z1, w)g(w, a)|dw|

= µ2
1r

2h(a, z1), z1 ∈ Γ1, (6.2)

where

g(z, a) = f ′(a)T (z)f ′(z),

h(a, z) = − T (z)

(a− z)2
,

P0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

µ2
1(z − w)

]
,

P1(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

1T (z)

(z − w)

]
,

N(z, w) =





1

2πi

[
T (z)

z − w
− T (z)

z − w

]
, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]
|z′(t)|3 , if w = z ∈ Γ.

The kernel N is also known as Neumann kernel.

Note that there are four unknown quantities in the integral equations (6.1)

and (6.2), namely, g(z0, a), g(z1, a), r and µ1. Naturally it is also required that the

unknown mapping function f(z) be single-valued in the problem domain (Henrici,

1986), i.e. ∫

−Γ1

f ′(w)dw = 0, (6.3)

which implies ∫

−Γ1

g(w, a)|dw| = 0. (6.4)

Several conditions can be obtained to help achieve uniqueness. We first

consider equation (4.47). Upon differentiation and taking modulus to both sides
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of equation (4.47), gives

|f ′(a)T (z0(t))f
′(z0(t))z

′
0(t)| = |f ′(a)T (z0(t))re

iθ0(t)iθ′0(t)|
= f ′(a)r|θ′0(t)|. (6.5)

Since the boundary correspondence function θ0(t) is an increasing monotone

function and it’s derivative is positive, this implies |θ′0(t)| = θ′0(t). Upon

integrating (6.5) with respect to t form 0 to 2π gives

∫ 2π

0

|g(z0(t), a)z′0(t)|dt = f ′(a) r

∫ 2π

0

θ′0(t)dt = f ′(a) r 2π. (6.6)

Next we consider the Cauchy integral formula

f ′(a) =
1

2πi

∫

Γ

f ′(z)

z − a
dz =

1

2πi

∫

Γ0

f ′(z)

z − a
dz − 1

2πi

∫

−Γ1

f ′(z)

z − a
dz, (6.7)

which implies

f ′(a)2 =
1

2πi

∫ 2π

0

f ′(a)f ′(z0(t))z
′
0(t)

z0(t)− a
dt− 1

2πi

∫ 2π

0

f ′(a)f ′(z1(t))z
′
1(t)

z1(t)− a
dt. (6.8)

We have two possibilities: set a value for f ′(a) and treat r as unknown, or

set a value of r and treat f ′(a) as unknown. Thus the system of integral equations

comprising of (6.1), (6.2), (6.4) with the conditions (6.6) and (6.7) will lead to a

unique solution. In the following section, we show the numerical implementation

and numerical results with the value of f ′(a) predetermined.

6.2.2 Numerical Implementation

Suppose Γ0 and Γ1 be given in parametric representations as follows:

Γ0 : z = z0(t), 0 ≤ t ≤ β0,

Γ1 : z = z1(t), 0 ≤ t ≤ β1.
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Then the system of integral equations (6.1), (6.2) and (6.4) become

g(z0(t), a) +

∫ β0

0

N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

P0(z0(t), z1(s))g(z1(s), a)|z′1(s)|ds = r2h(a, z0(t)),

z0(t) ∈ Γ0, (6.9)

g(z1(t), a) +

∫ β0

0

P1(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds = r2µ2
1h(a, z1(t)),

z1(t) ∈ Γ1, (6.10)∫ β1

0

g(z1(s), a)|z′1(s)|ds = 0. (6.11)

Multiply (6.9) and (6.10) by |z′0(t)| and |z′1(t)| respectively gives

|z′0(t)|g(z0(t), a) +

∫ β0

0

|z′0(t)|N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

|z′0(t)|P0(z0(t), z1(s))g(z1(s), a)|z′1(s)|ds

= r2|z′0(t)|h(a, z0(t)), z0(t) ∈ Γ0, (6.12)

|z′1(t)|g(z1(t), a) +

∫ β0

0

|z′1(t)|P1(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

|z′1(t)|N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds

= r2µ2
1|z′1(t)|h(a, z1(t)), z1(t) ∈ Γ1. (6.13)

Defining

φ0(t) = |z′0(t)|g(z0(t), a),

φ1(t) = |z′1(t)|g(z1(t), a),

γ0(t) = r2|z′0(t)|h(a, z0(t)),

γ1(t) = r2µ2
1|z′1(t)|h(a, z1(t)),

K00(t0, s0) = |z′0(t)|N(z0(t), z0(s)),

K01(t0, s1) = |z′0(t)|P0(z0(t), z1(s)),

K10(t1, s0) = |z′1(t)|P1(z1(t), z0(s)),

K11(t1, s1) = |z′1(t)|N(z1(t), z1(s)),
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the system of equations (6.12), (6.13), (6.11), (6.6) and (6.8) can be briefly written

as

φ0(t) +

∫ β0

0

K00(t0, s0)φ0(s)ds−
∫ β1

0

K01(t0, s1)φ1(s)ds = γ0(t), (6.14)

φ1(t) +

∫ β0

0

K10(t1, s0)φ0(s)ds−
∫ β1

0

K11(t1, s1)φ1(s)ds = γ1(t), (6.15)

∫ β1

0

φ1(s)ds = 0, (6.16)

∫ β0

0

|φ0(s)|ds = f ′(a)r2π, (6.17)

1

2πi

∫ β0

0

φ0(s)

z0(s)− a
ds− 1

2πi

∫ β1

0

φ1(s)

z1(s)− a
ds = f ′(a)2. (6.18)

