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ABSTRACT

There is a growing incentive for us to identify alternative and ideally renewable

energy sources. Among the sources, grains, plant matters (biomass) and their wastes are

commonly been used for biofuel production due to their sustainability. Oil palm empty fruit

bunch (EFB) is a type of lignocellulosic waste from palm oil mills. Fermentable sugars

mainly the glucose from EFB can be further fermented for the production of bioethanol. This

study aims to investigate the effect of the key parameters during dilute acid pretreatment and

enzymatic treatment for the hydrolysis of EFB to produce optimised yield of glucose. Three

parameters for the dilute acid pretreatment, namely the reaction temperature, acid

concentration and reaction time and two parameters for the enzymatic treatment, namely the

substrate concentration and treatment time were investigated to optimise the yield of glucose.

Batch reactions were carried out under different combination of operational conditions as

proposed by the experimental design produced by the RSM (response surface methodology).

RSM was used to optimise both the pretreatment and enzymatic processes in order to obtain

the highest glucose yield. An optimised glucose yield of 53.96 % was obtained at the

operating condition of 130 °C pretreatment temperature, 6 %w/w sulphuric acid

concentration, 37 min of pretreatment time and 96 hours of enzymatic treatment using 6 %w/v

of substrate concentration. The optimised yield has also been validated through experiment

work.
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ABSTRAK

Terdapat insentif yang semakin meningkat untuk mengenalpasti sumber tenaga

alternatif yang sebaiknya dapat diperbaharui dari semasa ke semasa (renewable). Di antara

sumber tersebut, bijirin, bahan tumbuhan (biomas) dan sisanya adalah biasa digunakan untuk

penghasilan biofuel (bahan api berasaskan biologi) kerana kepertanggungannya. Tandan

kosong kelapa sawit (EFB) merupakan sejenis sisa lignoselulosa dari kilang minyak kelapa

sawit. Penapaian gula terutamanya glukosa daripada EFB dapat ditapai untuk penghasilan

bioetanol. Tujuan kajian ini adalah untuk menyelidik kesan pra-rawatan asid cair dan juga

rawatan enzim untuk menghidrolisiskan EFB bagi memberikan hasilan glukosa yang

optimum. Tiga parameter untuk pra-rawatan asid cair iaitu suhu reaksi, kepekatan asid dan

masa reaksi dan juga dua parameter untuk rawatan enzim iaitu kepekatan substrak serta masa

rawatan telah diselidik untuk mengoptiumkan hasilan glukosa. Tindakbalas-tindakbalas

berkelompok telah dilakukan di bawah pelbagai keadaan operasi yang dicadangkan oleh

rekabentuk eksperimen yang dihasilkan oleh Kaedah Permukaan Respons (RSM). RSM telah

digunakan untuk mengoptimumkan kombinasi proses pra-rawatan dan juga proses enzim

untuk mencapai hasilan glukosa yang tertinggi. Hasilan glukosa optimum yang setinggi 53.96

% telah dicapai pada suhu pra-rawatan 130 °C, kepekatan asid 6 %w/w, 37 min masa pra-

rawatan dan 96 jam proses enzim pada kepekatan subtrak 6 %w/v. Hasilan glukosa yang

optimum juga disahkan melalui kerja eksperimen.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Since the beginning of 1970, palm oil industry has emerged as one of the top 

industries in Malaysia.  In order to process the fruits from oil palms, many factories and 

palm oil mills had been set up.  Enormous amount of wastes derived from oil palm 

industries are generated every year and this already created a great concern in 

environmental safety.  In Malaysia, about 50 million tonnes of palm oil mill effluents 

and 40 million tonnes of oil palm biomass, in forms of empty fruit bunch (EFB), oil 

palm trunks and oil palm fronds are generated from palm oil industries, every year 

(Kabbashi et al., 2007).  

 

 

Lignocellulose is the major structural component of woody and herbaceous 

plants such as oil palm tree.  It represents a major source of renewable organic matter.  

Lignocellulose consists of lignin, hemicellulose, and cellulosic material.  The chemical 

properties of the components of lignocellulose make them a substrate of enormous 

biotechnological value.  Much of the lignocellulosic wastes are disposed by biomass 
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burning, which is not restricted to developing countries alone, but it is considered a 

global phenomenon.  In addition, the problem arises when all of this biomass is not 

being treated and left to rot in the plantations to provide some nutrient.  Unfortunately, 

these wastes may create environmental problems due to accumulation of high organic 

content.  Therefore, environmental management is placing greatest emphasis in waste 

minimisation at source or recycling.  Moreover, a growing awareness of the “need not to 

pollute” has forced this industry to look more closely at the milling operation.  It is 

recommended to treat and manipulate the waste to produce useful product (Kabbashi et 

al., 2007).  

 

 

The need for alternative sources of bioenergy is expected to increase sharply in 

the coming years with the rising prices of crude oil due to increase in fuel demands.  The 

principle fuel used as a petrol substitute for road transport vehicles is bioethanol.  

Bioethanol is mainly produced by the sugar fermentation process.  The main sources of 

sugar required to produce ethanol come from fuel or energy crops.  These crops are 

grown specifically for energy use and include corn, maize, wheat crops, waste straw, 

sugarcane and sorghum plants.  There is also ongoing Research and Development into 

the use of municipal solid wastes and agrowastes to produce ethanol in order to reduce 

the demand of energy crop for biofuel production.  

 

 

Among the potential alternative of bioenergy resources, lignocellulosic biomass 

has been identified as the prime source of biofuels and other value-added products.  

Lignocelluloses, as agricultural, industrial and forest residuals, account for the majority 

of the total biomass present in the world.  Therefore, the bioconversion of large amounts 

of lignocellulosic biomass into fermentable sugars has potential application in the area 

of bioenergy generation. 
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EFB have been chosen in this study for the monomeric sugars production.  

Ethanol can be produced from the biomass by the hydrolysis and sugar fermentation 

processes.  Biomass wastes contain a complex mixture of carbohydrate polymers from 

the plant cell walls known as cellulose, hemicellulose and lignin.  In order to produce 

sugars from the biomass in this research, the lignocellulosic biomass is milled and pre-

treated in order to reduce the size of the feedstock and to open up the plant structure.  

The cellulosic and the hemicellulosic portions are then hydrolysed, by enzymes or dilute 

acids, into monomeric sugar which is then fermented into ethanol.  There are three 

principle methods of extracting sugars from biomass.  These are concentrated acid 

hydrolysis, dilute acid hydrolysis and enzymatic hydrolysis. 

 

 

Dilute acid hydrolysis is among the oldest method for sugar extraction process.  

This process dates back to 1800 that the first commercial plant was set up in year 1898 

(Chiaramonti, 2007).  The dilute acid hydrolysis process first hydrolyses the 

hemicellulose in mild process conditions to recover the 5-carbon sugars.  The reaction 

has to be controlled under mild conditions in order to avoid sugar degradation during the 

hydrolysis process.  This not only reduces yield but also causes the formation of 

inhibitors such as furfural and other by-products of the fermentation process.  Cellulose 

in the remaining solids is then hydrolysed in a more strict condition at temperature more 

than 200 °C.  The liquid hydrolates are then neutralised and recovered from the process.  

Dilute acid hydrolysis is a simple process and no acid recovery is needed after this 

process.  Unfortunately, the yields of fermentable sugar are low and it has high potential 

for the production of degradation product. 

 

 

Apart of using acid to hydrolyse the biomass into monomeric sugar, enzymes can 

be used to break down the biomass in a similar way.  Enzymatic processes use selected 

cellulase and hemicellulose degrading enzymes to break the polymeric chain of the 

cellulose and hemicellulose, leaving the monosaccharide available for fermentation.  It 

performs a higher hydrolysis yields than the chemical hydrolysis process.  However, a 
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barrier for these processes is represented by its costs that accounts for approximately 40 

% of the total costs.  As only 20 % of the biomass’s pore volume can be reached by the 

large cellulase enzymes molecules, biomass pretreatment becomes an essential step in 

the enzymatic hydrolysis processes and thus increasing the cost (Chiaramonti, 2007).  

Enzymatic treatment however can be considered as a mild hydrolysis process.  A clean 

and clear sugar solution can be produced which consists higher amount of fermentable 

sugars.  In this study, combined dilute acid hydrolysis pretreatment and enzymatic 

hydrolysis treatment were used.  Various variables among the combined hydrolysis 

processes were study to obtain the miximised yield of glucose. 

 

 

To prepare a successful experimental design for this research, response surface 

methodology (RSM) was chosen.  Among the RSM, there are several types of models 

that can be used.  Central composite design was chosen due to the usefulness of this 

model without the need of using a complete three-level factorial experiment.  Through 

the RSM, the experimental runs were proposed.  The analysis of the data after the 

proposed condition of experiment can also be evaluated accordingly.  The optimised 

condition for the highest yield can be obtained after the analysis of experiments. 

 

 

 

 

1.2 Research Objective  

 

 

Due to the cost but the good efficiency of the enzymatic treatment, it is desirable 

to incorporate enzymatic hydrolysis treatment with the existing acid hydrolysis 

pretreatment to further enhance the conversion of oil palm empty fruit bunch into the 

sugar products.  The objective of this research is to optimise the parameters or the 

operating conditions for both the acidic pretreatment and the enzymatic treatment to 

maximise the yield of glucose. 
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1.3 Research Scopes 

 

 

i. To investigate the effect of the key parameters for dilute sulphuric acid 

pretreatment, these parameters include: 

• reaction temperature  

• acid concentration 

• reaction time 

ii. To investigate the effect of substrate concentration and reaction time for 

the enzymatic hydrolysis of pretreated oil palm empty fruit bunch at a 

specific enzyme concentration. 

 

 

iii. To optimise the combined process of acid hydrolysis pretreatment and 

enzymatic treatment in order to obtain highest glucose yield using the 

statistical model of RSM. 

 

 

 

 

1.4 Organisation of Report 

 

 

 This report consists of five chapters.  Chapter one introduce the research 

background, problem statement, objective and scopes of the study.  Besides, the 

organisation of the report is also included in this chapter. 

 

 

 Chapter two presents the detailed literature survey concerning the main elements 

involved in this study as well as researches involved in this area.  It reviews the related 
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studies on biofuel, oil palm and its waste, lignocellulosic biomass and the statistical 

optimisation model. 

 

 

 Chapter three describes the materials and the methodology involved in this study.  

The analytical methods including characterisation and testing procedures for the 

determination of sample composition, the design and analysis of experiments and the 

experiments of hydrolysis procedures are discussed in this chapter. 

 

 Results and Discussion are presented in chapter four.  The results on sample 

characterisation are firstly presented and discussed.  The total solids content and main 

composition of EFB is reported.  The effectiveness of the hydrolysis treatments is 

compared and the highest yield of glucose is identified and discussed statistically.  The 

optimum values for the variables are obtained respectively. 

 

 

 Chapter five concludes the study. It presents the conclusion for the objective and 

the scopes of this study.  Recommendation and suggestions are presented for further 

improvement of this work in the future. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

A number of indicators suggest that petroleum supplies will begin to dwindle 

during the 21st century.  Identifying new resources of fuel supply is the worldwide trend 

now.  Grains, plant matter and sometimes their waste are commonly used in biofuel 

production and are generally considered to be renewable.  Sugarcane and corn were used 

to produce bioethanol in Brazil and United States of America, respectively.  Using these 

feedstocks to produce biofuel has raised many social issues especially the rising of food 

price and eventually causing the overall implication for food security.  Therefore, the use 

of non food crops or inedible waste products would have less impact on food and has 

become the trend of bioethanol production recently. 

 

 

Palm oil is produced primarily in South East Asia where Malaysia is the largest 

producer of palm oil at the world.  Palm oil which is the primary product of oil palm 

trees are now the most traded vegetable oil in the world.  Therefore, it generates a large 
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amount of waste in the mill after the processing of palm oil from the fresh fruit bunch of 

oil palm tree yearly.  These wastes especially the empty fruit bunch is useless and 

sometimes cause disposal problem.  Hence, it can be chosen as the substrate for the 

production of fermentable sugars and subsequently to bioethanol.  

 

 

Oil palm empty fruit bunch (EFB), an agrowaste from oil palm industry is one 

type of lignocellulosic biomass in nature.  Lignocellulose is the "woody" structural 

material of plants.  This feedstock is abundant and diverse, and in some cases it is a 

significant industry-specific disposal problem or waste.  It comprises of lignin, cellulose 

and hemicellulose.  Each of the components has their own usage.  The polymeric sugar 

part, cellulose and hemicellulose can be treated or hydrolysed into monomeric sugar.  

The lignin can be used as fuel for boiler in the ethanol production plant.  

 

 

In order to convert the lignocellulosic biomass to useful chemical, three main 

stages are involved.  The first stage is the pretreatment process.  Then, it is followed by 

the hydrolysis of the cellulose part to release the monomeric sugar.  Finally, the last 

stage is the fermentation of the monomeric sugar. 

 

 

The pretreatment process aims to dissociate the cell components of 

lignocellulose.  Hemicellulose can sometime be broken down into its subunits after the 

pretreatment process.  For the cellulose part, two types of hydrolysis processes are 

commonly employed to degrade it into the monomeric sugar which requires a 

fermentation step to convert it into the ethanol.  The most common hydrolysis methods 

used are acid (dilute and concentrated) and enzymatic methods.  In this research, dilute 

acid pretreatment followed by enzymatic hydrolysis was used to convert the EFB into 

glucose which are ready for the further fermentation process.  Fermentation is the last 

stage in the bioethanol production.  However, this stage was not the scope of this study. 
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 This chapter also reviews the statistical approaches used to optimise the 

operating condition of the hydrolysis process so that the yield of glucose is optimised.  

 

 

 

 

2.2 Biofuel  

 

 

With the increase in awareness and importance relevance to environmental issues 

such as global warming, renewable and more environment-friendly fuels are being 

developed as alternatives to the fossil fuel.  One such fuel, which has gained prominence 

in recent years, is biofuel.  Clean and renewable, biofuel has been touted as the solution 

to the issue of the diminishing of energy reserves. 

 

 

Biofuel, which can be broadly defined as solid, liquid, or gas fuel consisting of or 

derived from biological material or biomass are now being used globally to overcome 

the depletion of crude oil worldwide.  Biofuel can be produced from any carbon source 

that can be replenished rapidly such as plants.  Many different plants and plant-derived 

materials are used for the production of biofuel.  Among the potential alternative 

bioenergy resources, lignocellulosic biomasses have been identified as the prime source 

of biofuels and other value-added products.  The most common use for biofuels is as 

liquid fuels for automotive transport.  The use of renewable biofuels provides increased 

independence from petroleum and enhances energy security. 

 

 

Biofuel consist of two major categories of fuels which are bioethanol and 

biodiesel.  Therefore, there are at least two different procedures of producing biofuel 

from biomass.  The methods followed have a strong impact on the end results.  There are 
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two key reactions that are involved in the production of bioethanol, one is hydrolysis and 

the other one is fermentation which will be discussed in Section 2.7 and 2.8. 

 

 

 

 

2.3 Agriculture Sector and Oil Palm Industry in Malaysia 

 

 

Malaysia is well known for the production and plantation of oil palm trees.  The 

first oil palm plantation in Malaysia was set up in the year of 1917.  Since then, the palm 

oil industry has grown to become the largest producer and exporter of palm oil in the 

world, accounting for 52 % of world production and 64 % of world exports in 1997.  

The Malaysian oil palm industry is sustaining its performance in 2003 after staging a 

significant recovery in 2002 despite a weak global economy.  Palm oil and palm oil-

based products is Malaysia's second largest export revenue, with a total value of RM 

20.8 billion (US$ 5.47 billion) during the first nine months of 2003, accounting for 7.6 

% of total exports of RM 271.5 billion (POIC, 2007).  Crude palm oil production 

increased by 6.8 % per annum, from 7.8 million tonnes in 1995 to 10.8 million tonnes in 

2000 due to improvement in yield and expansion in hectarage of matured trees (The 8th 

Malaysia Plan, 2001). 

 

 

During the Seventh Plan period, the agriculture sector remained as one of the 

major sectors of the economy after manufacturing and services, contributing to national 

income and export earnings.  In line with the Third National Agricultural Policy, the 

sector contributed not only as a supplier of raw materials to the resource-based 

industries, but also in terms of food production.  The increase in earnings of major 

commodities, particularly palm oil and pepper as well as food commodities enabled the 

sector to retain its workforce and withstand the economic downturn of year 1997 to 1998 

(The 8th Malaysia Plan, 2001).  
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In many important ways, agriculture was accorded a very different treatment in 

the Ninth Malaysia Plan (9MP), starting with the revitalizing of the sector as one of the 

key aims of the Plan, and the sector itself featured strongly in each of the five key thrusts 

of the National Mission.  Table 2.1 below shows the agriculture and agro-based 

manufactured export from year 2000 to year 2010 which is provided by Department of 

Statistics and Economic Planning Unit of Malaysia. 

 

 

Table 2.1: Agriculture and agro-based manufactured export (2000 – 2010) (Wong, 

2007) 

 

 

 

Table 2.2 provides an indication of land use over the period of 2000 to 2010.  