Since the functions φ, γ, and K in the above systems are β-periodic, a

reliable procedure for solving (6.14) to (6.18) numerically is using the Nyström’s

method with trapezoidal rule (Atkinson, 1976). We choose β0 = β1 = 2π and n

equidistant collocation points ti = (i−1)β0/n, 1 ≤ i ≤ n on Γ0 and m equidistant

collocation points tı = (ı − 1)β1/m, 1 ≤ ı ≤ m, on Γ1. Applying the Nyström’s

method with trapezoidal rule to discretize (6.14) to (6.18), we obtain

φ0(ti) +
β0

n

n∑
j=1

K00(ti, tj)φ0(tj)− β1

m

m∑
=1

K01(ti, t)φ1(t) = γ0(ti), (6.19)

φ1(tı) +
β0

n

n∑
j=1

K10(tı, tj)φ0(tj)− β1

m

m∑
=1

K11(tı, t)φ1(t) = γ1(tı), (6.20)

m∑
=1

φ1(t) = 0, (6.21)

n∑
j=1

|φ0(tj)| = f ′(a)rn, (6.22)

1

ni

n∑
j=1

1

z0(tj)− a
φ0(tj)− 1

mi

m∑
=1

1

z1(t)− a
φ1(t) = f ′(a)2. (6.23)

Equations (6.19) to (6.23) lead to a system of (n + m + 3) non-linear

complex equations in n unknowns φ0(ti), m unknowns φ1(tı), f ′(a), r and µ1. By
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defining the matrices

x0i = φ0(ti),

x1ı = φ1(tı),

γ0i = γ0(ti),

γ1ı = γ1(tı),

Bij =
β0

n
K00(ti, tj),

Ci =
β1

m
K01(ti, t),

Eıj =
β0

n
K10(tı, tj),

Dı =
β1

m
K11(tı, t),

Fn =
1

in

n∑
j=1

1

z0(tj)− a
,

Gm =
1

im

m∑
=1

1

z1(t)− a
,

the system of equations (6.19), (6.20) and (6.23) can be written as n + m + 1 by

n + m system of equations

[Inn + Bnn]x0n − Cnmx1m = γ0n, (6.24)

Emnx0n + [Imm −Dmm]x1m = γ1m, (6.25)

Fnx0n + Gmx1m = f ′(a)2. (6.26)

Since φ = Re φ + i Im φ, equations (6.21) and (6.22) becomes

m∑
=1

(Re x1 + i Im x1) = 0, (6.27)

n∑
j=1

√
(Re x0j)2 + (Im x0j)2 = f ′(a)rn. (6.28)
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The result in matrix form for the system of equations (6.24), (6.25) and (6.26) is




Inn + Bnn · · · −Cnm

...
. . .

...

Emn · · · Imm −Dmm

...
. . .

...

Fn · · · Gm







x0n

...

x1m


 =




γ0n

...

γ1m

...

f ′(a)2




. (6.29)

Defining

A =




Inn + Bnn · · · −Cnm

...
. . .

...

Emn · · · Imm −Dmm

...
. . .

...

Fn · · · Gm




,x=




x0n

...

x1m


 and y =




γ0n

...

γ1m

...

f ′(a)2




,

the (n + m + 1)× (n + m) system can be written briefly as Ax = y. Separating

A, x and y in terms of the real and imaginary parts, the system can be written

as

ReARex− ImA Imx + i( ImARex + ReA Imx) = Rey + i Imy. (6.30)

The single (n + m + 1) × (n + m) complex system (6.30) above is equivalent to

the 2(n+m+1)×2(n+m) system matrix involving the real (Re) and imaginary

(Im) of the unknown functions, i.e.,




Re A · · · Im A
...

. . .
...

Im A · · · Re A







Re x
...

Im x


 =




Re y
...

Im y


 . (6.31)

Note that the matrix in (6.31) contains the unknown parameters r and

µ1. The value of f ′(a) is predetermined. The system of equations (6.31), (6.27)

and (6.28) is an over-determined system of non-linear equations involving 2(n +

m + 1) + 2 equations in 2(n + m) + 2 unknowns.
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We use a modification of the Gauss-Newton called the Lavenberg-

Marquardt with the Fletcher’s algorithm to solve this nonlinear least square

problem. Our nonlinear least square problem consists in finding the vector x

for which the function S : R2(n+m)+4 → R1 defined by the sum of squares

S(x) = fTf =

2(n+m)+4∑
i=1

(fi(x))2

is minimal. Here, x stands for the 2(n+m)+2 vector (Re x01, Re x02, ..., Re x0n,

Re x11, Re x12, ..., Re x1m, Im x01, Im x02, ..., Im x0n, Im x11, Im x12, ..., Im x1m,

µ1, r), and f = (f1, f2, ..., f2(n+m+1)+2). The Lavenberg-Marquardt algorithm is an

iterative procedure with starting value denoted as x0. This initial approximation,

which, if at all possible, should be well-informed guess and generate a sequence

of approximations x1, x2, x3, ... base on the formula (5.56) i.e.

xk+1 = xk −H(xk)f(xk), λk ≥ 0,

where H(xk) = ((Jf (xk))
TJf (xk) + λkI)−1(Jf (xk))

T.

The strategy for getting the initial estimation is to provide rough estimates

of the slit radius, µ ≈ 0.5, r = 1 and set f ′(a) = 1 for the test region. Then

the non-linear system of equations (6.29) and (6.27) reduces to over-determined

linear system. Writing the over-determined system as Bx = y, we use the least-

squares solutions of Bx = y which are precisely the solutions of BTBx = BTy

(Johnson et al., 1998). The solutions are then taken as initial estimation. These

initial guesses are applied for the lowest number of n and m of our experiments.

In all our experiments, we have chosen the number of collocation points on Γ0

and Γ1 being equal, i.e., n = m. The information from the solution of µ1 and r

of lower n is then exploited as an estimate of µ1 and r for the next 2n number of

collocations points.

The system of equations (6.31) with (6.27) and (6.28) are then solved for

the unknown functions

φ0(t) = |z′0(t)|f ′(a)T (z0(t))f
′(z0(t)),
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φ1(t) = |z′1(t)|f ′(a)T (z1(t))f
′(z1(t)),

µ and r. Finally the boundary correspondence functions θ0(t) and θ1(t) are

computed approximately by the formulas

θ0(t) = Arg f(z0(t)) ≈ Arg(−iφ0(t)),

θ1(t) = Arg f(z1(t)) ≈ Arg(±iφ1(t)).

6.2.3 The Interior Mapping

Once the boundary values of the mapping function f are known, the values

of the mapping function may be calculated by quadrature at any interior points

of its domain of definition through Cauchy’s integral formula (see Theorem 5.1).

By using (4.47) and (4.48), the Cauchy’s integral formula (5.57) can then

be written in the form

f(ζ) =
1

2πi

∫ β0

0

reiθ0(t)z′0(t)
z0(t)− ζ

dt− 1

2πi

∫ β1

0

µ1re
iθ1(t)z′1(t)

z1(t)− ζ
dt, (6.32)

where ζ is any point on Ω.

For the points which are close to the boundary, we use the iterative

technique as given in equation (5.60). In practice the iteration converges rapidly.

Using this technique, we are able to maintain the same accuracy throughout the

region Ω.



115

6.2.4 Numerical Results

For numerical results, we have used five test regions whose exact boundary

correspondence functions are known as given in Section 2.5. The test regions are

annulus, frame of Limacon, elliptic frame, circular frame and frame of Cassini’s

oval. We set f ′(a) = 1 for all test regions. Note that, f(z) maps Ω conformally

onto a disk |w| < r with a circular slit of radius µ1r, where 0 < µ1 < 1. Thus

g(z) = f(z)/r maps Ω onto a disk |w| < 1 with a circular slit of radius µ1. This

implies that f and g have the same values of θ0(t), θ1(t) and µ1. The results for

the sub-norm error between the exact values of θ0(t), θ1(t), µ1, f(ζ) and their

corresponding approximations θ0n(t), θ1n(t), µ1n, fk(ζ) are shown in Tables 6.1

to 6.10. Figures 5.1 to 5.5 shows the regions and corresponding images based

on our method. All the computations are done using MATHEMATICA package

(Wolfram, 1991) in single precision (16 digit machine precision).

Example 6.1. Annulus:

Γ0 : z(t) = cos t + i sin t,

Γ1 : z(t) = r̃(cos t + i sin t), 0 ≤ t ≤ 2π.

The exact mapping function is

g(z) = −e2σ

θ4

(
1

2i
log z +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log z +

iπτ

2
+ iσ; q

) , 0 < σ <
πτ

2
, µ1 = e−2σ.

For the purpose of numerical comparison, we set r̃ = q = e−πτ (see Section

2.5.1) and since θ4(πτ i/2; q) = 0 (Whittaker and Watson, 1927), this implies

a = e−2σ. We have chosen τ = 0.50, and σ = 0.20. Figure 6.1 shows the region

and image based on our method. See Tables 6.1 and 6.2 for results.
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Figure 6.1: Annulus : a rectangular grid in Ω with grid size 0.05 and its image

with radius µ1 = e−2σ.

Table 6.1: Error Norm (Annulus)

n = m minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞ ‖µ1 − µ1n‖∞
16 8.4(−15) 1.9(−02) 6.3(−01) 1.7(−02)

32 2.7(−24) 5.0(−05) 8.9(−04) 2.8(−05)

64 3.5(−30) 2.4(−10) 2.3(−09) 8.2(−11)

128 2.4(−30) 8.9(−16) 7.0(−14) 2.2(−16)

Table 6.2: Error Norm (Interior of Annulus)

n = m ‖fk(ζ)− f(ζ)‖∞
32 1.8(−04)

64 3.0(−10)

128 1.3(−15)

Example 6.2. Circular Frame:

Γ0 : z(t) = eit,

Γ1 : z(t) = c + ρeit, 0 ≤ t ≤ 2π.
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The exact mapping function is

g(z) = e2σ

θ4

(
1

2i
log f(z) +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log f(z) +

iπτ

2
+ iσ; q

) , 0 < σ <
πτ

2
, µ1 = e−2σ,

with

f(z) =
z − λ

λz − 1
, λ =

2c

1 + (c2 − ρ2) +
√

(1− (c− ρ)2)(1− (c + ρ)2)
,

r̃ =
2ρ

1− (c2 − ρ2) +
√

(1− (c− ρ)2)(1− (c + ρ)2)
.

For the purpose of numerical comparison, we set r̃ = q = e−πτ and since

θ4(πτ i/2; q) = 0, this implies τ =
ln(r̃)

−π
and a =

λ− e−2σ

1− λe−2σ
. We have chosen

c = 0.3, ρ = 0.1, and σ = 0.50. Figure 6.2 shows the region and image based on

our method. See Tables 6.3 and 6.4 for results.
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Figure 6.2: Circular frame : a rectangular grid in Ω with grid size 0.05 and its

image with radius µ1 = e−2σ.

Table 6.3: Error Norm (Circular Frame)

n = m minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞ ‖µ1 − µ1n‖∞
4 1.0(−04) 1.0(−01) 5.9(−01) 4.9(−01)

8 3.6(−08) 2.3(−04) 2.0(−03) 1.6(−04)

16 2.1(−16) 1.0(−08) 4.2(−07) 2.0(−08)

32 4.6(−29) 8.9(−16) 5.1(−14) 1.8(−15)
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Table 6.4: Error Norm (Interior of Circular Frame)

n = m ‖fk(ζ)− f(ζ)‖∞
16 4.5(−06)

32 2.7(−12)

64 2.9(−15)

Example 6.3. Frame of Limacon:

Γ0 : z(t) = a0 cos t + b0 cos 2t + i(a0 sin t + b0 sin 2t), a0 > 0, b0 > 0,

Γ1 : z(t) = a1 cos t + b1 cos 2t + i(a1 sin t + b1 sin 2t), a1 > 0, b1 > 0.