Again the dominance of oil palm over other tree crops is quite obvious (Source: Ministry 
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of Agriculture and Agro-Based Industry and Ministry of Plantation Industries and 

Commodities).   

 

 

Table 2.2: Agricultural land use over the period of 2000 to 2010 (Wong, 2007) 

 

 

 

 

 

2.4 Oil Palm and Mill Wastes 

 

 

Palm oil is produced primarily in South East Asia where Malaysia is the largest 

producer of palm oil followed by Indonesia.  As the climatic conditions in the south are 

suitable for palm trees, the oil palm plantation area has expanded ever since in Malaysia. 

 

 

The oil palms (Elaeis) actually comprise two of species in the order Arecales of 

the family Aracaceae.  They are planted commercially for the production of palm oil.  
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One of the oil palm is African Oil Palm, Elaeis guineensis which is originated from 

West Africa and another is American Oil Palm, Elaeis oleifera is native to tropical 

Central and South America.  Elaeis guineensis produces palm oil and palm kernel oil.  It 

is a native of tropical Africa that is extensively planted commercially in many other 

tropical countries which include Malaysia (Rival, 2007).  

 

 

Recently, Sabah's Oil Palm Sector is mainly confined to the primary processing 

of oil palm in Malaysia.  Presently, there are 58 palm oil mills in Sabah producing crude 

palm oil, palm kernel oil and palm kernel cake.  Only a small number of refineries 

producing higher value added oil palm products.  There is roughly one oil palm mill for 

every 10,000 ha of oil palm planted (POIC, 2007).  Raw material supplied to the mills 

consists of fresh fruit bunches (FFB).  There are various forms of solid and liquid wastes 

from the mills after processing.  These include empty fruit bunch (EFB), palm press 

fiber (PPF), palm kernel cake (PKC), palm kernel shell (PKS), sludge cake (SC) and 

palm oil mill effluent (POME).  Only EFB, PPF, PKS and POME appear in large 

quantities and are considered as wastes.  The others can be sold for animal feed or 

fertilizer.  The quantity of the wastes depends on the quality of the raw material which is 

the fresh fruit bunches (Prasertsan and Prasertsan, 1996). 

 

 

Figure 2.1 shows the process of palm oil milling and the waste products of each 

process.  Straight line indicates the process whereby the dotted line indicates production 

of wastes (Prasertsan and Prasertsan, 1996). 
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Figure 2.1: Palm oil milling process. (- ) Process; (- - -) waste (Prasertsan and 

Prasertsan, 1996) 

 

 

In a well run palm oil mill, it is expected that each 100 tonnes of fresh fruit 

bunches (FFB) processes yields 20 to 24 tonnes of crude palm oil and about 4 tonnes of 

palm kernels.  Thus between 72 to 76 % of the FFB comes out at various stages of the 

process as waste (Poku, 2002).  Empty fruit bunch (EFB) is the major component of all 

solid wastes from the palm oil mills.  The steam from the sterilisation process makes the 

moisture content of EFB as high as 60 %.  Thus, the EFB cannot be used directly as fuel.  

It was reported that the EFB has 42 % Carbon, 0.8 % Nitrogen, 0.06 % Phosphorus, 2.4 

% Kalium and 0.2 % Magnesium.  The bulky nature of the EFB causes a high land-fill 

disposal cost.  The mills, therefore, burn the EFB down to ashes after the drying process.  

Burning a ton of EFB produces 4 kg of ash.  Unfortunately, particulates and gases (SO2, 
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CO2, CO and NOx) emitted from the furnaces of burning cause air pollution to the 

nearby communities and results in public protests (Prasertsan and Prasertsan, 1996). 

 

 

Palm kernel shell (PKS) is the waste most difficult to be decomposed.  The shell 

size is uniform and is not as bulky as the EFB.  They are usually left unused in the 

factory or disposed of by the land-fill method (Prasertsan and Prasertsan, 1996).  The 

PKS is also used as a source of fuel for the boilers.  However, the shell of palm kernel 

contains silicates that form a scale in the boilers if too much shell is fed to the furnace, 

thus limiting the amount of shell that can be utilised in the boilers.  The shell residual is 

disposed of as gravel for roads maintenance within the plantation (Poku, 2002). 

 

 

POME is the wastewater produced from the palm oil industry.  It is a colloidal 

suspension which consists of 95 - 96 % water, 0.6 - 0.7 % oil and 4 - 5 % total solids 

including 2 - 4 % suspended solids.  There are three major sources of waste water, 

namely steriliser condensate (17 %), decanter or separator sludge (75 %) and 

hydrocyclone water (8 %).  POME contains 4,000 mg.dm-3 of oil and grease, which is 

relatively high compared to the limit of only 50 mg.dm-3 set by the Malaysian 

Department of Environment.  Therefore, this effluent must be treated before being 

discharged to avoid serious environmental pollution.  Normally, waste water is treated 

anaerobically in a series of ponds.  Over half of the land has to be spared for the waste 

water treatment pond (Prasertsan and Prasertsan, 1996).  Sometimes, the liquid waste 

treatment involves anaerobic fermentation followed by aerobic fermentation in large 

ponds until the effluent quality is suitable for discharge (Poku, 2002).  

 

 

Figure 2.2 shows the composition of fresh fruit bunch (FFB).  Figures in the 

brackets are the percentage of FFB.  Round brackets, ( ) indicates high-quality FFB and 

square brackets, [ ] indicates the low-quality FFB (Prasertsan and Prasertsan, 1996). 
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Figure 2.2: Composition of fresh fruit bunch (FFB) (Prasertsan and Prasertsan, 1996) 

 

 

 

 

2.5 Lignocellulosic Biomass  

 

 

Lignocellulosic biomass in nature is by far the most abundant raw material.  It 

may be grouped into four main categories which are wood residues, municipal paper 

waste, agricultural residues such as EFB and dedicated energy crops.  Lignocellulose is a 

substrate with its structure more complex than starch.  It composes of lignin and a 

mixture of carbohydrate polymers, cellulose and hemicellulose (Lee, 1997).  Whereby, 

starch is monopolymer.  It is a mixture of amylose and amylopectin.  Both amylose and 

amylopectin are complex carbohydrate polymers of glucose.  

 

 



 17

The carbohydrate polymers of lignocellulose are tightly bound to lignin mainly 

by hydrogen bonds but also by some covalent bonds (Lee, 1997).  Therefore, it is 

difficult to degrade and hydrolyse lignocellulosic biomass.  Recently, conversion of 

lignocellulose to bioethanol becomes attractive and dominant in all research due to the 

depleting stores of crude fuels and the abundance of lignocellulosic biomass in nature.  

Lignocellulose is a carbon source of energy, since it is primarily from dead plants.  It 

means that the combustion of ethanol produced from lignocellulose will produce no net 

carbon dioxide and thus reduce the pollution in the earth’s atmosphere.  The abundance 

amounts of lignocellulosic materials are disposed by many industrial and agricultural 

sectors as waste byproducts that can be used as renewable resources.  Many dedicated 

energy crops can provide high energy biomass and be harvested on multiple times each 

year such as switchgrass planted in United State of America.  

 

 

The biological process for converting the lignocellulose to biofuel of ethanol 

involves three stages.  Firstly, it involves the liberation of cellulose and hemicellulose 

from their lignin complex by the process of delignification.  Then, the carbohydrate 

polymers will be depolymerised to produce free monomeric sugars.  Finally, the 

fermentation process that converts the mixed hexose and pentose sugars to ethanol (Lee, 

1997). 

 

 

 

 

2.5.1 Lignin 

 

 

Lignin was derived from a Latin word, lignum which means wood by F. Schulze 

at year 1865 (Sjostrom, 1981).  Lignin is a complex, variable, hydrophobic, cross-linked, 

three-dimensional aromatic non-sugar polymer of p-hydroxyphenylpropanoid units 

connected by C–C and C–O–C link with molecular masses in excess of 10,000 units 
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(Lee, 1997).  The degree of polymerisation in nature is difficult to measure, since it is 

fragmented during extraction and the molecule consists of various types of substructures 

which appear to repeat in a haphazard manner.  Lignin is most commonly derived from 

wood and an integral part of the cell walls of plants.  It can be isolated from extractive-

free wood as an insoluble residue after hydrolytic removal of polysaccharides.  

Sometimes, Klason lignin is used to define as lignin, but Klason lignin is obtained after 

removing of polysaccharides from extracted wood by hydrolysis with 72 %w/w 

sulphuric acid (Sjostrom, 1981).  

 

 

Lignin is the most abundant organic polymer on earth after cellulose.  It employs 

30 % of non-fossil organic carbon.  Lignin accounts 10 to 30 % of wood’s dry weight 

(Chiaramonti, 2007).  It consists of complex phenolic cell wall that endows the xylem 

and other tissues of plants with compression and decay resistance.  It is largely 

responsible for preservation of plants as fossil.  It gives wood strength and confers 

resistance to microbial attack.  The compound has several unusual properties as a 

biopolymer.  It is heterogeneity which lacks a defined primary structure (Graham et al., 

2006).  Lignin is particularly abundant in compression wood, but scarce in tension 

wood.  It is fairly resistant to chemical and enzymatic degradation. 

 

 

 

 

2.5.2 Cellulose 

 

 

 Cellulose is an organic compound with the formula (C6H10O5)n.  It is a 

polysaccharide consisting of a linear chain of several hundred to over ten thousand 

β(1→4) linked D-glucose units, C6H10O5.  Cellulose is the structural component of the 

primary cell wall of green plants, many forms of algae, some protist and bacterial.  It is 

also produced by various bacteria for use as an attachment material (Graham et al., 
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2006).  It is the most common organic compound on Earth.  Many properties of cellulose 

are depending on its degree of polymerisation or chain length, the number of glucose 

units that make up one polymer molecule.  Fiber walls mainly consist of cellulose have 

made up 30 to 60 % of wood (lignocellulosic) dry weight (Chiaramonti, 2007). 

 

 

Cellulose is built up from a linear chain of D-glucose units, which is held 

together by β-(1-4)-glycosidic bonds.  This linkage is in contrast with α-(1-4)-glycosidic 

bonds which is present in starch, glycogen, and other carbohydrates.  Cellulose is a 

straight chain polymer.  No branches are found in the polymer of cellulose.  The 

multiple hydroxyl groups on the glucose residues from one chain form hydrogen bonds 

with oxygen molecules on another chain, holding the chains firmly together side-by-side 

and forming microfibrils with high tensile strength.  This strength is important in cell 

walls, where they are meshed into a carbohydrate matrix, conferring rigidity to plant 

cells.  Plants will use this glucose chain as building material, linking the subunits 

together in different orientations not recognised by most enzymes (Johnson, 2006). 

 

 

Compared to starch, cellulose is much more crystalline.  Starch is the storage 

polysaccharide whereby cellulose is the structural polysaccharide.  Starch undergoes a 

crystalline to amorphous transition when heated below 100 °C in water (as in cooking 

condition), but cellulose requires a temperature of 320 °C and pressure of 25 MPa to 

become amorphous in water.  Chemically, cellulose can be broken down into its glucose 

units at extreme condition.  It can be treated with concentrated acids at high temperature 

to break down into subunits.  Biologically, this polymer can be hydrolysed by the action 

of cellulases into glucose units.  The cellulose molecule is complex in nature, and 

therefore a group of enzymes acting synergistically with different binding sites is desired 

which including endoglucanase, exoglucanase, and β-glucosidase (Lee, 1997). 
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2.5.3 Hemicellulose 

  

 

Hemicellulose is a polysaccharide related to cellulose.  It is found in cell wall 

that is similar to cellulose but it is more soluble.  It corresponds to 10 to 40 % of wood 

dry weight (Chiaramonti, 2007).  In addition to cellulose, plant cell walls contain other 

polysaccharide, such as hemicellulose, pectin and protein.  A hemicellulose can be any 

of several heteropolymer (matrix polysaccharides), a polymer of glucose and other 

sugars that is important in binding cellulose fibrils together.  In contrast to cellulose, 

which contains only anhydrous glucose, hemicellulose contains many different sugar 

monomers.  It is derived from several sugars in addition to glucose, mainly including 

xylose but also mannose, galactose, rhamnose, and arabinose.  Hemicellulose contains 

most of the D-pentose sugars, and occasionally small amounts of L-sugars as well. 

Xyloglucan is a type of hemicellulose which is present mostly in cell walls of plants in 

land.  It contains mainly of xylose and glucose sugars (Graham et al., 2006).  

Hemicellulose in hardwood mainly contains xylans, while in softwood glucomannans 

are most common (Kumar et al., 2008). 

 

 

Hemicellulose consists of shorter chains of around 200 sugar units as compared 

to 7,000 to 15,000 glucose molecules in the average of cellulose polymer.  Furthermore, 

hemicellulose is branched, whereas cellulose is linear and unbranched.  While cellulose 

is crystalline, strong, and resistant to hydrolysis, hemicellulose has a random, amorphous 

structure with little strength.  It is easily hydrolysed by dilute acid or base as well as 

myriad enzymes, hemicellulase.  There are various enzymes responsible for the 

degradation of hemicellulose.  In xylan degradation, for instance, endo-1,4-β-xylanase, 

β-xylosidase, α-glucuronidase, α-L-arabinofuranosidase and acetylxylan esterase all act 

on the different heteropolymers available in nature.  In glucomannan degradation, β-

mannanase and β-mannosidase cleave the polymer backbone.  Like cellulose, 

hemicellulose is also an important source of fermentable sugars for biorefining 

applications (Kumar et al., 2008). 
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Figure 2.3 shows the chemical structure of cellulose, hemicellulose and lignin.  

The lignin structure is hypothesised by Chiaramonti (2007). 

 

 

 

Figure 2.3: Cellulose, hemicelluloses and hypothesised lignin chemical structure 

(Chiaramonti, 2007) 

 

 

 

 

2.6 Conversion of Lignocellulosic Biomass to Chemical 

 

 

Basically, three main stages are involved in the conversion of lignocellulosic 

biomass or woody material to useful chemical like ethanol.  The first stage is the 

dissociation of the cell components or pretreatment process.  Secondly, is the hydrolysis 

of the cellulose to release the monomeric sugars.  The last stage is the sugars 

fermentation process. 
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Biomass wastes contain a complex mixture of carbohydrate polymers from the 

plant cell walls known as cellulose, hemicellulose and lignin.  In order to produce sugars 

from the biomass, the biomass is pretreated with acids and/or enzymes in order to reduce 

the size of the feedstock to dissociate the plant structure.  The cellulose and the 

hemicellulose portions are broken down or hydrolysed by enzymes or dilute acids into 

monomeric sugars that are then fermented into ethanol.  The lignin which is also present 

in the biomass is normally used as a fuel for the boilers in ethanol production plants.  

There are three principle methods of extracting sugars from biomass.  These are 

concentrated acid hydrolysis, dilute acid hydrolysis and enzymatic hydrolysis. 

 

 

 

 

2.7 Pretreatment Processes 

 

 

Among the three key processes to convert the lignocellulosic biomass to 

chemical, the delignification of lignocellulosic raw materials to release the monomeric 

sugars is the key rate-limiting step.  The potential method for removing lignin and 

releasing fermentable sugars is pretreatment followed by enzymatic or acidic hydrolysis.  

In the past decade, most research has focused on the pretreatment process and significant 

progress was achieved in thermal, mechanical, and chemical pretreatments and 

enzymatic hydrolysis.  The method of pretreatment or hydrolysis and conditions 

employed will consequently affect the hydrolysis rate and the composition of the 

resulting sugars in the hydrolysate.  The final constituents in enzyme hydrolysates are 

mainly glucose and xylose which are released from cellulose and hemicellulose, 

respectively (Lee, 1997). 

 

 

The major obstacle in effective utilisation of the lignocellulose is its crystalline 

unreactivity and in particular its resistance to hydrolysis.  Pretreatment is required to 
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alter the structure of cellulosic biomass to make cellulose more accessible to the 

enzymes so that the carbohydrate polymers can be converted into fermentable 

monomeric sugars.  This will alter the macroscopic and microscopic size of the biomass 

as well as its submicroscopic chemical composition and structure so that hydrolysis of 

carbohydrate fraction to monomeric sugars can be achieved more rapidly with greater 

yields.  Pretreatment affects the structure of biomass by solubilising hemicellulose, 

reducing crystallinity and increase the available surface area and pore volume of the 

substrate.  Hemicellulose is broken down to its subunits.  Pretreatment has been 

considered as one of the most expensive processing steps in converting biomass to 

fermentable monomeric sugar.  Native lignocellulosic biomass is extremely recalcitrant 

to enzymatic digestion.  Pretreatment methods are either physical or chemical and 

sometimes both are used.  Physical pretreatment methods include comminution 

(mechanical reduction in biomass particulate size), steam explosion, and 

hydrothermolysis.  Chemical pretreatment will use acids or bases that promote 

hydrolysis and improve the yield of glucose recovery from cellulose by removing 

hemicellulose or lignin during pretreatment (Moiser et al., 2005). 

 

 

 

 

2.8 Hydrolysis of Cellulose 

 

 

After the pretreatment process as stated above, there are normally two types of 

hydrolysis processes to degrade the lignocellulosic material into the monomeric sugar.  