The exact mapping function is

g(z) = −e2σ

θ4

(
1

2i
log f(z) +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log f(z) +

iπτ

2
+ iσ; q

) , 0 < σ <
πτ

2
, µ1 = e−2σ,

with

f(z) =

√
a2

0 + 4b0z − a0

2b0

, r̃ =
a1

a0

.

For the purpose of numerical comparison, we set r̃ = q = e−πτ and since

θ4(πτ i/2; q) = 0, this implies τ =
ln(r̃)

−π
and a =

(2b0e
−2σ + a0)

2 − a2
0

4b0

. We have

chosen a0 = 10, a1 = 5, b0 = 3, b1 = b0/4, and σ = 0.10. Figure 6.3 shows the

region and image based on our method. See Tables 6.5 and 6.6 for results.

Table 6.5: Error Norm (Frame of Limacon)

n = m minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞ ‖µ1 − µ1n‖∞
32 7.8(−10) 2.5(−02) 4.0(−02) 6.9(−03)

64 1.4(−22) 6.3(−05) 2.4(−04) 1.5(−05)

128 4.8(−28) 2.9(−10) 3.8(−09) 5.8(−11)
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Figure 6.3: Frame of Limacons : a rectangular grid in Ω with grid size 0.4 and

its image with radius µ1 = e−2σ.

Table 6.6: Error Norm (Interior of Frame of Limacon)

n = m ‖fk(ζ)− f(ζ)‖∞
32 9.2(−03)

64 5.2(−05)

128 1.1(−09)

Example 6.4. Elliptic Frame:

Γ0 : z(t) = a0 cos t + i b0 sin t, a0 > 0, b0 > 0,

Γ1 : z(t) = a1 cos t + i b1 sin t, a1 > 0, b1 > 0, 0 ≤ t ≤ 2π.

The exact mapping function is

g(z) = −e2σ

θ4

(
1

2i
log f(z) +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log f(z) +

iπτ

2
+ iσ; q

) , 0 < σ <
πτ

2
, µ1 = e−2σ,

with

f(z) =
z +

√
z2 − (a2

0 − b2
0)

a0 + b0

, r̃ =
a1 + b1

a0 + b0

.

For the purpose of numerical comparison, we set r̃ = q = e−πτ and since

θ4(πτ i/2; q) = 0, this implies τ =
ln(r̃)

−π
and a =

e−4σ(a0 + b0)
2 + (a0 − b0)

2

2e−2σ(a0 + b0)
. We

have chosen a0 = 7, a1 = 5, b0 = 5, b1 = 1, and σ = 0.15. Figure 6.4 shows the

region and image based on our method. See Tables 6.7 and 6.8 for results.
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Figure 6.4: Elliptic frame : a rectangular grid in Ω with grid size 0.25 and its

image with radius µ1 = e−2σ.

Table 6.7: Error Norm (Elliptic Frame)

n = m minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞ ‖µ1 − µ1n‖∞
16 2.0(−03) 1.6(−01) 6.4(−01) 1.7(−02)

32 6.5(−08) 8.9(−04) 2.3(−03) 3.2(−04)

64 6.2(−18) 1.0(−07) 8.7(−07) 2.8(−08)

128 1.2(−25) 1.2(−14) 3.2(−13) 1.2(−14)

Table 6.8: Error Norm (Interior of Elliptic Frame)

n = m ‖fk(ζ)− f(ζ)‖∞
32 9.4(−04)

64 2.8(−07)

128 1.2(−13)

Example 6.5. Frame of Cassini’s Oval:

Γ0 : z(t) =

√
b2
0 cos 2t +

√
a4

0 − b4
0 sin2 2t eit, a0 > 0, b0 > 0,

Γ1 : z(t) =

√
b2
1 cos 2t +

√
a4

1 − b4
1 sin2 2t eit, a1 > 0, b1 > 0, 0 ≤ t ≤ 2π.
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The exact mapping function is

g(z) = −e2σ

θ4

(
1

2i
log f(z) +

iπτ

2
− iσ; q

)

θ4

(
1

2i
log f(z) +

iπτ

2
+ iσ; q

) , 0 < σ <
πτ

2
, µ1 = e−2σ,

with

f(z) =
a0z√

b2
0z

2 + a4
0 − b4

0

, r̃ =
a0b1

a1b0

.

For the purpose of numerical comparison, we set r̃ = q = e−πτ and since

θ4(πτ i/2; q) = 0, this implies τ =
ln(r̃)

−π
and a =

√
e−4σ(a4

0 − b4
0)

a2
0 − b2

0e
−4σ

. We have chosen

a0 = 2
√

14, a1 = 2, b0 = 7, b1 = 1, and σ = 0.15. Figure 6.5 shows the region

and image based on our method. See Tables 6.9 and 6.10 for results.
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Figure 6.5: Frame of Cassini’s oval : a rectangular grid in Ω with grid size 0.25

and its image with µ1 = e−2σ.

Table 6.9: Error Norm (Frame of Cassini’s oval)

n = m minimal S(x) ‖θ0(t)− θ0n(t)‖∞ ‖θ1(t)− θ1n(t)‖∞ ‖µ1 − µ1n‖∞
32 1.2(−08) 4.0(−03) 5.0(−03) 6.0(−04)

64 2.1(−20) 1.0(−06) 1.1(−06) 1.2(−07)

128 1.1(−22) 4.9(−14) 7.5(−12) 8.4(−14)
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Table 6.10: Error Norm (Interior of Frame of Cassini’s oval)

n = m ‖fk(ζ)− f(ζ)‖∞
32 3.1(−03)

64 6.9(−07)

128 2.9(−13)

6.3 Conformal Mapping of Triply Connected Regions onto a Disk

with Circular Slits Via the Neumann Kernel

6.3.1 A System of Integral Equations

Suppose Ω is a triply connected region bounded by Γ0, Γ1 and Γ2 (see

Figure 4.4 with M = 2). For the special case where Ω is a triply connected

regions being mapped onto a disk with concentric circular slits, the single integral

equation in (4.58) can be separated into a system of equations

g(z0, a) +

∫

Γ0

N(z0, w)g(w, a)|dw| −
∫

−Γ1

P0(z0, w)g(w, a)|dw|

−
∫

−Γ2

Q0(z0, w)g(w, a)|dw| = r2h(a, z0), z0 ∈ Γ0, (6.33)

g(z1, a) +

∫

Γ0

P1(z1, w)g(w, a)|dw| −
∫

−Γ1

N(z1, w)g(w, a)|dw|

−
∫

−Γ2

Q1(z1, w)g(w, a)|dw| = µ2
1r

2h(a, z1), z1 ∈ Γ1, (6.34)

g(z2, a) +

∫

Γ0

P2(z2, w)g(w, a)|dw| −
∫

−Γ1

Q2(z2, w)g(w, a)|dw|

−
∫

−Γ2

N(z2, w)g(w, a)|dw| = µ2
2r

2h(a, z2), z2 ∈ Γ2, (6.35)

where N is as Neumann kernel (2.22) and

g(z, a) = f ′(a)T (z)f ′(a),

h(a, z) = − T (z)

(a− z)2
,

P0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

µ2
1(z − w)

]
,
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Q0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

µ2
2(z − w)

]
,

P1(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

1T (z)

(z − w)

]
,

Q1(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

1

µ2
2

T (z)

(z − w)

]
,

P2(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

2T (z)

(z − w)

]
,

Q2(z, w) =
1

2πi

[
T (z)

(z − w)
− µ2

2

µ2
1

T (z)

(z − w)

]
.

There are five unknown quantities in the integral equations (6.33), (6.34)

and (6.35), namely g(z0, a), g(z1, a), g(z2, a), µ1, µ2 and r. The single-valuedness

requirement on the mapping function f(z) implies

∫

−Γ1

g(w, a)|dw| = 0, (6.36)

∫

−Γ2

g(w, a)|dw| = 0. (6.37)

The set of equation (6.33) to (6.37) does not guarantee a unique solution.

Several conditions can be obtained to help achieve uniqueness. Suppose f maps

Ω conformally onto a unit disk with circular slits. Thus the value of r = 1.

Next we consider applying the condition f(z0(0)) = 1. From (4.49), this implies

g(z0(0), a)/|g(z0(0), a)| = i, which means

Re [g(z0(0), a)] = 0, (6.38)

Im [g(z0(0), a)/|g(z0(0), a)|] = 1. (6.39)

If the region is symmetric with respect to the axes, we can also impose

the conditions

Re [g(z1(0), a)] = 0, (6.40)

Re [g(z2(0), a)] = 0. (6.41)
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Thus the system of integral equations comprising of (6.33), (6.34), (6.35),

(6.36), (6.37) with the conditions (6.38), (6.39), (6.40) and (6.41) will lead to a

unique solution.

6.3.2 Numerical Implementation

Suppose Γ0, Γ1 and Γ2 be given in parametric representations as follows:

Γ0 : z = z0(t), 0 ≤ t ≤ β0,

Γ1 : z = z1(t), 0 ≤ t ≤ β1,

Γ2 : z = z2(t), 0 ≤ t ≤ β2.

Then the system of integral equations (6.33), (6.34), (6.35), 6.36) and 6.37)

become

g(z0(t), a) +

∫ β0

0

N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

P0(z0(t), z1(s))g(z1(s), a)|z′1(s)|ds

−
∫ β2

0

Q0(z0(t), z2(s))g(z2(s), a)|z′2(s)|ds = h(a, z0(t)),

z0(t) ∈ Γ0, (6.42)

g(z1(t), a) +

∫ β0

0

P1(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds

−
∫ β2

0

Q1(z1(t), z2(s))g(z2(s), a)|z′2(s)|ds = µ2
1h(a, z1(t)),

z1(t) ∈ Γ1, (6.43)

g(z2(t), a) +

∫ β0

0

P2(z2(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

Q2(z2(t), z1(s))g(z1(s), a)|z′1(s)|ds

−
∫ β2

0

N(z2(t), z2(s))g(z2(s), a)|z′2(s)|ds = µ2
2h(a, z2(t)),

z2(t) ∈ Γ2, (6.44)
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∫ β1

0

g(z1(s), a)|z′1(s)|ds = 0, (6.45)

∫ β2

0

g(z2(s), a)|z′2(s)|ds = 0. (6.46)

Multiply (6.42), (6.43) and (6.44) respectively by |z′0(t)|, |z′1(t)| and |z′2(t)| gives

|z′0(t)|g(z0(t), a) +

∫ β0

0

|z′0(t)|N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

|z′0(t)|P0(z0(t), z1(s))g(z1(s), a)|z′1(s)|ds

−
∫ β2

0

|z′0(t)|Q0(z0(t), z2(s))g(z2(s), a)|z′2(s)|ds

= |z′0(t)|h(a, z0(t)), z0(t) ∈ Γ0, (6.47)

|z′1(t)|g(z1(t), a) +

∫ β0

0

|z′1(t)|P1(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

|z′1(t)|N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds

−
∫ β2

0

|z′1(t)|Q1(z1(t), z2(s))g(z2(s), a)|z′2(s)|ds

= µ2
1|z′1(t)|h(a, z1(t)), z1(t) ∈ Γ1, (6.48)

|z′2(t)|g(z2(t), a) +

∫ β0

0

|z′2(t)|P2(z2(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0

|z′2(t)|Q2(z2(t), z1(s))g(z1(s), a)|z′1(s)|ds

−
∫ β2

0

|z′2(t)|N(z2(t), z2(s))g(z2(s), a)|z′2(s)|ds

= µ2
2|z′1(t)|h(a, z1(t)), z2(t) ∈ Γ2. (6.49)