The most common hydrolysis methods used are acid (dilute and concentrated) and 

enzymes.  To improve the enzymatic hydrolytic efficiency, the lignin-hemicellulose 

network has to be loosened for the better amenability of cellulases to residual 

carbohydrate fraction for sugar recovery.  Dilute acid treatment is employed for the 

degradation of hemicellulose leaving lignin and cellulose network in the substrate 

(Chandel et al., 2007). 
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Hydrolysis is a chemical decomposition reaction or process in which chemical 

bonds of compound is broken down or split by reaction with water.  Hydrolysis of 

cellulose refers to the process of cellulolysis which is relating to or causes the hydrolysis 

of cellulose.  The hydrolysis of cellulose or starch into glucose is called saccharification.   

 

 

During the hydrolysis of lignocellulosic materials especially the process 

involving high temperature under acidic condition, a wide range of compounds which 

are inhibitory to microorganisms will be formed or liberated.  Based on their origin, the 

inhibitors are usually divided into three major groups which are weak acids, furan 

derivatives, and phenolic compounds.  At high temperature, xylose from hemicellulose 

will further be degraded to furfural.  Similarly, 5-hydroxymethyl furfural (HMF) is 

formed from the degradation of hexose sugar.  Formic acid will be formed when furfural 

and HMF are broken down.  Whereby, levulinic acid is the product of HMF degradation.  

Phenolic compounds are generated from partial breakdown of lignin (Palmqvist and 

Hahn-Hägerdal, 2000).  These degraded byproducts would reduce the yield and 

productivity of ethanol during the fermentation process by inhibiting on the growth of 

microorganism.  As such, in order to enhance the productivity of fermentation process, 

the process prior to the fermentation has to be optimised to give reduced byproducts.  

 

 

 

 

2.8.1 Acid Hydrolysis 

 

 

Two types of acid hydrolysis processes are commonly used for the treatment of 

lignocellulosic material, namely the dilute acid hydrolysis and concentrated acid 

hydrolysis.  The dilute acid hydrolysis treatment is conducted under high temperature 

and pressure and has reaction time in the range within minutes.  The concentrated acid 

hydrolysis uses relatively mild temperatures, but conducted at very high concentration of 
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sulfuric acid and at a minimum pressure.  The process involves pumping the materials 

from one vessel to another vessel to minimise the corrosive of strong acid on the vessel.  

Reaction times for concentrated acid hydrolysis are typically much longer than for dilute 

acid process (Chandel et al., 2007). 

 

 

2.8.1.1 Concentrated Acid Hydrolysis  

 

 

Concentrated acid hydrolysis process is accomplished by adding 70 - 77 %w/w 

sulfuric acid to the oven-dried biomass with a moisture content of 10 %.  This process 

will be followed by a dilution with water to dissolve and hydrolyse the substrate of 

lignocellulose into fermentable monomeric sugar.  Firstly, the operation temperature is 

controlled in the range of 40 to 50 °C with reaction time of 2 to 4 hours in a reactor for 

components dissociation and hemicellulose hydrolysis processes.  In the next step, the 

cellulose part in the lignocellulosic biomass will be hydrolysed.  Water is then added to 

the solid residue and the acid will be diluted to 30 to 40 %w/w.  The mixture is then 

heated to 100 °C for 50 minutes.  The gel produced from this mixture is then pressed to 

release an acid-sugar mixture.  A chromatographic column is used to separate the acid 

and sugar mixture.  Both the sugar streams from two concentrated hydrolysis steps are 

combined and will be used as substrate for subsequent fermentation process for ethanol 

production (Chandel et al., 2007). 

 

 

This process provides complete and rapid conversion of cellulose to glucose and 

hemicellulose to xylose with low degree of degradation.  High sugar recovery efficiency 

is the primary advantage of the concentrated acid hydrolysis process.  Up to 90 % of 

cellulose and hemicellulose degrade to their subunits after the treatment process.  The 

low temperatures and pressure of the concentrated acid hydrolysis will lead to 

minimised sugar degradation (Chandel et al., 2007).  Sugars derived from this hydrolysis 

process are easily fermented by microorganism. 
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The disadvantage of the concentrated hydrolysis will be the difficulty of single 

sugar recovery after the acid hydrolysis and neutralisation processes.  The hydrolysate 

which contains 10 % acid and 10 % glucose after the hydrolysis of cellulose, need to be 

neutralised by adding lots of calcium hydroxide, Ca(OH)2.  Hydrated gypsum 

(CaSO4.2H2O) is precipitated after the neutralisation process and need to be removed 

before proceeding to the subsequent fermentation process.  Lignin is a solid residue of 

the process, which remains available for various uses, as heat and power generation 

(Chiaramonti, 2007). 

 

 

2.8.1.2 Dilute Acid Hydrolysis  

 

 

The dilute acid hydrolysis process is one of the simple, oldest and most efficient 

methods of producing monomeric sugars from biomass.  Dilute acid is used to hydrolyse 

the biomass to monomeric sugars.  The liquid hydrolates will then be neutralised and 

recovered from the process of hydrolysis.  In dilute acid hydrolysis, the hemicellulose 

fraction is depolymerized at lower temperature than the cellulosic fraction.  Dilute 

sulphuric acid is mixed with biomass to hydrolyse hemicellulose to xylose and other 

sugars.  Dilute acid interacts with the biomass and the slurry is held at temperature 

ranging from 120 to 220 °C for a short period of time.  Thus, the hemicellulosic fraction 

of plant cell wall is depolymerised and will lead to the enhancement of cellulose 

digestibility in the residual solids.  Dilute acid hydrolysis has some limitations.  If higher 

temperatures (or longer residence time) are applied, the hemicellulose derived 

monomeric sugars will degrade and give rise to fermentation inhibitors like furan 

compounds, weak carboxylic acids and phenolic compounds.  These fermentation 

inhibitors are known to affect the ethanol producing performance of fermenting 

microorganisms.  Therefore, dilute acid hydrolysis is carried out in two stages to avoid 

inhibitor production (Chandel et al., 2007). 
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The first stage of the dilute acid hydrolysis process uses 0.7 %w/w sulfuric acid 

at 190 °C to hydrolyse the hemicellulose present in the biomass.  The second stage aims 

to yield the more resistant cellulose fraction.  This is achieved by using 0.4 %w/w 

sulphuric acid at 215 °C.  The liquid hydrolysate is then neutralised and recovered from 

the process.  Dilute acid hydrolysis is a simple process and no acid recovery is needed, 

but the sugars yielded in this hydrolysis process are lower when compared to 

concentrated acid hydrolysis. 

 

 

First-stage dilute acid hydrolysis 

 

 

At the first-stage, hemicellulose will be hydrolysed under mild process condition.  

Typically, 0.5 to 0.7 %w/w of dilute sulphuric acid, H2SO4 interacts with the 

lignocellulosic material under the temperatures of 160 to 190 °C to recover the five 

carbon sugars from hemicellulose (Chiaramonti, 2007).  About 80 % of the 

hemicellulose and 29 % of cellulose are hydrolysed in the first reactor.  The hydrolysate 

is further incubated at a lower temperature for a residence time of 2 hours to hydrolyse 

most of the oligosaccharides into monosaccharides followed by the separation of solid 

and liquid fractions (Chandel et al., 2007).  The first-stage dilute acid hydrolysis must be 

controlled at mild conditions to avoid the degradation of sugars to the byproducts which 

will act as inhibitors in the fermentation process.  

 

 

The solid material is washed with lots of water to maximise sugar recovery.  The 

separated solid material is then sent to the next stage of acid hydrolysis reactor (Chandel 

et al., 2007). 
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Second-stage dilute acid hydrolysis 

 

 

In contrast to the first-stage dilute acid hydrolysis which treats the biomass at 

relatively mild conditions during which the hemicellulose fraction is hydrolysed, the 

second-stage is normally carried out at higher temperature for degradation of cellulose 

into glucose (Chandel et al., 2007). 

 

 

After the first-stage of the hydrolysis process, the hydrolysate containing the 

monomeric sugars is removed to avoid the further degradation of monosaccharides and 

inhibitors formation.  The cellulose in the remaining solids is then hydrolysed in a 0.4 to 

2 %w/w of dilute sulphuric acid solution at temperature of 200 to 215 °C.  The sugar-

rich liquid after hydrolysis is sent for fermentation.  The solid residues which are mainly 

lignin and some of the residual cellulose can be used for heat and power generation 

(Chiaramonti, 2007). 

 

 

Figure 2.4 shows the dilute acid hydrolysis process, the first-stage and the 

second-stage followed by the separate fermentation of the 5-carbons and 6-carbons 

monomeric sugars (Chandel et al., 2007). 
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Figure 2.4: Dilute acid hydrolysis (first-stage and second-stage) and separate 

fermentation of pentose and hexose sugars to become ethanol (Chandel et al., 2007) 

 

 

 

 

2.8.2 Enzymatic Hydrolysis  

 

 

Instead of using acid or chemical to hydrolyse the biomass into monomeric 

sugars, enzymes can also be used to break down the biomass.  Enzymatic process is a 

hydrolysis process in which selected enzymes break the polymeric chain of the cellulose 

and hemicellulose leaving the monomeric sugars available for fermentation.  It gives a 

higher hydrolysis yields compared to chemical processes (Chiaramonti, 2007). 
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A variety of microorganisms including bacteria and fungi may have the ability to 

degrade the cellulose part of the lignocellulosic biomass to glucose monomers.  

Basically, bacterial cellulases exist as discrete multi-enzyme complexes, called 

cellulosomes that consist of multiple subunits.  The cellulolytic enzyme systems from 

the filamentous fungi, especially Trichoderma reesei, contain two types of 

exoglucanases, at least four type of endoglucanase, and one β-glucosidase.  The 

hydrolysis of cellulose will need the synergistical catalysis of the above enzyme groups 

(Kumar et al., 2008).  There are group of microorganisms which include Clostridium, 

Cellulomonas, Trichoderma, Penicillium, Neurospora and Fusarium, Aspergillus that 

show high cellulolytic and hemicellulolytic activity.  They are also highly capable of 

fermenting monomeric sugars (Chandel et al., 2007). 

 

 

Biomass pretreatment is an essential step in enzymatic hydrolysis process.  

Pretreatment aims at increasing the surface accessible to enzymes by destroying the cell 

structure, breaking the lignin-hemicellulose sheath around cellulose and reducing the 

cellulose polymerisation and crystallinity (Chiaramonti, 2007).  Only 20 % of the 

untreated biomass pore volume can be reached by the large cellulase enzymes 

molecules.  Therefore, biomass pretreatment is important to improve the efficiency of 

the cellulose hydrolysis and subsequently increase the sugar yields.   

 

 

The enzymatic hydrolysis will produce a sugar solution that is easily used for 

fermentation.  But unfortunately, the cost of enzyme and the pretreatment process are 

high.  Therefore, a cost-efficient pretreatment stage is a key to the success of the 

lignocellulosic biomass conversion process.  
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2.9 Fermentation of Sugars 

 

 

The hydrolysis process breaks down the cellulose and hemicellulose part of the 

biomass into sugar solutions that can then be easily fermented into ethanol.  The sugar 

syrup obtained after cellulosic hydrolysis is used for ethanol fermentation.  Fermentation 

is performed by fermenting microorganisms (yeasts, bacteria, fungi) in the absence of 

oxygen according to the following main reactions shown in Equation 2.1:  

 

 

C6H12O6 à   2 C2H5OH + 2 CO2            Eq. (2.1) 

 

 

Glucose (C6H12O6) will be degraded to form ethanol (C2H5OH) and carbon dioxide 

(CO2) will be released during the fermentation process.  Saccharomices cerevisiae is the 

typical yeast for hexose sugars fermentation.  It is capable of converting only 6-carbon 

sugar to ethanol (Chiaramonti, 2007). 

 

 

The fermentation of 5-carbon sugars (pentoses, such as arabinose and xylose) 

derived from lignocellulosic biomass is also possible, but not with the ordinary strains of 

yeasts.  The chemical reaction is shown in Equation 2.2 (Chiaramonti, 2007): 

 

 

3 C5H10O5  à  5 C2H5OH + 5 CO2            Eq. (2.2) 

 

 

Currently, the most promising yeasts that have the ability to use both the C-5 and C-6 

sugars are Pichia stipitis, Candida shehatae and Pachysolan tannophilus (Chandel et al., 

2007). 
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Researches are now focusing on developing recombinant yeast, which can 

greatly improve the yield of ethanol production by metabolising all form of sugars, and 

reduce the cost of operation (Chandel et al., 2007). 

 

 

Upon completion of the fermentation process, the "ethanol broth" as an output 

will need to be dehydrated to remove the excess water from ethanol and this step is 

therefore called Ethanol Recovery. The other byproducts that include products like 

lignin are used to produce electricity that is required for the production of ethanol. 

 

 

At presents, the entire process of biofuel production is less efficient and hence 

less cost effective following this route therefore scientists are working intensively to 

look for cheaper processes so that the process can become cost effective. 

 

 

 

 

2.10 Hydrolysis Processes of this Study 

 

 

In this study, dilute acid hydrolysis pretreatment is selected to pretreat or 

dissociate the cell components of the EFB before proceed to the enzymatic treatment 

which aims to degrade the cellulose part of EFB into glucose.   

 

 

The cost and the effectiveness of the dilute acid hydrolysis made it a common 

method to use in the pretreatment of lignocellulosic biomass.  Many factors will affect 

the efficiency and also the product of this acidic hydrolysis.  Based on literature search, 

three variables namely the pretreatment temperature, acid concentration and 

pretreatment reaction time which mainly affected the acidic pretreatment process were 
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selected for optimisation in this study.  Many researchers have studied the effect of these 

three factors on different type of lignocellulosic biomass including corn stover (Lloyd 

and Wyman, 2005), sugar cane bagasse (Aguilar et al., 2002) and agri-food waste 

(Campo et al., 2006).   

 

 

The operating temperature of hydrolysis selected varied between 80 and 120 °C 

and samples were collected at various time intervals in the range of 10 to 30 min using 2 

to 6 %w/w of sulphuric acid.  The operating conditions applied in this study are referred 

to the previous research (Rahman et al., 2006) which used EFB as substrate too but for 

the production of xylose sugar.  Operating at low temperature aims to save energy and 

cost and the duration of pretreatment time is also less than 1 hour.  High temperature 

will lead to the formation of degradation product.  Dilute acid hydrolysis is the simplest 

method compared with others chemical or even the physical methods.  Acid recovery is 

not needed after the treatment process and the hemicellulose can easily depolymerise to 

its subunits.   

 

 

Following the pretreatment process, enzymatic hydrolysis is carried out to 

degrade the cellulose part of EFB.  The enzymatic hydrolysis is a biological process, 

more environments friendly and will produce a sugar solution that is easily used for 

fermentation therefore was chosen in this study.  Enzymatic hydrolysis of pretreated 

EFB is carries out by enzyme cellulase.  Fungal genera like Trichoderma and 

Aspergillus are cellulase producers and crude enzymes produced by these 

microorganisms are commercially available (Immanuel et al., 2007).   

 

 

Two operating variables during the enzymatic process, namely the enzymatic 

substrate concentration and the enzymatic reaction time are selected for optimisation in 

this study.  These two variables are expected to have significance effect on the yield of 

glucose production during the degradation of cellulosic part of EFB.  Since commercial 
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enzymes are used in this study, the operating temperature and pH chosen were based on 

the instruction manual of the products.  According to the information sheet, the optimum 

temperature for cellulase complex, Celluclast® is in the range of 45 to 60 ºC and for β-

glucosidase, Novozym® in the range of 45 to 70 ºC.  For optimum pH, the range for 

Celluclast® is from 4.5 to 6.5 and for β-glucosidase, 2.5 to 6.5.  Therefore, in this study, 

the temperature of enzymatic treatment process was fixed at 50 ºC.  Buffer at pH 4.8 was 

used to maintain the operating condition with minimum dramatic fluctuations (Zhong et 

al., 2007). 

 

 

With the increase of substrate concentration, the production of sugars is expected 

increase accordingly.  After the optimum condition reached, with the continuous adding 

substrate without additional loading of enzyme, the reaction will become flat and 

ultimately decreased.  Stirring difficulties, reduction of the aqueous movable phase and 

end product inhibition might hinder the enzymatic hydrolysis at higher substrate 

concentration.  Therefore the hydrolysis of pretreated EFB is carried out in the range of 

24 to 72 hours and the substrate concentrations chosen were between 5 to 15 %w/v at a 

fixed of enzyme loading (Zhong et al., 2007).   

 

 

Through the design and analysis of the experiment which will be discussed later 

in Section 2.11, the yield of glucose can be optimised by experimental design and 

analysis using the statistical tool of RSM (response surface methodology).  
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2.11 Design and Analysis of Experiments 

 

 

Design of experiment (DOE) is a structured, organised method used to determine 

the relationship between the different factors affecting a process and the output or 

response of that process.  Further analysis is conducted based on the experimental results 

obtained.  This statistical method of experimental design was first developed by the late 

Sir Ronald A. Fisher since 1920s (Montgometry, 1997).  

 

 

DOE involves designing a set of experiments, in which all relevant factors are 

varied systematically. It helps to identify the optimal conditions, the factors that most 

influence the results, and those that do not, as well as the existence of interactions and 

synergies between factors when the results of these experiments are analysed.  

Experimental design methods require well-structured data matrices.  When applied to a 

well-structured matrix, analysis of variance delivers accurate results, even when the 

matrix being analysed is quite small (Oehlert, 2000). 

 

 

DOE is a strategy to gather empirical knowledge based on the analysis of 

experimental data and not on theoretical models.  It can be applied whenever one intends 

to investigate a phenomenon for better understanding or improving the performance.  

There are three basic principles of experimental design which are replication, 

randomisation and blocking (Montgometry, 1997).   

  

 

DOE is widely used in research and development, where a large proportion of 

the resources would go towards solving and optimisation of the problems. The key to 

minimising optimisation costs is to conduct as few experiments as possible. DOE 

requires only a small set of experiments and thus helps to reduce costs.  Currently, the 

methods by Fisher (1920) represent the international standards for experimental and 
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analysis in business and applied science.  A wide range of software is available in the 

market for design and analysis purposes.  

 

 

 

 

2.11.1 Experimental Design and Analysis of this Study 

 

 

 Many parameters affect the hydrolysis of EFB to glucose.  Therefore, efficient 

experimental design is needed to determine the effect of each or interrelation between 

the parameters in the hydrolysis processes.  Consequently, the highest yield of glucose 

can be obtained through the optimised experimental design. 

 

 

 In this study, response surface methodology (RSM) is selected for design and 

analysis of the experimental data.  The objective of RSM is to optimise the responses.  It 

is compatible with the objective of this research (for optimised yield of glucose).  There 

are many types of models or designs in the RSM for optimisation purpose.  Central 

composite design (CCD) was chosen for this study because of the usefulness of this 

design for building a second-order model for the response variable without needing to 

use a complete three-level factorial experiment.  Using more complicated design will 

increase the number of experiment runs and ultimately increase the cost and time 

involved.  The detailed explanations of the RSM and CCD are discussed in Section 

2.11.2 and 2.11.3. 
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2.11.2 Response Surface Methodology (RSM) 

 

 

 Response surface methodology (RSM) is a collection of mathematical and 

statistical techniques useful for analysing the significance or the influence where the 

independent variables have on the dependent variable or response.  ANOVA and various 

diagnostic plots are using in the analysis of the significance of the models.  The 

objective of RSM is to optimise the response (Montgometry, 1997).  RSM explores the 

relationships between several explanatory variables and one or more response variables.  

It was first introduced by G. E. P. Box and K. B. Wilson in 1951 (Buyske, 2001).   

 

 

RSM relies on a set of designed experiments to obtain an optimal response.  

These procedures are used to optimise a process.  RSM is a statistical technique for the 

modelling and optimisation of multiple variables, which determines the optimum 

process conditions by combining experimental designs with interpolation by first or 

higher order polynomial equations through a sequential testing procedure (Ferreira et al., 

2008).   

 

 

 Many experiments have the goals of describing how the response varies as a 

function of the variables and determining treatments that give optimal responses, 

perhaps maxima, minima or attaining a specific target.  An easy way to estimate a first-

degree polynomial model is to use a factorial experiment or a fractional factorial 

designs.  Factorial structures can be used for these kinds of experiments too.  While 

treatment variables can be varied across a continuous range of values, other treatment 

designs may be more efficient.  A more complicated design, such as a central composite 

design in RSM can be implemented to estimate a second-degree polynomial model, 

which is still only an approximation at best.  The second-degree model can be used to 

optimise a response.  Response surface methods are designs and models for working 
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with continuous treatments when finding optima or describing the response is the goal 

(Oehlert, 2000).   

 

 

A response surface is the geometric representation obtained when a response 

variable is plotted as a function of one or more quantitative factors (Mason et al., 2003).  

A typical response surface can be represented graphically in Figure 2.5 (Montgometry, 

1997).   

 

 

Figure 2.5: A three-dimensional response surface showing the expected yield as a 

function of temperature and pressure (Montgometry, 1997) 

 

 

 To visualise the shape of a response surface, contours plots are useful.  A contour 

plot is a series of lines or curves that identify values of the factors for which the response 

is constant.  Curves for several values, usually equally spaced of the response are plotted 

(Mason et al., 2003).  Figure 2.6 shows an example of the contour plot.  In the contour 

plot, lines of constant response are drawn in the x1, x2 plane.  Each contour corresponds 

to a particular height of the response surface (Montgometry, 1997).  A contour plot 
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shows the contours of the surface, that is, curves of x1, x2 pairs that have the same 

response value.   

 

 

 

Figure 2.6: A contour plot of a response surface (Montgometry, 1997) 

 

 

 In most RSM, the form of the relationship between the response and the 

independent variable, Y is unknown.  Thus the first step in RSM is to find a suitable 

approximation for the true functional relationship between Y and q set of independent 

variables (X).  Usually, a low-order polynomial in some region of the independent 

variables is employed.  If the response is well modeled by a linear function of the 

independent variables, then the approximating function is the first-order model as 

described by Equation 2.3 (Buyske, 2001).  

 

 

Y = β0 + β1X1+… +βqXq  

= ∑
=

+
q

1i
ii0 X˟˟               Eq. (2.3) 
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If there is curvature in the system, then a polynomial of higher degree must be used, 

such as second-order model as described in Equation 2.4 (Buyske, 2001). 

 

 

Y = ∑∑∑ ∑
>= =

+++
i ij

jii
j

2q

1i

q

1i
ii

i
ii0 XX˟X˟X˟˟            Eq. (2.4) 

 

 

RSM is a sequential procedure.  Almost all RSM problems utilise one or both of 

these models.  Often, if there is a little curvature in the system, the first-order model is 

appropriate to use.  First-order designs collect data to fit first-order models.  The 

standard first-order design is a 2q factorial with center points.  The (coded) low and high 

values for each variable are ±1; the center points are m observations taken with all 

variables at 0.  This design has 2q + m points.  Second-order models are used when the 

portion of the response surface has curvature.  A second-order model contains all the 

terms in the first-order, plus all quadratic terms and all cross product terms.  In principal, 

third- or higher order models can also be used. But, this is rarely done, as second-order 

models are generally sufficient (Oehlert, 2000).   

 

 

Experimental designs used in RSM must make tradeoffs between reducing 

variability and reducing the negative impact that can be caused by bias.  By careful 

monitoring, RSM will be a useful method for industrial optimisation.   
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2.11.3 Central Composite Design (CCD) 

 

 

 There are several choices for second-order designs in the RSM.  One of the most 

popular methods is the central composite design (CCD).  It is useful for building a 

second-order model for the response variable without needing to use a complete three-

level factorial experiment.   

  

 

 A CCD composed of three groups of design points which are factorial points, 

axial points, and center points.  Figure 2.7 shows the CCD for factor number, q = 2 

(Montgometry, 1997).   

 

 

 

Figure 2.7: Central composite design for q = 2 (Montgometry, 1997) 

 

 

 Factorial points are the points from a 2q design (two levels) with level coded as 

±1 (Oehlert, 2000).  The two-level factorial part of the design consists of all possible 

combinations of the +1 and -1 levels of the factors. For example, the two factor case 

there are four design points: (-1, -1) (+1, -1) (-1, +1) (+1, +1). 
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 Center points, as implied by the name, are points with all levels set to coded level 

0, the midpoint of each factor range, (0, 0).  It is m points at the origin.  Experimental 

runs whose values of each factor are the medians of the values used in the factorial 

portion.  This point is often replicated in order to improve the precision of the 

experiment (Oehlert, 2000).   

 

 

 The axial or star points have one design variable at ±α (alpha) and all other 

design variables at 0; there are 2q axial points (Oehlert, 2000).  It has all of the factors 

set to 0, the midpoint, except one factor, which has the value +/- alpha. For a two factor 

problem, the star points are (-α, 0) (+α, 0) (0, - α) (0, + α).  The value for alpha is 

calculated in each design for both rotatability and orthogonality of blocks.  Another 

position for the star points is at the face of the cube portion on the design. This is 

commonly referred to as a face-centered central composite design.  After the designed 

experiment is performed, linear regression is used to obtain results. Coded variables 

above are often used when constructing this design. 

 

 

 The total number of experiment run in a CCD based on a complete 2q factorial is 

n = 2q + 2q + m.  This count usually is less than 3q, so that fewer observations are 

required than in the 3q factorial.  The CCD can be made rotatable by choosing α = F1/4, 

where F is the number of factorial points (Mason et al., 2003).  The rotatability is a 

desirable property for response surface model because prior to the collection of data and 

the fitting of the response surface, the orientation of the design with respect to the 

surface is unknown.  Thus, the exploration of the response surface is dependent on the 

orientation of the design.   

 

 

 The CCD can run whether in full or fractional factorial.  CCD with full factorial 

is a design in which the factorial portion is a full factorial with all combinations of the 

factors at two levels.  It means more experiments will need to be conducted in order to 
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get more precise results.  But unfortunately, it is only applicable to design that has less 

factors interaction.  Resolution V factorial designs allow independent estimation of the 

main effects and two factor interactions assuming that three factor and higher 

interactions are negligible. When the number of factors is 5 or greater, it is not necessary 

to run all combinations of factors.  Therefore, the CCD with fractional factorial is more 

suitable to reduce the experiment runs.  Besides the two CCD design above as 

mentioned, small central composite designs are also available when the number of 

factors is 3 or more.  These designs are the minimal-point designs needed to estimate the 

terms in a second order model.  Small central composite designs are however 

unbalanced minimal point designs.  They are not rotatable and are extremely sensitive to 

outliers (Mason et al., 2003).  Hence, the fractional CCD was selected as the design 

method in this study.   

 

 

 Through successful design and analysis of experiment using CCD and RSM, the 

optimised experimental conditions can be obtained and highest the yield of glucose 

could be obtained ultimately.   
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CHAPTER 3 

 

 

 

 

MATERIALS AND METHODOLOGY 

 

 

 

 

3.1 Introduction 

 

 

 Oil palms are planted in enormous amount throughout Malaysia.  The 

lignocellulosic waste produced from oil palm related industries can be utilised in the 

good way not just overcome the waste disposal problem but also produce useful 

chemical like bioethanol.  Therefore, empty fruit bunch (EFB) from palm oil mill was 

used as the raw material or analysis sample in this study to obtain the glucose that can be 

further converted to ethanol through fermentation process. 

 

 

Various type of chemical materials were using in this study.  These chemical 

reagents were purchased commercially and used in the different processes in this study.  

Besides, the enzymes using is the main element determining the successfulness of this 

research.   
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The overall methodology layout of this study is shown in Figure 3.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow of experiment 

 

Total Solids Content and Composition Determination 

Experimental Design using RSM 

• Set the variables and the range 

• Use the CCD to design the experiments 

• 27 sets experimental runs was obtained under 

various condition 

Experimentation 

• The proposed experiment by RSM was conducted. 

• Dilute acid hydrolysis pretreatment follows by 

enzymatic hydrolysis treatment. 

Experiment Result and Analysis by RSM 

Optimised Experiment Protocol proposed by RSM and 

Result Validation 
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3.2 Materials 

  

 

 

 

3.2.1 Raw material 

  

 

The lignocellulosic biomass being used in this study was oil palm empty fruit 

bunch (EFB).  It was collected from a local oil mill plant located at Kulai, Johor 

(Mahamurni Plantation Sdn. Bhd.).  This company produced around three tones of EFB 

waste every day.  Following sampling, the EFB was air-dried first at room temperature 

to avoid the fungus growth and then ground to particle size of less than 1mm using a 

hammer mill (Janke and Kunkel, IKA-Labortechnik, Germany).  The grounded EFB 

biomass was then oven-dried at 105 ºC for overnight and stored in a desiccator until 

further use. 

 

 

 

 

3.2.2 Chemicals and Reagents 

  

 

All chemicals and reagents used as listed in Table 3.1 are of analytical grade.  

The reagents were used without further purification.   
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Table 3.1: Analytical reagents 

Chemical Supplier 

Sulphuric Acid (435589, 95-98 %) Sigma-Aldrich, USA 

D (+)-Glucose anhydrous (1.08337.0250) Merck, Germany 

D (+)-Xylose (1.08689.0025, ≥ 99 %) Merck, Germany 

Calcium Carbonate (239216, 99 %) Sigma-Aldrich, USA 

Citric Acid anhydrous (1.818701.1000, ≥ 99 %) Merck, Germany 

Tri-Sodium Citrate dehydrate (1.06432.1000, 99-100.5 %) Merck, Germany 

 

 

 

 

3.2.3 Enzymes 

 

 

The cellulase enzyme was purchased commercially from Sigma Aldrich Sdn 

Bhd.  It is a commercial available cellulolytic complex, known as Celluclast® 1.5 L by 

Novozyme A/S (Denmark).  It was produced by submerged fermentation of a selected 

strain of the fungus Trichoderma reesei.  It catalyses the hydrolysis of cellulose to 

glucose, cellobiose, and/or higher glucose polymers.  The enzyme was in aqueous 

solution and had a density of 1.2 g.mL-1 at 25 °C.   

 

 

Cellobiase (β-glucosidase) (Novozym® 188, Novozymes A/S, Denmark) was 

also added to supplement the β-glucosidase activity on the degradation of cellulose.  

Cellobiase enzyme was prepared by submerged fermentation of an Aspergillus niger 

microorganism.  The cellobiase hydrolyses cellobiose to glucose.  Accumulation of 

cellobiose in solution will affect the result of cellulose conversion. 
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3.3 Analytical Methods 

  

 

High Performance Liquid Chromatography (HPLC, Perkin-Elmer 200) was 

selected to analyse the composition of carbohydrate in this research.  Refractive Index, 

RI was used as the detector.  All sample, standards and buffer were filtered through 0.2 

µm regenerated cellulose filters prior to analysis.  For monosaccharide determination, 

column Rezex RPM Monosaccaride Pb++ 8 % (Phenemenex, USA) was used.  Pure 

deionised water (Milli Q, MILLIPORE, France) was used as mobile phase with a flow 

rate of 0.6 mL.min-1 and oven temperature was maintained at 85 ºC. Sample volume was 

50 µL and run time was set as 35 minutes. 

 

 

The concentration of the glucose in the standard solutions and the hydrolysate 

after treatment processes were measured using the glucose analyser (YSI 2700 SELECT 

Biochemistry Analyser, YSI Life Sciences, Yellow Springs, OH).  For glucose 

determination, the membrane of YSI 2365 in the Glucose (Dextrose) Membrane kit was 

used (YSI Life Sciences, Yellow Springs, OH).  The reactive ingredients inside the 

membrane are immobilised glucose oxidase from Aspergillus niger.  This was a direct 

reading (in mg.mL-1) of dextrose in solution by the enzyme sensor.  Glucose oxidase 

was immobilised in the YSI Dextrose Membrane. 

 

 

 

 

3.4 Determination of Total Solids Content in EFB 

 

 

 The total solids content in EFB samples was determined according to the 

laboratory analytical procedure (LAP)-001 for Standard Method for the Determination 
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of Total Solids in Biomass (Ehrman, 1994).  This method was intended to determine the 

amount of total solids remained after drying the solid sample at 105 ºC.  The total solids 

of the sample must be done as soon as possible after sampling from plant (before storage) 

to avoid any moisture changes of the sample. 

 

 

 The convection oven procedure was used to determine the total solids content of 

EFB.  This method involves drying a sample at 105°C ± 3°C in a convection oven 

(Memmert, Germany).  Firstly, the weighing dish was predried at 105 ºC overnight 

before analysis.  Then, the predried dish was cooled down in a desiccator. After being 

cooled down, the dish was weighed and recorded accurately.  Approximately 1 to 5 g of 

fresh empty fruit bunch (EFB) was thoroughly mixed and weighed in the weighing dish 

prior to any preparation (as received).  The weight of the sample plus weighing dish was 

recorded accordingly.  The weighed sample in the dish was placed into a convection 

oven at 105 ºC for overnight.  The sample was then removed from the oven and placed 

in a desiccator to allow cooling to room temperature.  Then, the dish containing the 

oven-dried sample was weighed again and the percentage of the total solids was 

calculated according to Equation 3.1. 

 

 

% Total Solids = 
receive as sample ofWeight 

dish of Weight -dish  plus sample dried ofWeight 
 X 100        Eq. (3.1) 

 

 

Furthermore, the total moisture content of a sample can also calculated using Equation 

3.2.  

 

 

Total Moisture (%) = 100% – Total solids content of sample (%)         Eq. (3.2) 
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3.5 Determination of EFB Composition 

  

 

The characterisation and analytical assays of the oven-dried EFB were performed 

following the laboratory analytical procedures (LAP) developed by the National 

Renewable Energy Laboratory (NREL, Golden, CO) (NREL, 1996).  All experiments 

were carried out in triplicate; each value is presented as mean value.  