We next define

φ0(t) = |z′0(t)|g(z0(t), a),

φ1(t) = |z′1(t)|g(z1(t), a),

φ2(t) = |z′2(t)|g(z2(t), a),

ϕ0(t) = |z′0(t)|h(a, z0(t)),

ϕ1(t) = µ2
1|z′1(t)|h(a, z1(t)),

ϕ2(t) = µ2
2|z′2(t)|h(a, z2(t)),
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K00(t0, s0) = |z′0(t)|N(z0(t), z0(s)),

K01(t0, s1) = |z′0(t)|P0(z0(t), z1(s)),

K02(t0, s2) = |z′0(t)|Q0(z0(t), z2(s)),

K10(t1, s0) = |z′1(t)|P1(z1(t), z0(s)),

K11(t1, s1) = |z′1(t)|N(z1(t), z1(s)),

K12(t1, s2) = |z′1(t)|Q1(z1(t), z2(s)),

K20(t2, s0) = |z′2(t)|P2(z2(t), z0(s)),

K21(t2, s1) = |z′2(t)|Q2(z2(t), z1(s)),

K22(t2, s2) = |z′2(t)|N(z2(t), z2(s)).

Thus equations (6.47), (6.48), (6.49), (6.45) and (6.46) can be briefly

written as

φ0(t) +

∫ β0

0

K00(t0, s0)φ0(s)ds−
∫ β1

0

K01(t0, s1)φ1(s)ds

−
∫ β2

0

K02(t0, s2)φ2(s)ds = ϕ0(t), (6.50)

φ1(t) +

∫ β0

0

K10(t1, s0)φ0(s)ds−
∫ β1

0

K11(t1, s1)φ1(s)ds

−
∫ β2

0

K12(t1, s2)φ2(s)ds = ϕ1(t), (6.51)

φ2(t) +

∫ β0

0

K20(t2, s0)φ0(s)ds−
∫ β1

0

K21(t2, s1)φ1(s)ds

−
∫ β2

0

K22(t2, s2)φ2(s)ds = ϕ2(t), (6.52)

∫ β1

0

φ1(s)ds = 0, (6.53)

∫ β2

0

φ2(s)ds = 0. (6.54)

We choose β0 = β1 = β2 = 2π and n equidistant collocation points ti =

(i− 1)β0/n, 1 ≤ i ≤ n on Γ0, m equidistant collocation points t̃i = (̃i− 1)β1/m,

1 ≤ ı ≤ m, on Γ1 and l equidistant collocation points t̂i = (̂i− 1)β2/l, 1 ≤ î ≤ l,
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on Γ2. Applying the Nyström’s method with trapezoidal rule to discretize (6.50)

to (6.54), we obtain

φ0(ti) +
β0

n

n∑
j=1

K00(ti, tj)φ0(tj)− β1

m

m∑
=1

K01(ti, t)φ1(t)

− β2

l

l∑

ĵ=1

K02(ti, tĵ)φ2(tĵ) = γ0(ti), (6.55)

φ1(tı) +
β0

n

n∑
j=1

K10(tı, tj)φ0(tj)− β1

m

m∑
=1

K11(tı, t)φ1(t)

− β2

l

l∑

ĵ=1

K12(tı, tĵ)φ2(tĵ) = γ1(tı), (6.56)

φ2(t̂i) +
β0

n

n∑
j=1

K20(t̂i, tj)φ0(tj)− β1

m

m∑
=1

K21(t̂i, t)φ1(t)

− β2

l

l∑

ĵ=1

K22(t̂i, tĵ)φ2(tĵ) = γ2(t̂i), (6.57)

m∑
=1

φ1(t) = 0, (6.58)

m∑

ĵ=1

φ2(tĵ) = 0. (6.59)

Equations (6.55) to (6.59) lead to a system of (n + m + l + 2) non-linear

complex equations in n unknowns φ0(ti), m unknowns φ1(tı), l unknowns φ2(t̂i),

as well as the unknown parameters µ1 and µ2. By defining the matrices

x0i = φ0(ti), x1ı = φ1(tı),

x2̂i = φ2(t̂i), ϕ0i = ϕ0(ti),

ϕ1ı = ϕ1(tı), ϕ2̂i = ϕ2(t̂i),

Bij =
β0

n
K00(ti, tj), Ci =

β1

m
K01(ti, t),

Diĵ =
β1

l
K02(ti, tĵ), Eıj =

β0

n
K10(tı, tj),

Fı =
β1

m
K11(tı, t), Gıĵ =

β1

l
K12(tı, tĵ),

Hîj =
β0

n
K20(t̂i, tj), Jî =

β1

m
K21(t̂i, t),

Lîĵ =
β1

l
K22(t̂i, tĵ),
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the system of equations (6.55), (6.56) and (6.57) can be written as n + m + l by

n + m + l system of equations

[Inn + Bnn]x0n − Cnmx1m −Dnlx2l = ϕ0n, (6.60)

Emnx0n + [Imm − Fmm]x1m −Gmlx2l = ϕ1m, (6.61)

Hlnx0n − Jlmx1m + [Ill − Lll]x2l = ϕ2l. (6.62)

The result in matrix form for the system of equations (6.60), (6.61) and

(6.62) is




Inn + Bnn · · · −Cnm · · · −Dnl

...
. . .

...
. . .

...

Emn · · · Imm − Fmm · · · Gml

...
. . .

...
. . .

...

Hln · · · −Jlm · · · Ill − Lll







x0n

...

x1m

...

x2l




=




ϕ0n

...

ϕ1m

...

ϕ2l




.

(6.63)

Defining

F =




Inn + Bnn · · · −Cnm · · · −Dnm

...
. . .

...
. . .

...

Emn · · · Imm − Fmm · · · −Gmm

...
. . .

...
. . .

...