 

 

 

 

3.5.1 Determination of Carbohydrate Content 

 

 

The carbohydrate content of the EFB was determined using LAP-002, 

Determination of Carbohydrates in Biomass by High Performance Liquid 

Chromatography (Ruiz and Ehrman, 1996).  The standard method utilises two stages of 

acid hydrolysis processes to estimate the content of sugar in the biomass sample in 

percentage.  The sample was taken through a primary stage of hydrolysis using 

72 %w/w sulphuric acid and followed by a secondary stage of hydrolysis using 4 %w/w 

dilute sulphuric acid. 

 

 

0.3 g of prepared sample (after milled and predried at 45 ºC for 4 hours) was 

weighed and placed in a 100 mL vessel.  3 mL of 72 % w/w sulphric acid was then 

added to the vessel containing EFB sample.  A glass rod was used to stir the sample until 

the sample was thoroughly wetted.  Sample was stirred for every 15 min to assure 

complete mixing and wetting.  The vessel was then placed in the waterbath (Edelstahl 

Rostfrei, Deutschland) set at 30 ºC and left be hydrolysed for 2 hours.   
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Pure samples of glucose and xylose (0.3 g each, predried at 45 ºC for 4 hours) 

was weighed separately and placed in a 100 mL vessel.  Acid was added and sugars 

were hydrolysed and stirred as described in the previous steps.  The sugar recovery 

standards were taken through the remaining steps in the procedure in parallel with the 

samples.  The calculated recovery of the standards was used to correct for losses due to 

the destruction of sugars during the hydrolysis process. 

 

 

Upon completion of the two hour hydrolysis process, 84 mL of deionised water 

was added to dilute the acid concentration to 4 %w/w.  The vessels were closed and 

sealed.  The secondary hydrolysis process was done by autoclaving the sample in 4 

%w/w H2SO4 at 121 ºC for 1 hour.  The hydrolysate upon completion of autoclave cycle 

was then cooled for 20 min at room temperature before the seals removed.  

 

 

These autoclaved solutions will be used for the determination of acid-insoluble 

residue (AIL, the residual solid, for acid-insoluble lignin determination) and acid-soluble 

lignin (ASL), in parallel with this carbohydrate determination.  20 mL aliquots of each 

hydrolysate were transferred to 50 mL Erlenmeyer flasks and neutralised with calcium 

carbonate to a pH between 5 and 6.  Calcium carbonate was slowly added with frequent 

swirling to avoid problems of foaming and over-neutralisation.   

 

 

The neutralised hydrolysate was filtered using a 3 mL syringe with a 0.2 µm 

filter (Sartorius Minisart® Syringe Filter, Sartorius Stedim Biotech. GmbH., Germany) 

attached.  One portion of the hydrolysate was filtered directly into a sealable test tube for 

storage and reserved in case a repeat analysis is required.  Then, a second portion was 

filtered directly into an autosampler vial of HPLC.  The sugar content of EFB sample 

was then analysed using HPLC.   
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The importance of determining the carbohydrate content in this study was to 

calculate the yield of the glucose content after the completion of hydrolysis processes.  

Glucose yield can be calculated according to Equation 3.3. 

 

 

Glucose Yield (%) = 
samplein content  glucose Total*

hydrolysis after theion concentrat Glucose
 X 100          Eq. (3.3) 

 

* This calculation is considered valid that assuming all glucan in the EFB was converted to glucose. 

 

 

 

 

3.5.2 Determination of Acid Insoluble Lignin (AIL) 

 

 

The residual solid following the two step acid hydrolysis processes of 

carbohydrate content determination was used to determine the AIL content in the EFB 

sample.  This experiment was done according to the laboratory analytical procedure 

(LAP)-003 for the Determination of Acid-Insoluble Lignin in Biomass (Templeton and 

Ehrman, 1995).  

 

 

Firstly, the crucible needed for analysis was labeled and ignited at 575 ºC to 

achieve a constant weight.  Then, the ignited crucible was stored in a desiccator until 

needed.  The hydrolysis solution, after the two step acid hydrolysis process was vacuum 

filtered through the ignited filtering crucible. The crucible and content was then dried at 

105 ºC until constant weight was achieved.  After heating, the crucible with sample was 

cooled in a desiccator and the weight was recorded as W2.  The crucible and the content 

was placed in the muffle furnace (Carbolite, United Kingkom) and ignited at 575 ºC for 

4 hours.  After that, the crucible was cooled in the desiccator.  The remaining solid in the 
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crucible after ignition was weighing out as W3. AIL content was then calculated based 

on Equation 3.4. 

 

 

% AIL = 

100

TS
  weightsample Initial 

  W- W 32

×

 X 100          Eq. (3.4) 

 

 

where, 

 

 AIL = acid insoluble lignin 

 W2 = weight of crucible and sample after drying at 105 °C 

W3 = weight of crucible and sample after igniting at 575 ºC 

TS = total solids  

 

 

 

 

3.5.3 Determination of Acid Soluble Lignin (ASL) 

  

 

A portion of the filtrate following the two-step hydrolysis processes was 

collected for the analysis of acid soluble lignin according to the LAP-004 for 

Determination of Acid-Soluble Lignin in Biomass (Ehrman, 1996).  This procedure 

described a spectrophotometric method for determining the amount of lignin solubilised 

upon hydrolysis of a biomass sample. 

 

 

 The absorbance of the hydrolysate, A was measured at 205 nm using the 1 cm 

light path cuvette.  A 4 %w/w solution of H2SO4 was used as reference blank.  The 
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samples need to be diluted if the absorbance reading exceeds 0.7.  The ASL content can 

be calculated based on Equation 3.5. 

 

 

% ASL = 

100

TS
  weightsample Initial 

1000

1

a  b

A

×

×××
× mL

L
Vdf

 X 100           Eq. (3.5) 

 

 

where, 

 

 A = absorbance of hydrolysate at 205 nm 

 b = cell path length, 1 cm 

 a = absorptivity, 110 L/g-cm 

 df = dilution factor 

 V = filtrate volume, 87 mL 

 TS = total solids 

 

 

 

 

3.5.4 Determination of Ash 

  

 

The ash content of the EFB sample was determined using the laboratory 

analytical procedure (LAP-005) of Standard Method for Ash in Biomass.  The ash is the 

inorganic residue left after ignition at 575 ºC. 

 

 

 The crucible was placed in the muffle furnace and ignited at 575 ºC until a 

constant weight was achieved.  After cooled down to room temperature in the desiccator, 
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the crucible was weighed.  The EFB sample was predried at 105 ºC prior to analysis.  

Subsequently, 0.5 to 1.0 g of the sample was weighed in the preheated crucible.  The 

crucible and sample was then placed in the furnace and ignited for 4 hours.  The weight 

was recorded after ignition to determine the ash content in the EFB sample according to 

Equation 3.6. 

 

 

% Ash = 
sample dried Cº 105 of weight Initial

Cº 575at ignition after ash  ofWeight 
 X 100           Eq. (3.6) 

 

 

 

 

3.6 Design of the Experiment 

 

 

For the experimental design, the statistical analysis of response surface 

methodology (RSM) was used to optimise the parameters for the combined acid and 

enzymatic hydrolysis processes.   

 

 

A 25 half fraction rotatable central composite design (CCD) of RSM was adopted 

to design the experiment.  From the design, five factors or variables were selected.  

There were the pretreatment temperature, acid concentration, pretreatment reaction time 

from the acid hydrolysis process and enzymatic substrate concentration and enzymatic 

reaction time from the enzymatic hydrolysis process.  The actual and coded values for 

each component studied in the CCD are shown in Table 3.2. 
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Table 3.2: Experimental range and levels of independent process variables 

 

 

According to the half fraction of CCD, the total number of experiments was ½ 

(2q) + 2q + m, where q is the number of independent variables and m is the number of 

repetitions of the experiments at the centre point.  In this study, the total number of 

experiments of the 25 half fraction CCD with 1 centre points was 27 runs.  There were 

two axial points on the axis of each design variable at a distance of 2 from the design 

centre. 

 

 

Table 3.3 shows the design matrix constructed by the Design Expert Software 

Version 7.1.5 (Stat-Ease Inc., Minneapolis, USA).  Experimental runs would follow the 

protocols as proposed by the software.   

 

 

 

 

 

 

 

 

 

Independent Variables Symbol Range and Levels 

-α -1 0 +1 +α 

Pretreatment Temperature (°C) X1 60 80 100 120 140 

Acid Concentration (%w/w) X2 0 2 4 6 8 

Pretreatment Reaction Time (min) X3 0 10 20 30 40 

Enzymatic Substrate Concentration (%w/v) X4 0 5 10 15 20 

Enzymatic Reaction Time (hrs) X5 0 24 48 72 96 
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Table 3.3: Experimental design matrix 

Runs 

Variables 

X1 X2 X3 X4 X5 

Temperature Acid Conc Pretreatment Time Sub Conc Enz Reac Time 
(°C) (%w/w) (min) (%w/v) (Hrs) 

1 80 2 10 5 72 

2 80 2 10 15 24 

3 80 6 10 5 24 

4 80 6 10 15 72 

5 80 2 30 5 24 

6 80 2 30 15 72 

7 80 6 30 5 72 

8 80 6 30 15 24 

9 120 2 10 5 24 

10 120 2 10 15 72 

11 120 6 10 5 72 

12 120 6 10 15 24 

13 120 2 30 5 72 

14 120 2 30 15 24 

15 120 6 30 5 24 

16 120 6 30 15 72 

17 60 4 20 10 48 

18 140 4 20 10 48 

19 100 4 0 10 48 

20 100 4 40 10 48 

21 100 0 20 10 48 

22 100 8 20 10 48 

23 100 4 20 0 48 

24 100 4 20 20 48 

25 100 4 20 10 0 

26 100 4 20 10 96 

27 100 4 20 10 48 

 



 58

3.7 Experimentation 

 

 

 Twenty seven set experiments as listed in Table 3.3 were conducted.  Each 

experiment involved dilute sulphuric acid hydrolysis pretreatment followed by the 

enzymatic hydrolysis treatment.   

 

 

 

 

3.7.1 Dilute Acid Hydrolysis 

 

 

Acid hydrolysis pretreatment of empty fruit bunch were carried out in a 125 mL 

Erlenmeyer flasks.  The media consisted of 2 to 6 %w/w sulphuric acid using a charge of 

1 g EFB fiber per 8 g liquor H2SO4 on dry basis.  The acid was added at 1 / 8 (w/v) 

solid/liquid ratio.  A temperature-controllable oven (Memmert, Germany) was used to 

conduct the hydrolysis process.  The operating temperature of the hydrolysis was varied 

between 80 and 120 °C and samples were collected at various time intervals in the range 

of 10 to 30 min (Rahman et al., 2006).  

 

 

Upon completion of reaction, the solids were separated from the aqueous 

solution by filtration.  The liquid phase was analysed for glucose concentration using the 

glucose analyser.  The water-insoluble solids (WIS) fraction was collected, washed with 

distilled water until no traces of acid could be detected and then dried in an oven at 50 

ºC until constant weight.  This pretreated WIS was used as the substrate in the 

subsequent enzymatic hydrolysis experiments. 
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3.7.2 Enzymatic Hydrolysis  

 

 

The pretreated WIS fraction of EFB was enzymatically hydrolysed in a 20 mL 

Universal Bottles using the commercial cellulase enzyme, Celluclast®.  Enzyme loading 

was maintained at 30 filter paper units (FPU) per gram substrate as illustrated in the 

previous study (Zhong et al., 2007).  Fungal β-glucosidase (Novozym 188) was added at 

25 Units per gram substrate to supplement the cellobiase activity on the degradation of 

cellulose. 

 

 

Enzymatic hydrolysis was performed in 5 mL of 0.1 M sodium citrate buffer (pH 

4.8) at 50 °C and was shaked at 120 rpm using the waterbath shaker (Wisebath, Daihan 

Scientific Co. Ltd., Korea).  The effects of substrate concentration (5 to 20 %w/v) and 

hydrolysis time (24 to 72 hrs) on the enzymatic hydrolysis of oil palm EFB were studied 

as proposed by the RSM design of experiment. 

 

 

The 0.1 M sodium citrate buffer (pH 4.8) was prepared by dissolving 8.03 g of 

citric acid and 17.12 g sodium citrate in 1 L distilled water. 

 

 

 

 

3.8 Analysis of the Experiment 

 

 

The glucose yield results obtained from the 27 sets of experiments were analysed 

using RSM.  The experimental results were input into the Design Expert software.  

Simulated results were then output by the software.   
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RSM is a sequential procedure.  Usually, a low-order polynomial in some region 

of the independent variables is employed.  If the response is well modeled by a linear 

function of the independent variables, then the approximating function is the first-order 

model as shown in Equation 3.7. 

 

 

Y = β0 + β1X1 + β2X2 + β3X3 +β4X4 +β5X5            Eq (3.7) 

 

 

If there is curvature in the system or model, then a polynomial of higher degree must be 

used, such as the second-order model (Montgometry, 1997) as shown in Equation 3.8. 

 

 

Y = β0 + β1X1 + β2X2 + β3X3 +β4X4 +β5X5 + β12X1X2 + β13X1X3 + β14X1X4 + β15X1X5 

+ β23X2X3 + β24X2X4 + β25X2X5 + β34X3X4 + β35X3X5 + β45X4X5 + β11X1
2 
+β22X2

2 

+ β33X3
2 

+ β44X4
2
 + β55X5

2             Eq. (3.8) 

 

 

where Y represents response variable (glucose yield), β0 is interception coefficient, β1, β2, 

β3, β4 and β5 are linear terms, β11, β22, β33, β44 and β55 are quadratic terms and X1, X2, X3, 

X4, and X5 are independent variables studied (pretreatment temperature, acid 

concentration, pretreatment reaction time, enzymatic substrate concentration and 

enzymatic reaction time).  

 

 

 At the end, mathematical and statistical tools of RSM were then employed to 

verify the significance of the model.   
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3.9 Optimisation and Validation of the Results 

 

 

The strategy of RSM contains four steps in optimising the variable conditions.  

Firstly, RSM procedure was designed to move into the optimum region.  Then, RSM 

determined the behavior of the response in the optimum region; this was followed by the 

estimation of the optimum conditions of the process, and lastly followed by the 

verification step (Tanyildizi et al., 2005). 

 

 

 Following the design and analysis of the experiment, the optimised experiment 

protocols were proposed by the software.  The five optimised condition of the variables 

were provided.  The maximum yield of glucose can be obtained through the 

experimental conditions provided by the protocol.  The experiments were conducted 

according to the protocol proposed.  The results of the experiments were compared with 

the proposed yield to verify the significance of the model.   
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CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

4.1 Introduction 

 

 

 The total solids content and the composition of oil palm empty fruit bunch (EFB) 

were firstly discussed in Section 4.2 and Section 4.3.  After that, the experimental design 

and analysis were carried out using Design Expert v.7.1.5 software (Stat-Ease Inc. 

Minneapolis MN, USA) as reported in Section 4.4 and subsections.  The results of the 

experimental runs were analysed and the significance of each variable in the model was 

investigated through the ANOVA and the diagnostic plots.  A predictive model was then 

obtained.   

 

 

The optimisation points proposed by the software are useful in predicting the 

highest yield of glucose.  Validation of the point is important to verify the significance 

of the model.   
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4.2 Total Solids Content of EFB 

 

 

Analysis of total solids content of EFB was carried out following the National 

Renewable Energy Laboratory standard method (NREL,1996).  Biomass can rapidly 

gain or lose moisture when in contact with the air.  Hence the analysis of solids content 

was conducted as soon as samples were taken.  From the analysis, the total solids 

content of EFB was found to be 48.66 %.   

 

 

The moisture content of the sample can be calculated based on the total solids 

content according to Equation 3.2.  It is a measure of the amount of water and other 

volatile component (volatile at 105 ºC) present in the sample.  The total moisture content 

of EFB was found to be 51.34 %.  It was likely the steam used in the sterilisation process 

during the processing of palm oil has resulted in the high moisture content in the EFB, 

which makes it unsuitable as fuel (Prasertsan and Prasertsan, 1996). 

 

 

EFB is a type of biomass that comprises of hygroscopic materials which contain 

a large amount of moisture.  Chemical analyses of all lignocellulosic biomass are 

typically reported based on dry weight basis to avoid bias.  Therefore, the determination 

of the amount of solids present in the solid EFB is important.  The analyses of the EFB 

composition were determined based on the total solids content in the EFB, hence was 

regardless of the water content in the EFB.  
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4.3 Composition of EFB 

 

 

The main composition of the empty fruit bunch (EFB) is shown in Table 4.1.  

The composition analyses of EFB were carried out using quantitative acid hydrolysis 

method following the NREL standard method (1996) based on the total solids content of 

EFB.   

 

 

Table 4.1: Main composition of oil palm empty fruit bunch 

Main Composition (%) This Study Rahman et al., 2006 Std Dev 

Glucan 40.66 44.76 2.90 

Xylan 24.95 22.10 2.02 

Acid Insoluble Lignin (AIL) 10.71 11.70 0.70 

Acid soluble Lignin (ASL) 2.24 Not determined -  

Ash 0.56 0.52 0.03 

Others 20.88 20.92 0.03 

  

 

 The composition analyses of the EFB obtained from this study was comparable 

to that obtained by Rahman et al. (2006) which has used another standard method 

developed by Browning (1967).  As shown by both study, glucan was found to be the 

main component in EFB.  Glucose will be the product following the degradation of 

glucan from the cellulose of EFB.  In the NREL method (1996), after the EFB is treated 

with concentrated acid, cellulose will be broken down to its subunit of glucose.  Hence, 

it is assumed in this method that the glucose composition represents the cellulose 

component in the EFB.  The cellulose content was found to be 40.66 % in this study.  It 

is assumed that the cellulose was not further degraded to other byproducts.  It is 
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important to fully utilise the major component of the EFB so that most component 

would be converted to become fermentable sugar in the bioethanol production.   

Following the analysis of glucan in the EFB, 40.66 % of glucan in the EFB is 

assumed to be convertable to glucose.  Hence, this glucose value will be used as the 

basis for the calculation of glucose yield following the hydrolysis processes, namely 

both the acid pretreatment and enzymatic treatment.   

 

 

 The EFB contained 24.95 % of xylan.  It is the second major component in the 

EFB.  Xylose is the main component derived from hemicellulose.  Hemicellulose can be 

easily degraded to its monomeric sugar by dilute acid hydrolysis.  Whereby, the total 

lignin content of EFB was 12.95 %.  The ash content of EFB was measured as 0.56 %.  

Ash is the remaining solid of biomass after igniting at high temperature, 575 °C.  Other 

components in EFB may include the other monomeric sugar derived from hemicellulose 

degradation and other extractives present in cellulosic biomass.   

 

 

 The composition analyses of EFB obtained from this study were very 

comparable to those obtained by Rahman et al. despite both studies used different 

standard method for the analyses. 

 

 

 

 

4.4 Experimental Design and Statistical Analysis 

 

 

The experimental design and analysis was carried out using Design Expert 

v.7.1.5 (Stat-Ease Inc. Minneapolis MN, USA) to study the effect of pretreatment 

temperature (X1), acid concentration (X2) and pretreatment reaction time (X3) during the 

dilute acid hydrolysis pretreatment and enzymatic substrate concentration (X4) and 
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enzymatic reaction time (X5) during the enzymatic hydrolysis treatment for the 

conversion of EFB to glucose.  Subsequently, the optimal factors of the above variables 

were investigated to obtain the maximum glucose yield from EFB. 

 

 

The optimisation using statistical approach involved four major steps namely the 

selection of design of experiments, estimation of coefficients based on the mathematical 

model and prediction of the responses and finally the confirmation or validation of 

model adequacy (Tanyildizi et al., 2005). 

 

 

 

 

4.4.1 Experimental Design 

 

 

The experimental design applied in this study was a half fraction 25 factorial 

design.  Table 4.2 shows the experimental range and levels of independent process 

variables for the experiments conducted in this study.  There were five independent 

variables; X1, X2, X3, X4 and X5.  These factors were optimised using RSM to provide the 

maximum or optimised yield of glucose.  A central composite design was employed to 

search for the optimal value of the 5 significant components.  In order to ensure the 

design is rotatable, star points were set at +/- alpha (α) value of 2 in the design.  The 

value for α is calculated in the design for both rotatability and orthogonality of blocks.   
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Table 4.2: Experimental range and levels of independent process variables 

 

 

 Following the experimental design as proposed in Table 4.2, it translated into the 

experimentation protocol as summarised in Table 3.3 (Chapter 3).  These experiments 

were then conducted to obtain the corresponding glucose yields as would be expressed 

as Response, glucose yield, Y (%).  

 

 

 

 

4.4.2 Experimentation 

 

 

 Twenty seven set experiments as proposed by the Design Expert software were 

conducted according to the method as described by Section 3.7.1 and 3.7.2.  The 

experimental design matrix is shown in Table 3.3, Chapter 3.  The results obtained from 

these experiments are tabulated and reported in Table 4.3.  Results are reported as 

Response Y (%) which represents the glucose yields obtained from different set of 

experiments.  Yields were calculated based on the glucose concentration (in mg.mL-1) 

measured following the combined hydrolysis processes and calculated based on 

Equation 3.3. 

Independent Variables Symbol Range and Levels 

-α -1 0 +1 +α 

Pretreatment Temperature (°C) X1 60 80 100 120 140 

Acid Concentration (%w/w) X2 0 2 4 6 8 

Pretreatment Reaction Time (min) X3 0 10 20 30 40 

Enzymatic Substrate Concentration (%w/v) X4 0 5 10 15 20 

Enzymatic Reaction Time (hrs) X5 0 24 48 72 96 
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Table 4.3: Experimental designs and the summary of glucose yield results obtained 

from the combined acid pretreatment and enzymatic hydrolysis treatment 

Runs Variables Response Y (%) 

X1 X2 X3 X4 X5  

1 -1 -1 -1 -1 1 25.73 

2 -1 -1 -1 1 -1 16.89 

3 -1 1 -1 -1 -1 21.89 

4 -1 1 -1 1 1 22.46 

5 -1 -1 1 -1 -1 19.97 

6 -1 -1 1 1 1 19.51 

7 -1 1 1 -1 1 26.32 

8 -1 1 1 1 -1 16.18 

9 1 -1 -1 -1 -1 20.51 

10 1 -1 -1 1 1 27.87 

11 1 1 -1 -1 1 39.35 

12 1 1 -1 1 -1 28.86 

13 1 -1 1 -1 1 46.78 

14 1 -1 1 1 -1 29.02 

15 1 1 1 -1 -1 42.30 

16 1 1 1 1 1 42.14 

17 -2 0 0 0 0 28.53 

18 2 0 0 0 0 46.97 

19 0 0 -2 0 0 14.02 

20 0 0 2 0 0 38.86 

21 0 -2 0 0 0 15.32 

22 0 2 0 0 0 27.79 

23 0 0 0 -2 0 0.30 

24 0 0 0 2 0 24.59 

25 0 0 0 0 -2 0.33 

26 0 0 0 0 2 30.74 

27 0 0 0 0 0 24.84 
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 * ± 2=± α 

These results were then further analysed by RSM to provide the proposed 

optimal point with the corresponding optimised parameter values (X1 to X5) that would 

provide optimised glucose yield.   

 

 

 

 

4.4.3 Experimental Results Analysis 

 

 

Based on the experimentation matrix for the design and the experimentation 

results of glucose yields, Y (%) as outlined in Table 4.3, central composite design and 

response surface methodology were employed to analyse the interaction between the 

variables and the responses.   

 

 

 Further data analysis using RSM was conducted to determine the suitable model 

that best fit the experiment data.  Table 4.4 shows the sum of square (SS) of the RSM 

sequential model.  The corresponding statistical analyses for each model were also 

presented in Table 4.4.   
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Table 4.4: Sequential model sum of square 

Source 

Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square F Value p-value 

Mean 18049.22 1 18049.22     

Linear 1897.03 5 379.41 4.44 0.0065 

2FI 243.88 10 24.39 0.17 0.9951 

Quadratic 845.50 5 169.10 1.44 0.3322 

Cubic 592.04 5 118.41 1.05 0.6266 

Residual 113.02 1 113.02     

Total 21740.68 27 805.21     
 

 

 

The selection of a best model lies mainly on the p-value.  If the p-value is very 

small (less than 0.05), then the factors (variables) in the model have significant effects 

on the responses.  If more than one model shows the significant effect, then the model 

with the highest order of polynomial will be selected.  From Table 4.4, only the linear 

model was found to be significant with p-value of 0.0065 (< 0.05).  p-value or 

significance probability is the probability of obtaining a value for a statistic test that is as 

extreme as or more extreme than the observed value, assuming the null hypothesis is 

true means that there is no effect of the factor (Mason et al., 2003).  More formally, the 

p-value is the smallest level of significance that would lead to rejection of the null 

hypothesis.  It is customary to call the test statistic and the data significant when the null 

hypothesis is rejected (Montgometry, 1997).  Small probability values call for rejection 

of the null hypothesis.  The probability equals the proportion of the area under the curve 

of the F-distribution that lies beyond the observed F value.  The F distribution itself is 

determined by the degrees of freedom associated with the variances being compared.  It 

is a measurement of variance of data about the mean, based on the ratio of mean square 

of group variance due to error (Tabachnick et al., 2007).   
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Table 4.5 shows more statistical analyses on the model.  The model that has the 

maximised value of  the adjusted R-squared and the predicted R-squared would be 

selected.  Consistent to the result as indicated by the p-value, the linear model was found 

to have the largest value of adjusted R-squared ( 0.3982) and the predicted R-squared 

(0.2090).   

 

 

Table 4.5 Statistics summary of the models 

Source 

Std. 

Dev. R-Squared 

Adjusted  

R-Squared 

Predicted 

R-Squared PRESS 

Linear 9.24 0.5139 0.3982 0.2090 2919.92 

2FI 11.87 0.5800 0.0072 -3.7701 17608.55 

Quadratic 10.84 0.8090 0.1723 -4.2812 19495.42 

Cubic 10.63 0.9694 0.2039 -39.9206 151056.80 

 

 

R-squared (R2) is a measure of the amount of reduction in the variability of 

response (Y) obtained using the regressor variables X1, X2, …., Xq in the model.  

However, a large value of R2 (~1) does not necessarily imply that the model is a good 

one.  Adding a variable to the model will always increase R2, regardless of whether the 

additional variable is statistically significance or not.  Thus, it is possible for models that 

have large values of R2 to yield poor predictions of new observation of the mean 

response (Montgometry, 1997).  Equation 4.3 shows the calculation for R2.  As R2 

always increase as more variables are added, so adjusted R2 (R2
adj) was chosen as a better 

parameter to evaluate the model.   

 

 

R
2 = 1 - 

Total

Residual

SS

SS
               Eq. (4.3) 

 



 72

R
2

adj, as can be calculated by Equation 4.4, it is a measure of the amount of 

variation around the mean explained by the model.  It is adjusted for the number of 

variables in the model.  In general, the R2
adj will not always increase as variables are 

added to the model.  In fact, if unnecessary variables are added, the value of R2
adj will 

often decrease (Montgometry, 1997).   

 

 

R
2

adj = 1 - 

total
Total

residual
Residual

df
SS

df
SS

 = 1 - 








residual

total

df

df
(1 - R2)           Eq. (4.4) 

 

 

The predicted R-squared (R2
prediction) estimates the amount of variation in the new 

data as explained by the model.  R2
 prediction can be calculated by Equation 4.5.  A 

negative value of R2
prediction is undesirable as it suggests that the model consists of only 

the intercept that is a better predictor of the response than the variables of this model.  

The model that has the highest value of R2
adj and R2

prediction would be selected.   

 

 

R
2

prediction = 1 - 








Total

PRESS

SS
              Eq. (4.5) 

 

 

The PRESS is the predicted residual error sum of squares.  It provides a useful 

residual scaling which indicates how well the model fits the data (Montgometry, 1997).  

The PRESS is computed by first predicting each point to be from a model that contains 

all other points except the one in question.  The squared residuals, which are the 

difference between the actual and predicted values, are then summed.  The PRESS of the 

chosen model should be the smallest relative to the other models under consideration.  
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Based on these evaluating criteria, and from both the data analysis as 

summarised in Table 4.4 and 4.5, the linear model was found to be the best model that 

fit well with the experimental values and hence was suggested for the further analysis 

during the optimisation study.   

 

 

 

 

4.4.4 ANOVA for Response Surface Linear Model  

 

 

Apart of the statistical analyses as discussed in Section 4.4.3, the analysis of 

variance (ANOVA) was further conducted to check the fitness of the linear model with 

respect to each variable (X1, X2, X3, X4 and X5) and the overall fitness of these variables.   

 

 

ANOVA is an arithmetic procedure that tests the statistical significance of the 

mean differences and central tendency among different groups of scores (i.e. the 

experiment runs).  The different groups of scores may correspond to different levels of a 

single experimental factor or to different combination of levels of two or more factors 

(Tabachnick, 2007).  ANOVA separates or partitions the variation observable in a 

response variable into two basic components which are variation due to assignable 

causes and to uncontrolled or random variation.  Assignable causes refer to known or 

suspected sources of variations from variates that are controlled (experimental factors) 

or measured (covariates) during the conduct of an experiment.  Whereby, random 

variation includes the effects of all other sources not controlled or measured during the 

experiment (for example, measurement errors) (Mason et al., 2003).  The curve fitting 

between the experimental results and the model was evaluated by regression analysis 

and the ANOVA analysis as shown in Table 4.6.   
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Table 4.6: The results of curve fitting between the model and experimental data 

evaluated by regression and ANOVA analysis 

 

 

Based on Table 4.6, the first step in ANOVA was to define a suitable measure of 

variation which involved partitioning into components, due to assignable causes and to 

random variation, which can be accomplished.  While they are many measures that 

could be used, the numerator of the sample variances is used for a variety of 

computational and theoretical reasons.  This measure of variability is referred to as the 

total sum of squares (SST), from Table 4.6, SST is reported as 3691.46 as calculated from 

Equation 4.6 (Mason et al., 2003). 

 

 

Total Sum of Squares (SST) = Model Sum of Square + SSError 

       = SSX1 + SSX2 + SSX3 + SSX4 + SSX5 + SSResidual        Eq. (4.6) 

 

 

where SSX1, SSX2, SSX3, SSX4 and SSX5 represent the individual sum of square of the five 

experimental factors that contributed to the total sum of squares.  SSError or SSResidual 

represents the sum of square of error or residual which also contributed to the 

summation of SST.   

Source Sum of Squares df Mean Square F-value p-value 

Model 1897.03 5 379.41 4.44 0.0065 

X1 873.31 1 873.31 10.22 0.0043 

X2 140.91 1 140.91 1.65 0.2131 

X3 325.15 1 325.15 3.81 0.0646 

X4 3.13 1 3.13 0.04 0.8501 

X5 554.54 1 554.54 6.49 0.0187 

Residual 1794.43 21 85.45 - - 

Total 3691.46 26 - - - 
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From Equation 4.6, SST can be partitioned into components for the assignable 

causes (factor X1, X2, X3, X4 and X5) and for random variation (uncontrolled experimental, 

residual or error).  It is important to note that the total variance in the set of scores is 

partitioned into two sources, the experimental factors and error that may occur during 

the experiment runs.  In this sense, it is known as an analysis of variance.  As the effects 

of the individual factors are assessed by changes in the central tendencies of the groups, 

the interferences arose from ANOVA are about the differences in the central tendency.  

However, the sum of squares (SS) are not yet the variances.  To become variances, they 

must be averaged.  The denominators for averaging SS in ANOVA are called the 

degrees of freedom (df).  df is partitioned following the same manner as the SS.  The 

total degrees of freedom are the total number of the experimental runs, N minus 1.  One 

degree was lost when the grand mean is estimated (Tabachnick, 2007).  In this study, N 

equals to 27, therefore, there was a total df of 26 (27 – 1).  

 

 

 Variance is an ‘averaged’ sum of squares.  Division of a SS by df produces 

variance, which is known as mean square (MS) in ANOVA.  ANOVA produces three 

variances: one associates with the total variability among scores (MST); one with 

variability between groups or factors (MSA); and one with variability within groups 

(residuals) (MSE).  The equations for mean squares are shown in Equation 4.7 

(Tabachnick, 2007): 

 

 

 MST = 
T

T

df

SS
 or MSA = 

A

A

df

SS
 or MSE = 

E

E

df

SS
           Eq. (4.7) 

 

 

 MST is the total variance for the entire experiment runs across all groups.  

Therefore, it is generally not a useful quantity for ANOVA.  The F distribution is a 

sampling distribution of the ratio of two variances, namely the MSA and MSE.  F-value 
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is a measurement of variance of data about the mean, based on the ratio of mean square 

of the group variance (MSA) to that due to error (MSE) as indicated by Equation 4.8.   

 

 

 F-value = 
E

A

MS

MS
               Eq. (4.8) 

 

 

In ANOVA, F ratio tests the null hypothesis by comparing the model variance to 

the residual (error) variance (Tabachnick, 2007).  If the variances are close to each other, 

the F-value will be close to one and it is less likely that any of the factors have a 

significant effect on the response.  It means that the null hypothesis is true.  Once F-

value is obtained, it is tested against the critical ),1,( aNaF −−α , value obtained from the F 

distribution table, with numerator df = a – 1 (df of residual) and denominator df = N – a 

(df of model) at the desired alpha level (95 % or 0.05).  If the F-value obtained is equal 

to or larger than the critical F, it means that the null hypothesis is rejected.  There is a 

difference among the means in the groups.  Any increased in the F-value would 

increases the probability of rejecting a false null hypothesis.  Equation 4.8 indicates that 

F-value can be increased by an increase value in the numerator (MSA) or by a decrease 

value in the denominator (MSE) (Tabachnick, 2007).   

 

 

In principle, F-value should be greater than the tabulated critical ),1,( aNaF −−α -

value to ensure the model is a good prediction of the experiment results.  From the 

ANOVA table, the F-value (4.44) was higher than the tabulated F-value (F0.05, 21, 5 = 

2.68).  Therefore, it shows that the model is significant relative to the error.   