Hln · · · −Jlm · · · Ill − Lll




,

x=




x0n

...

x1m

...

x2l




, and Y =




ϕ0n

...

ϕ1m

...

ϕ2l




,

the (n+m+ l)× (n+m+ l) system can be written briefly as Fx = Y. Separating
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F, x and Y in terms of the real and imaginary parts, the system can be written

as

ReFRex− ImF Imx + i ( ImFRex + ReF Imx) = ReY + i ImY. (6.64)

The single (n + m + l) × (n + m + l) complex system (6.64) above is

equivalent to the 2(n + m + l) × 2(n + m + l) system matrix involving the real

(Re) and imaginary (Im) of the unknown functions, i.e.,




Re F · · · Im F
...

. . .
...

Im F · · · Re F







Re x
...

Im x


 =




Re Y
...

Im Y


 . (6.65)

Note however that the 2(n + m + l)× 2(n + m + l) matrix in (6.65) contains the

unknown parameters µ1 and µ2.

Since φ = Re φ+ i Im φ, equations (6.58), (6.59), (6.38), (6.39), (6.40) and

(6.41) become

m∑
=1

(Re x1 + i Im x1) = 0, (6.66)

l∑

ĵ=1

(Re x2ĵ + i Im x2ĵ) = 0, (6.67)

Re x01 = 0, (6.68)

Im [x01/
√

(Re x01)2 + (Im x01)2] = 1, (6.69)

Re x11 = 0, (6.70)

Re x21 = 0. (6.71)

The system of equations (6.65) to (6.71) is an over-determined system of

nonlinear equations involving 2(n+m+l)+6 equations in 2(n+m+l)+2 unknowns.

We use the Lavenberg-Marquardt algorithm to solve this nonlinear least square

problem. The Lavenberg-Marquardt algorithm which is stated in (5.56). Here, x

stands for the (2n+2m+2l+2) vector (Re x01, Re x02, ..., Re x0n, Re x11, Re x12,
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..., Re x1m, Re x21, Re x22, ..., Re x2l, Im x01, Im x02, ..., Im x0n, Im x11, Im x12, ...,

Im x1m, Im x21, Im x22, ..., Im x2l, µ1, µ2), and f = (f1, f2, ..., f2(n+m+l)+6).

The strategy for getting the initial estimation is to provide rough estimates

of the slit radius, µ1 ≈ 0.8 and µ2 ≈ 0.7 for the test region. Then the non-linear

system of equations (6.63), (6.58) and (6.59) reduces to over-determined linear

system. Writing the over-determined system as Cx = ẏ, we use the least-squares

solutions of Cx = ẏ which are precisely the solutions of CTCx = CTẏ (Johnson et

al., 1998). The solutions are then taken as initial estimation. In our experiment,

we have chosen the number of collocation points on Γ0, Γ1 and Γ2 being equal,

i.e., N = n = m = l.

The system of equations (6.65) together with (6.66) to (6.71) are then

solved for the unknown function

φ0(t) = |z′0(t)|f ′(a)T (z0(t))f
′(z0(t)),

φ1(t) = |z′1(t)|f ′(a)T (z1(t))f
′(z1(t)),

φ2(t) = |z′2(t)|f ′(a)T (z2(t))f
′(z2(t)),

µ1 and µ2. Finally the boundary correspondence functions θ0(t), θ1(t) and θ2(t)

are then computed approximately by the formulas

θ0(t) = Arg f(z0(t)) ≈ Arg(−iφ0(t)),

θ1(t) = Arg f(z1(t)) ≈ Arg(±iφ1(t)).

θ2(t) = Arg f(z2(t)) ≈ Arg(±iφ2(t)).



131

6.3.3 Numerical Results

For numerical results, we have used an ellipse and two circle as a test

regions (see Figure 6.6). Let

Γ0 : z0(t) = 4 cos t + i sin t,

Γ1 : z1(t) = −1 + 0.6 (cos t + i sin t),

Γ2 : z2(t) = 1.2 + 0.3 (cos t + i sin t), t : 0 ≤ t ≤ 2π.

-4 -2 2 4

-1

-0.5

0.5

1

Figure 6.6: Ellipse/two circle

We have adopted the example from Reichel (1986) and Kokkinos et al.

(1990) for comparison of µ1 and µ2 (see Tables 6.11 and 6.12). Figure 6.7 shows

the image of the mapping based on our method. Since the conditions of the

problems are somewhat different, µ0 = 1 in ours and µ0 = 2.5 in Reichel’s and

Kokkinos et al., our radius should be multiplied by 2.5. Values of µ1 and µ2 in

Reichel are denoted here by µ1,R and µ2,R respectively. While the values of µ1

and µ2 in Kokkinos et al. are denoted here by µ1,K and µ2,K respectively. All

the computations are done using MATHEMATICA package (Wolfram, 1991) in

single precision (16 digit machine precision).

Table 6.11: Radii comparison with Reichel (1986)

N minimal S(x) ‖µ1 × 2.5− µ1,R‖∞ ‖µ2 × 2.5− µ2,R‖∞
64 2.4(−24) 1.8(−02) 6.0(−04)
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Table 6.12: Radii comparison with Kokkinos et al. (1990)

N ‖µ1 × 2.5− µ1,K‖∞ ‖µ2 × 2.5− µ2,K‖∞
64 1.8(−02) 5.9(−04)
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Figure 6.7: The image of the mapping.

We think that the accuracy can be further improved by using N = 128.

However, for triply connected regions, this leads to very large nonlinear system

involving 128× 6 + 6 = 774 equations which require more powerful computer to

handle it.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary of the Research

The main contribution of this project is the construction of some new

boundary integral equations involving the Kerzman-Stein and the Neumann

kernels for conformal mapping of multiply connected regions. The boundary

integral equations involve the unknown parameter radii. The integral equations

are used to solve numerically the problem of conformal mapping of multiply

connected regions onto an annulus with circular slits and a disk with circular

slits.