 

 

Another way of testing the hypothesis of the experiment was by evaluating the p-

value.  One way to report the results of a hypothesis test is to state that the null 

hypothesis was or was not rejected at a spesific α-value or level of significance.  p-value 
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is usually obtained via the use of statistical software.  By tradition, a p-value of less than 

0.05 are termed statistically significant, and those less than 0.01 are termed highly 

statistically significant (Oehlert, 2000).  In this study, the p-value for the model was 

0.0065.  It means that there was only a 0.65 % of probability that a "Model F-value" was 

rejected due to errors.  Variables that have the p-value of less than 0.05 indicate that the 

model terms are significant.  The regression result was set at a confidence level of 95. 

 

 

In addition, the significance of each coefficient was determined using the p-

value.  The statistical significance (p-value) of a result is an estimated measure of the 

degree to which it is "true".  The lower p-level verify that the more significant of the 

observed relation between variables in the sample.  Specifically, the p-value represents 

the probability of error that is involved in accepting the observed result as valid.  From 

Table 4.6, the largest effects on the response or the glucose yield were found to be the 

linear term of pretreatment temperature (X1) and enzymatic reaction time (X5).  Each of 

this linear term has the p-value of <0.05.  However, for other terms where their p-values 

were greater than 0.05, it indicated that their confidence levels were probably <95%. 

 

 

Table 4.7 shows the R-squared (R2) table from the ANOVA.  As discussed in 

Section 4.4.3, the regular R2 can be artificially inflated by simply continuing to add 

terms to the model, even if the terms are not statistically significant.  Therefore, the 

adjusted R-squared (R2
adj) and predicted R-squared (R2

prediction) values are more valuable 

in analysing the significance of the model.  The R2
adj basically plateaus when 

insignificant terms are added to the model, while the R2
prediction will decrease when there 

are too many insignificant terms.   
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Table 4.7: The R-squared table from ANOVA 

Std. Dev. 9.24   R-Squared 0.5139 

Mean 25.86  Adj R-Squared 0.3982 

C.V. % 35.75  Pred R-Squared 0.2090 

PRESS 2919.92   Adeq Precision 7.776 

 

  

Theoretically, the R2 values close to 1.0 indicate a perfect fit, a value lower than 

1.0 indicates a lower degree of model fitting.  However, there is no "cut-off" value 

applied for the R2.  In other words, if the R2 value is much lower than 1.0, the model 

would not be rejected.  The more important evaluation parameters lie on the statistical 

significance of the model.  

 

 

The linear model selected was proven to be statistically significant, the R2 value 

was rather low (0.5139), both the adjusted and predicted R-squared values of the model 

were also substantially low, namely 0.3982 and 0.2090 respectively.  R2
prediction of 0.2090 

was however in reasonable agreement with the R2
adj of 0.3982.  The lower values of R2

adj 

and R2
prediction were not unexpected as the linear only contains two factors (X1 and X5) 

that were significant.  According to Montgometry (1997), if unnecessary variables are 

added, the value of R2
adj will often decrease  

 

 

The adeq. precision from Table 4.7 measures the signal to noise ratio.  It 

compares the range of the predicted values at the design points to the average prediction 

error.  A ratio greater than 4 indicates adequate model discrimination and is desirable.  

The value of 7.776 in this analysis indicates an adequate signal.  This model can be used 

to navigate the design space.   
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Std. Dev. estimation is the square root of the error mean square, 45.85  = 9.24.  

It can be considered as an estimate of the standard deviation associated with the 

experiment.  Whereby, C. V. is the coefficient of variance, it is defined as the standard 

of deviation expressed as a percentage of the mean. It was calculated by dividing the 

Std. Dev. by the Mean and multiplying by 100.  The coefficient of variance measures the 

unexplained or residuals variability in the data as a percentage of the mean of the 

response variable (Montgometry, 1997).  The C. V. of this design is 35.75 %.   

 

 

Table 4.8 presents the post ANOVA of the regression results and the significance 

of regression coefficients of the glucose yield model.  Coefficient estimate is the 

regression coefficient representing the expected change in response Y per unit change in 

each factor X when all other remaining factors are held constant.  It is important for the 

determination of the mathematical regression coded model equation later.  Standard 

error is the standard deviation associated with the coefficient estimate. 

 

 

Table 4.8: Post ANOVA of regression results and the significance effect on regression 

coefficient for response (glucose yield) 

 Coefficient  Standard 95% CI 95% CI  

Factor Estimate df Error Low High VIF 

Intercept 25.86 1 1.78 22.16 29.55  

X1 6.03 1 1.89 2.11 9.96 1.00 

X2 2.42 1 1.89 -1.50 6.35 1.00 

X3 3.68 1 1.89 -0.24 7.60 1.00 

X4 0.36 1 1.89 -3.56 4.29 1.00 

X5 4.81 1 1.89 0.88 8.73 1.00 
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The two columns of 95 % CI Low and 95 % CI High value represents the range 

that the true coefficient should be found within 95% of the time.  If one the limit of 95 % 

CI Low and High is positive and the other is negative, then the null hypothesis could be 

true.  It indicates that the factor has no effect to the model.  From Table 4.8, the 95 % CI 

Low value of X2, X3 and X4 were negative value (-1.50, -0.24 and -3.56 respectively) and 

the 95 % CI High value for these three factors were positive value (6.35, 7.60 and 4.29 

respectively).  It indicates these three factors were not affecting the model’s yield.  

Besides, both of the 95 % CI Low and 95 % CI High value of factors X1 and X5 were 

positive value.  It indicates these two factors will affect the model’s yield.  The results of 

95 % CI Low and 95 % CI High value shows the same result as the p-value that only X1 

and X5 are significant factors in the model analysis of glucose yield.   

 

 

The variance inflation factor (VIF) measures how much the variance of the 

model was inflated by the lack of orthogonality in the design.  The VIF value of 1 

indicates that the factor is orthogonal to all other factors in the model.  The values 

greater than 1 indicate that the factors are too correlated together and mean they are not 

independent.  From Table 4.8, the VIF of all factors in the model were 1. It means that 

each of the factors are orthogonal to all others factors in the model. 

 

 

Based on the Coefficient Estimate as tabulated in Table 4.8, the predictive model 

can now be derived and as shown in Equation 4.9.   

 

 

Y = 25.86 + 6.03X1 + 2.42X2 + 3.68X3 + 0.36X4 + 4.81X5          Eq (4.9) 

 

 

where Y, the glucose yield, is expressed as a function of the pretreatment temperature 

(X1), acid concentration (X2), pretreatment reaction time (X3), enzymatic substrate 

concentration (X4) and enzymatic reaction time (X5).   
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The predictive model is listed in coded terms (X1, X2, X3 X4 and X5).  The coded 

(or pseudo) equation is useful for identifying the relative significance of the factors by 

comparing the factor coefficients.  This comparison cannot be made with the actual 

equation because the coefficients are scaled to accommodate the units of each factor.  

The equations give identical predictions.  These equations, used for prediction, have no 

block effects.  Blocking is a restriction on the randomisation of the experiment, used to 

reduce error.  It is not a factor being studied. Therefore, blocks are only used to fit the 

observed experiments, not to make predictions. 

 

 

 

 

4.4.5 Diagnostic Plots of Linear Model 

 

 

 The adequacy and validity of the design can be inspected using various 

diagnostic plot provided by Design Expert software.  There are four main plots need to 

be focused on.  The first one is the normal probability plot of the studentised residuals to 

check for normality of residuals.  Then, the studentised residuals versus predicted values 

to check for constant error of the model design.  After that, the externally studentised 

residuals plot to look for outliers or the influential values.  Finally,  the Box-Cox plot for 

power transformations. 

 

 

The normal probability plot of the studentised residual is the most important 

diagnostic plot to determine the validity of design.  Figure 4.1 shows the probability plot 

of the studentised residuals.  The probability plot indicates whether the residuals follow 

a normal distribution.  The data points should be approximately linear or follow a 

straight line and is expected that some moderate scatter was even with the normal data. 
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Figure 4.1: Normal probability plot of studentised residuals 

 

 

A non-linear pattern indicates the non-normality in the error term, which may be 

corrected by a transformation.  The plot in Figure 4.1 shows that the residuals are 

normally distributed along the line but with some data points scatter from the straight 

line.  This can indicates the design is valid for estimation of glucose yield.   

 

 

 Another key diagnostic plot is the plot of residuals versus predicted values.  This 

is a plot of the residuals versus the ascending predicted response values.  The plot is 

used to test the assumption of constant variance.  The plot should show a pattern of 

random scatter, and the points should be scattered inside the constant range of residuals 

across the graph.  If megaphone pattern (“<”) occur, this indicates the problem of non-

constant variances of the residuals in the design and a transformation of the response is 

needed to improve the fit of model.  Figure 4.2 shows that the points are randomly 



 83

scattered inside the constant range of residuals.  This indicates that no transformation is 

needed.   

 

Figure 4.2: Plot of residuals versus predicted values 

 

 

 The externally studentised residual plot provides an easier way to identify 

abnormal (outlier) runs if any points stand out, which fall outside the red line (+3.58 and 

-3.58 standard deviation limits).  These values provide measures of the influence, 

potential or actual, of an individual run. This graphical plot provides a better perspective 

on whether a case sticks out from the others.  It shows how that data points from the runs 

fits in with the other points of this model.   

 

 

 The externally studentised residual is a measure of how much standard deviation 

the actual value deviates from the value predicted after deleting the point in question.  

Sometimes, The externally studentised residual is also called Outlier T, R-Student.  

Figure 4.3 represents the externally studentised residual plot.  This plot shows that all 
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the points fall well within the limit range of standard deviation except one point from the  

run-23.  This indicates no outliers or abnormal experiments were found in the design 

except for  run-23.  After repeating the experiment of run-23, no special cause was 

identified.  Therefore, the data point remained in the data set.   

 

 

 

Figure 4.3: Externally studentised residuals plot 

 

 

 The last diagnostic plot is the Box-Cox plot as shown in Figure 4.4.  The Box-

Cox plot is a tool that provides a guideline for selecting the correct power law 

transformation for the response data.  The red lines indicates the 95 % confidence limits.  

The lowest point on the Box Cox plot (blue line) represents the value of lambda (λ) that 

results in the minimum residual sum of squares in the transformed model.  The potential 

for improvement is greatest when the range of the maximum to minimum response value 

is greater than 3.  If the blue line points to a lambda value at 1, it symbolised no 
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transformation of the response.  The green line indicates the best lambda value.  A 

recommended transformation is listed based on the best lambda value, which is found at 

the minimum point of the curve generated by the natural log of the sum of squares of the 

residuals.  If the 95 % confidence interval around this lambda includes 1, then no 

specific transformation is recommended by Design Expert software.  The plot shows that 

the current lambda value of 1 fall fell within the 95 % confidence interval.  Thus, no 

power transformation is recommended.  The plot also shows the current lambda value 

(1) was very close to the best current value suggested (1.17).  Thus, the non-transformed 

model is well accepted in good agreement. 

 

 

 

 

Figure 4.4: Box-Cox plot for power transformation 
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4.4.6 Graphs of LinearModel 

 

 

 The model graphs were used to intepret and evaluate the model.  Estimation of 

the response of glucose yield with regards to the independent variables X1, X2, X3, X4 and 

X5 in terms of response surfaces are shown in Figure 4.5 to 4.19.  The figures show the 

one factor plot for representing the regression model of Equation 4.9. The figures 

illustrate the effect of pretreatment reaction temperature (X1), acid concentration (X2), 

pretreatment reaction time (X3), enzymatic substrate concentration (X4) and enzymatic 

reaction time (X5) over the yield of glucose.  Besides, three-dimensional surface and 

contour plot of the factors interaction will also be shown accordingly.  A surface plot 

displays a three-dimensional view that may provide a clear picture of the response 

surface.  Meanwhile, the contour plot is viewed as two-dimensional plane where all 

points that have the same response are connected to produce contour lines of constant 

responses. 

 

 

The effect of the pretreatment reaction temperature (X1) on response of glucose 

yield when acid concentration (X2), pretreatment reaction time (X3), enzymatic substrate 

concentration (X4) and enzymatic reaction time (X5) were selected at 4 %w/w, 20 min, 

10 %w/v and 48 hrs respectively as the centre point is shown in Figure 4.5.  From the 

figure, it can be interpreted that the maximum and minimum glucose yield of 31.89 % 

and 19.82 % can be obtained by conducting at 100 °C of pretreatment reaction 

temperature.  It shows that the glucose yield increased with the increased of pretreatment 

temperature.  
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Figure 4.5: Effect of pretreatment temperature on glucose yield when acid concentration, 

pretreatment reaction time, enzymatic substrate concentration and enzymatic reaction 

time were selected at 4 %w/w, 20 min, 10 %w/v and 48 hrs respectively as the centre 

point 

 

 

Figure 4.6 shows the effect of acid concentration on glucose yield when 

pretreatment temperature, pretreatment reaction time, enzymatic substrate concentration 

and enzymatic reaction time were selected at 100 °C, 20 min, 10 %w/v and 48 hrs 

respectively as the centre point.  It can be interpreted that the increased in acid 

concentration slightly increased the glucose yield.  As discussed previously in the 

ANOVA section (Section 4.4.4), the X2, factor of acid concentration was not a 

significant factor in this experiment design.  It is proven by Figure 4.6 which shows 

comparable maximum and minimum yields of glucose at 28.28 % and 23.43 %, 

respectively.   
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Figure 4.6: Effect of acid concentration on glucose yield when pretreatment temperature, 

pretreatment reaction time, enzymatic substrate concentration and enzymatic reaction 

time were selected at 100 °C, 20 min, 10 %w/v and 48 hrs respectively as the centre 

point 

 

 

The response surface as a function of pretreatment temperature and acid 

concentration at pretreatment reaction time, enzymatic substrate concentration and 

enzymatic reaction time of 20 min, 10 %w/v and 48 hrs, respectively as centre point is 

shown in Figure 4.7.  The corresponding contour plot of glucose yield is shown in 

Figure 4.8.  From the figures, it can be interpreted that the yield of glucose increased 

with the increased in pretreatment temperature but inconsistence with the changes in 

acid concentration.   
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Figure 4.7: The response surface plot of glucose yield as a function of pretreatment 

temperature and acid concentration at pretreatment reaction time, enzymatic substrate 

concentration and enzymatic reaction time of 20 min, 10 %w/v and 48 hrs, respectively 

as the centre point 
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Figure 4.8: The response contour plot of glucose yield as a function of pretreatment 

temperature and acid concentration at pretreatment reaction time, enzymatic substrate 

concentration and enzymatic reaction time of 20 min, 10 %w/v and 48 hrs, respectively 

as the centre point 

 

 

The effect of the pretreatment time on response of glucose yield when reaction 

temperature, acid concentration, enzymatic substrate concentration and enzymatic 

reaction time were selected at 100 °C, 4 %w/w, 10 %w/v and 48 hrs respectively as the 

centre point is shown in Figure 4.9.  It can be interpreted that the increased in 

pretreatment time slightly increased the glucose yield.  It shows the maximum and 

minimum yield of glucose at 29.54 % and 22.17 %, respectively.   
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Figure 4.9: Effect of pretreatment reaction time on glucose yield when pretreatment 

temperature, acid concentration, enzymatic substrate concentration and enzymatic 

reaction time were selected at 100 °C, 4 %w/w, 10 %w/v and 48 hrs, respectively as the 

centre point 

 

 

Figure 4.10 shows the response surface of glucose yield as a function of acid 

concentration and pretreatment reaction time at pretreatment temperature, enzymatic 

substrate concentration and enzymatic reaction time of 100 °C, 10 %w/v and 48 hrs, 

respectively as centre point.  The corresponding contour plot is shown in Figure 4.11. 