Chapter 1 contains a general introduction and overview of the research

including the research background, the scope and objectives and the project

outline of. The literature review on the ideas of conformal mapping, some

theories of the Riemann mapping function and conformal mapping of multiply

connected regions are given in Chapter 2. We also presented some well-known

exact conformal mappings of doubly connected regions for certain special regions

like annulus, circular frame, frame of limacon, frame of Cassini’s oval and elliptic

frame. These regions are used as a part of the test regions in our numerical
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implementations that had been carried out in Chapters 3, 5 and 6. Several

methods that have been proposed in the literature for the numerical conformal

mapping of doubly and multiply connected regions were discussed in the last

section of Chapter 2.

In Chapter 3, we showed how the integral equation for conformal mapping

of doubly connected regions via the Kerzman-Stein can be modified to a new

numerically tractable integral equation which also involves the unknown inner

radius, µ. However, the integral equation has no unique solution. By imposing

the uniqueness condition and discretizing the integral equation led to an over-

determined system of non-linear equations. The system obtained was the solved

simultaneously using Gauss-Newton algorithm and Lavenberg-Marquardt with

Fletcher’s algorithm for solving the non-linear least squares problems.

The main contribution of this project begin with Chapter 4 where the

boundary relationship satisfied by a function analytic in a doubly connected

region by Murid and Razali (1999) was extended to construction of the bounded

multiply connected regions. Some new boundary integral equations for conformal

mapping of multiply connected regions were constructed. Special cases of this

boundary integral equation are the conformal mapping of multiply connected

regions onto an annulus with concentric circular slits and onto a disk with

concentric circular slits. Furthermore this integral equation leads to a much

simpler derivation of a system of an integral equations developed in Chapter 3

for the case of doubly connected region onto an annulus with the Kerzman-Stein

kernel.

In Chapter 5, we used the integral equations derived in Chapter 4 to solve

numerically the problem of conformal mapping for doubly and triply connected

regions onto an annulus and an annulus with a circular slit with the Kerzman-

Stein and the Neumann kernels respectively. However, the integral equation has

no unique solution. By imposing some normalizing conditions and discretizing the
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integral equations led to an over-determined system of non-linear equations. The

system obtained was then solved simultaneously using Gauss-Newton algorithm

and Lavenberg-Marquardt algorithm. The Lavenberg-Marquardt algorithm is

more robust than the Gauss-Newton algorithm. As a general rule, if one

faced with a convergence problem with the Gauss-Newton algorithm, then it

is recommended to use the Lavenberg-Marquardt algorithm instead.

After the boundary values of the mapping function are calculated, we use

the Cauchy’s integral formula to determine the mapping function in the interior of

the regions. Numerical examples on some test regions are also presented. From

comparison for some test regions, it can be deduced that our method produce

approximation of higer accuracy than the result obtained by Amano (1994),

Ellacott (1979), Papamicheal and Warby (1984), Reichel (1986), Okano et al.

(2003), Kokkinos et al. (1990) and Symm (1969). This results have improved the

theoretical and numerical technique used in Chapter 3.

In Chapter 6, we used the integral equations constructed in Chapter 4 to

solve numerically another problem of conformal mapping of multiply connected

regions onto a disk with circular slits with Neumann kernel. The system of

integral equations obtained also involved the unknown parameter radii. For the

doubly connected regions case, the new system of integral equations is based

on a boundary integral equation satisfied by f ′(z), f ′(a), r and µ, where a is a

fixed interior point with f ′(a) predetermined. The boundary values of f(z) is

completely determined from the boundary values of f ′(z) through a boundary

relationship. Discretization of the integral equation has led to a system of non-

linear equations. Together with condition of single-valuedness, uniqueness and

the Cauchy integral formula, a unique solution to the system is then computed

by means of an optimization method called the Lavenberg-Marquadt algorithm.

The Cauchy integral formula also used to compute the interior of the regions.

Typical examples for some doubly connected regions show that numerical results

of high accuracy can be obtained for the conformal mapping problem when the

boundaries are sufficiently smooth.
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The same approach in doubly connected regions is further extended to the

case of triply connected region with different normalizing conditions to avoid the

difficulty of computing unknown parameter f ′(a). The result obtained however

does not produce a good accuracy compared to the doubly connected regions.

The advantage of our method is that it calculates the boundary

correspondence functions and the unknown parameter radii simultaneously with

same degree of accuracy. The numerical examples show the effectiveness of the

proposed method.

7.2 Suggestions for Future Research

The numerical results shown for the case of triply connected regions onto

a disk with circular slits does not produce reasonable accuracy compared to

the case of doubly connected region. Further work on improving the numerical

technique or normalizing conditions used in this project need to be carried out.

We have also tried out other methods likes the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) method, homotopy method and Gauss-Newton method to solved

our over-determined systems of non-linear equations but these methods lead

to convergence problem. The nonlinear systems are in fact expressible as

multivariate polynomial system. We think that finding suitable technique for

solving these multivariate polynomial systems that arise for conformal mapping

constitutes a good problem for future research.

The derivation of integral equations in Chapter 4 was only for two

important cannonical regions for conformal mapping of bounded multiply

connected regions i.e. a disk with concentric circular slits and an annulus with

concentric circular slits. The integral equations (4.35) and (4.56) are the same

for both canonical regions with only the right-hand side depending on the type of
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the canonical regions. Probably some extensions or modifications of the theories

are required to obtain the integral equations related to the other three important

cannonical unbounded regions, namely the circular slit regions, the radial slit

region and the the parallel slit region.

All the numerical implementation in Chapters 5 and 6 were based on

solving the system of integral equations of conformal mapping problem when

the boundaries are sufficiently smooth. More research is required to modify the

integral equations presented in this project to multiply connected region involving

corners.

With the above summary and recommendations for further research, we

conclude this project.
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