From the figures, it can be interpreted that the increment in acid concentration and 

pretreatment reaction time showed no effect on the yield of glucose as the graphs show 

near to linear graph characteristic.   
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Figure 4.10: The response surface plot of glucose yield as a function of acid 

concentration and pretreatment reaction time at pretreatment temperature, enzymatic 

substrate concentration and enzymatic reaction time of 100 °C, 10 %w/v and 48 hrs, 

respectively as centre point  
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Figure 4.11: The response contour plot of glucose yield as a function of acid 

concentration and pretreatment reaction time at pretreatment temperature, enzymatic 

substrate concentration and enzymatic reaction time of 100 °C, 10 %w/v and 48 hrs, 

respectively as the centre point 

 

 

Figure 4.12 shows the effect of enzymatic substrate concentration on glucose 

yield when pretreatment temperature, acid concentration, pretreatment reaction time and 

enzymatic reaction time were selected at 100 °C, 4 %w/w, 20 min and 48 hrs, 

respectively as the centre point.  It can be interpreted that the increment in the enzymatic 

substrate concentration almost showed no effect on the glucose yield.  The maximum 

and minimum yield of glucose was 26.22 % and 25.49 %, respectively.   
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Figure 4.12: Effect of enzymatic substrate concentration on glucose yield when 

pretreatment temperature, acid concentration, pretreatment reaction time and enzymatic 

reaction time were selected at 100 °C, 4 %w/w, 20 min and 48 hrs, respectively as centre 

point 

 

 

The response surface of glucose yield as a function of pretreatment reaction time 

and enzymatic substrate concentration at pretreatment temperature, acid concentration 

and enzymatic reaction time of 100 °C, 4 %w/w and 48 hrs, respectively as centre point 

is shown in Figure 4.13. The corresponding contour plot is shown in Figure 4.14.  From 

the figures, it is shown that the yield of glucose has increased slightly with the increment 

in reaction time and enzymatic substrate. 
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Figure 4.13: The response surface plot of glucose yield as a function of pretreatment 

reaction time and enzymatic substrate concentration at pretreatment temperature, acid 

concentration and enzymatic reaction time of 100 °C, 4 %w/w and 48 hrs, respectively 

as centre point 
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Figure 4.14: The response contour plot of glucose yield as a function of pretreatment 

reaction time and enzymatic substrate concentration at pretreatment temperature, acid 

concentration and enzymatic reaction time of 100 °C, 4 %w/w and 48 hrs, respectively 

as centre point 

 

 

The effect of the enzymatic reaction time on the response of glucose yield when 

reaction temperature, acid concentration, pretreatment reaction time and enzymatic 

substrate concentration were selected at 100 °C, 4 %w/w, 20 min and 10 %w/v 

respectively as the centre point is shown in Figure 4.15.  It can be interpreted that the 

increment in the enzymatic reaction time dramatically increased the glucose yield.  It 

shows that the maximum and minimum yield of glucose was at 30.66 % and 21.05 %, 

respectively. 
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Figure 4.15: Effect of enzymatic reaction time on glucose yield when pretreatment 

temperature, acid concentration, pretreatment reaction time and enzymatic substrate 

concentration were selected at 100 °C, 4 %w/w, 20 min and 10 %w/v, respectively as 

centre point 

 

 

Figure 4.16 shows the response surface of glucose yield as a function of 

enzymatic substrate concentration and enzymatic reaction time at pretreatment 

temperature, acid concentration and pretreatment reaction time of 100 °C, 4 %w/w and 

20 min, respectively as centre point.  The corresponding contour plot is shown in Figure 

4.17. From the figures, it can be interpreted that the yield of glucose increased with the 

increased in enzymatic substrate concentration but almost no effect with the changes of 

acid concentration.   
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Figure 4.16: The response surface plot of glucose yield as a function of enzymatic 

substrate concentration and enzymatic reaction time at pretreatment temperature, acid 

concentration and pretreatment reaction time of 100 °C, 4 %w/w and 20 min, 

respectively as centre point 
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Figure 4.17: The response contour plot of glucose yield as a function of enzymatic 

substrate concentration and enzymatic reaction time at pretreatment temperature, acid 

concentration and pretreatment reaction time of 100 °C, 4 %w/w and 20 min, 

respectively as centre point 

 

 

The response surface of glucose yield as a function of pretreatment temperature 

and enzymatic reaction time at acid concentration, pretreatment reaction time and 

enzymatic substrate concentration of 4 %w/w, 20 min and 10 %w/v, respectively as 

centre point is shown in Figure 4.18. The corresponding contour plot is shown in Figure 

4.19.  From the figures, it can be interpreted that the yield of glucose dramatically 

increased with the increment in pretreatment temperature and enzymatic reaction time.  

It is shown that these two factors significantly affect the response of glucose yield in this 

experimental design.   
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Figure 4.18: The response surface plot of glucose yield as a function of pretreatment 

temperature and enzymatic reaction time at acid concentration and pretreatment reaction 

time and enzymatic substrate concentration of 4 %w/w, 20 min and 10 %w/v, 

respectively as centre point 
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Figure 4.19: The response contour plot of glucose yield as a function of pretreatment 

temperature and enzymatic reaction time at acid concentration and pretreatment reaction 

time and enzymatic substrate concentration of 4 %w/w, 20 min and 10 %w/v, 

respectively as centre point 

 

 

From all the plots as shown in Figure 4.5 to 4.19, it is shown that only the factors 

of X1 and X5, namely the pretreatment temperature and enzymatic reaction time, were 

significant in affecting the yield of glucose.  These results were consistent to the 

statistical analysis as reported in Section 4.4.4.  It means changing in the value of these 

two factors in the model will dramatically affect the final glucose yield.  On the other 

hand, the other three factors that showed lack of significance can be omitted in future 

experimental runs.   
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4.4.7 Optimisation Point Prediction and Verification 

 

 

Based on the linear model from the statistical design, numerical optimisation was 

conducted using Design Expert v.7.1.5.  The variables were reset accordingly and the 

yield of glucose was set to maximise based on the finding of this study as shown in 

Table 4.9.   

 

 

Table 4.9: Numerical setting for variables 

Constrain Name Goal 

Lower 

Limit 

Upper 

Limit 

Pretreatment Temperature (°C)  is in range  80 140 

Acid Concentration (%w/w)  is in range  2 8 

Pretreatment Reaction Time (min)  is in range  10 40 

Enzymatic Substrate Concentration (%w/v)  is in range  5 20 

Enzymatic Reaction Time (hrs)  is in range  24 96 

Glucose Yield (%)  maximise  0.30 46.97 

 

 

The highest predicted yield of glucose of this suggested experimental condition 

from Equation 4.9 was 53.08 %.  Figure 4.20 depicts the experimental condition 

suggested by the model with a desirability value of 1 (the maximum value).  The 

desirability is an objective function that ranges from zero outside of the limits to one at 

the goal.  It reflects the desirable ranges for each response.  The desirable ranges are 

from zero to one which indicates least to most desirable, respectively.  Further 

experimental work was conducted to validate the optimisation result so that an optimum 

operating condition of maximised glucose yield can be obtained.   
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Figure 4.20: Optimum experimental conditions suggested by the model 

 

 

 The adequacy of the model for predicting the optimum yield of glucose was 

proven experimentally using the recommended experimental factors.  The experimental 

glucose yield obtained from the recommended factors was 53.96 %, which is close to the 

predicted value (53.08%).  As a conclusion, the experimental value was in good 

agreement with the model prediction.   

 

 

 Hence, the linear model resulted from the statistical design of CCD and RSM has 

successfully fitted the response of glucose yields.  In other words, the model can be used 

to predict the glucose conversion from the cellulose in oil palm empty fruit bunch 

following the combined dilute acid pretreatment and enzymatic treatment. 

 

 

Effort was attempted to compare the yield of glucose obtained from this study 

(53.96%) to other previous study.  However, it is likely that the yield of glucose from 
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EFB is rather low so that such data has not been found in the literature.  Most studies 

have reported the use of EFB for the production of xylose.  For instances, Rahman et al. 

(2006) converted EFB to give xylose through dilute acid hydrolysis and obtained the 

highest yield of 86.22 %. 

 

 

Hence, the yield of glucose obtained from this study is compared to other studies 

that used other biomass wastes to produce glucose.  For instance, Zhong et al. (2007) 

studied the hydrolysis of soybean straw to give 51.22 % of glucose yield using ammonia 

and cellulose.  The optimum condition involved the soaking of biomass waste in 

10 %w/w ammonia liquor for 24 hrs at room temperature followed by the hydrolysis of 

5 %w/v substrate for 36 hrs using cellulase.  The result is quite comparable to the current 

study even though both studies involved different pretreatment methods. 

 

 

In another comparison, the conversion of olive tree biomass into fermentable 

sugars by dilute acid pretreatment and enzymatic saccharification could extract up to 

75 % of all sugars in the raw material as conducted by Cara et al. (2008).  The condition 

was 180 °C pretreatment temperature, 1 %w/w sulphuric acid concentration and 10 min 

of reaction time, shaked at 350 rpm and at a pressure of 3 MPa.  The procedure was 

followed by 72 hrs of enzymatic saccharification.  As the process involved much higher 

pretreatment temperature and pressure then this study, and the mixture was well-mixed, 

these factors accelerated the hydrolysis process and hence have also resulted in a much 

higher yield than this study.  The high yield would be achieved at a higher production 

cost where careful optimisation would be needed to evaluate if the increased in the 

operating cost is worthy.   
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CHAPTER 5 

 

 

 

 

CONCLUSION AND SUGGESTIONS 

 

 

 

 

5.1 Conclusion 

 

 

Combined acidic pretreatment and enzymatic hydrolysis of empty fruit bunch 

(EFB) was carried out with dilute sulfuric acid and selected cellulase enzyme under 

various operating conditions to obtain high concentration of glucose in the resulting 

hydrolysate.  The glucose can then be further fermented by selected fungus strain to 

become the useful replacement fuel such as bioethanol.  This study has optimised the 

dilute sulfuric acid pretreatment and the enzymatic treatment steps in a single, combined 

step using the statistical approach of RSM (response surface methodology) to improve 

the yield of fermentable glucose from EFB. 

 

 

The EFB was analysed to contain 40.66 % of glycan that presumably or 

theoretically could be converted fully to give the glucose without formation of other by-

product.  This content was used as basis for calculation of glucose yield following the 

combined acidic pretreatment and enzymatic treatment. The extraction of glucose is 
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difficult and affected by many factors.  Therefore, the yield of glucose obtained from the 

hydrolysis of EFB need be optimised using statistical approach.  Five factors expected to 

affect the yield were selected based on literature information, there are the pretreatment 

temperature, acid concentration, pretreatment reaction time, enzymatic substrate 

concentration and enzymatic reaction time. Optimisation was conducted using 25 

fractional factorial central composite designs.  The linear model was found to be 

significant with p-value = 0.0065 and the highest value of adjusted R2 being 0.3982.   

 

 

Based on the statistical analysis conducted by RSM, the model obtained shows 

the correlation coefficient (R) of 0.7169 which indicates a high degree of correlation 

between the observed and predicted values of the glucose yield obtained from the model.  

The F value of 4.44 implies the model is significant.  It was greater than the tabulated 

),1,( pNpF −−α -value of 2.68 (F0.05, 21, 5).  Therefore, the analyses suggested that the model 

represents a good predict of the experiment results. 

 

 

Based on the ANOVA results from RSM, two factors were identified to give 

significant effect on the yield of glucose, there are the linear terms of pretreatment 

temperature (X1) and enzymatic reaction time (X5) where both have implied the lowest p-

value (<0.05).  For other terms including the acid concentration (X2), pretreatment 

reaction time (X3) and enzymatic substrate concentration (X4), their p-values were 

greater than 0.05 which indicated that the confidence level was probably not within 95% 

confidence level but lower.  It means that in the future experimental set up, three of 

these factors can be omitted due to their lack of significance.  

 

 

The predictive model obtained from the RSM is shown in Equation 5.1.  The 

coded equation is useful for identifying the relative significance of the factors by 

comparing the factor coefficients. 
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Y = 25.86 + 6.03X1 + 2.42X2 + 3.68X3 + 0.36X4 + 4.81X5          Eq. (5.1) 

 

 

where Y, the glucose yield, is expressed as a function of the pretreatment temperature 

(X1), acid concentration (X2), pretreatment reaction time (X3), enzymatic substrate 

concentration (X4) and enzymatic reaction time (X5).   

 

 

The 25 fractional factorial central composite design was adopted to optimise the 

above hydrolysis process.  The experimental factors were reset and the yield of glucose 

was set to be maximised based on the finding of this study.  The highest optimised 

glucose yield was predicted by the design as 53.08 %, with operating conditions of 130 

°C of pretreatment temperature, 6 %w/w of acid concentration, 37 min of pretreatment 

reaction time, 6 %w/v of enzymatic substrate concentration and 96 hrs of enzymatic 

reaction time.  An extra experiment run was conducted at these conditions to validate the 

model, a glucose yield of 53.96 % was obtained which was in good agreement with the 

model developed. 

 

 

Not much literature was found for the production of glucose using the EFB as 

substrate.  Therefore, comparison was done with other studies which used different 

lignocellulosic biomass as substrate.  The highest yield obtained in this study was 

comparable to the optimised yield obtained by Zhong et al. (2007) which used soy bean 

straw as substrate (51.22 %).  However Cara et al. (2008) obtained an even highest yield 

(75 %), most likely due to the use of much higher pretreatment temperature and 

pressure, and shaking being employed during the acid hydrolysis process. 

 

 

Under controlled treatment conditions, oil palm empty fruit bunch can be utilised 

as a potential source of glucose (up to 53.96 %) for the production of bioethanol.  

Although there are more room for further optimisation of this process by means of 
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introducing improved strain or consortium of cellulose degrading microorganisms and 

other novel technologies to further increase the convertibility of cellulose to fermentable 

sugars. 

 

 

 

 

5.2 Future Research  

 

 

Many plant matter especially the biowaste have already been explored 

intensively for biofuel production worldwide.  More extensive studies on such material 

instead of food source are highly desirable to mitigate the issue of soaring food prices.  

 

 

This research provide alternative route for the production of fermentable glucose 

from oil palm agriculture waste that could subsequently be used as substrate for the 

fermentation of bioethanol.  The main concern of this research is the low yield of 

glucose that renders the process less cost effective.  The enzyme is the most expensive 

material in this research.  Therefore, recycle or reuse of the enzyme becomes the main 

issue as the substrate (EFB) itself is a solid hence hinders the used of immobilised 

enzyme.  Some studies such as that conducted by Tu et al. (2006) has attempted to 

recycle the soluble β-glucosidase using Eupergit C.  Besides, screening of new strain or 

consortium of wild-type microorganisms for cellulase enzyme production can reduce the 

high cost of commercial cellulase enzymes.  Genetically modified microorganism strain, 

even though could give higher specificity, is however difficult to be approved by the 

authority. 

 

 

The composition of EFB consists of other sugars in small amount.  Xylose is 

another main type of monomeric sugar in the EFB with typical content of approximately 
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24.95 %.  Utilise xylase enzyme or combination of other polymeric sugars degrading 

enzymes can successfully increase the yield of monomeric sugars in the EFB 

hydrolysate and decrease the production of inhibitors.  But integration of more enzymes 

requires more complicated experimental design and optimisation steps.  The cost of 

other enzymes also becomes an issue to be considered.  

 

 

Apart of the five operating factors as being considered in this study, many other 

factors may also affect the production of fermentable sugar or glucose.  Therefore, the 

process can be further investigated and enhanced through the optimisation of incubation 

time, agitation speed, oxygen level, temperature and pH of incubation and others.   

 

 

A technology of combining the hydrolysis processes with the fermentation 

process is currently applied on many lignocelluloses substrate for the production of 

bioethanol.  This process is defined as Simultaneous Saccharification and Fermentation 

(SSF) (Chandel et al., 2007).  The SSF process could be applied for the conversion of 

EFB to provide bioethanol within one reactor.  However this technology relies on new 

strain of genetically modified microorganism which can utilise both the cellulose and 

hemicelluloses as substrate.  Careful selection of the operating conditions is also 

essential to ensure the success of the SSF process. 
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APPENDIX A 

 

PHOTOS OF STUDY 

 

 

  

Figure: Bulky of EFB at the sampling site  Figure: Zoom in of EFB sample 

  

Figure: EFB after grinding and oven-dried Figure: Hydrolysate after 

enzymatic treatment 
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APPENDIX B 

 

TREATMENT RESULTS 

 

 

Std 

Run 
X1 X2 X3 X4 X5 

12.12.08 

(mg.mL
-1

) 

13.1.09 

(mg.mL
-1

) 

13.2.09 

(mg.mL
-1

) 
Final Std Dev 

1 80 10 2 5 72 5.740 4.920 5.030 5.230 0.445 

2 80 10 2 15 24 7.710 10.890 12.300 10.300 2.351 

3 80 10 6 5 24 4.650 5.710 2.990 4.450 1.371 

4 80 10 6 15 72 14.700 9.560 16.840 13.700 3.742 

5 80 30 2 5 24 5.090 3.981 3.109 4.060 0.993 

6 80 30 2 15 72 13.980 9.020 12.700 11.900 2.575 

7 80 30 6 5 72 6.450 4.950 4.650 5.350 0.964 

8 80 30 6 15 24 10.370 7.590 11.650 9.870 2.076 

9 120 10 2 5 24 5.680 3.930 2.900 4.170 1.405 

10 120 10 2 15 72 16.200 16.06 18.740 17.000 1.509 

11 120 10 6 5 72 7.250 7.430 9.320 8.000 1.147 

12 120 10 6 15 24 16.100 17.950 18.750 17.600 1.359 

13 120 30 2 5 72 9.110 8.690 10.730 9.510 1.077 

14 120 30 2 15 24 16.900 17.630 18.570 17.700 0.837 

15 120 30 6 5 24 8.7900 7.650 9.360 8.600 0.871 

16 120 30 6 15 72 24.240 25.900 26.960 25.700 1.371 

17 60 20 4 10 48 11.320 10.800 12.680 11.600 0.971 

18 140 20 4 10 48 19.500 18.170 19.630 19.100 0.808 

19 100 0 4 10 48 5.400 5.640 6.060 5.700 0.334 

20 100 40 4 10 48 16.790 15.310 15.300 15.800 0.857 

21 100 20 0 10 48 7.900 4.810 5.980 6.230 1.560 

22 100 20 8 10 48 12.380 11.420 10.100 11.300 1.145 

23 100 20 4 0 48 0.143 0.000 0.229 0.124 0.116 

24 100 20 4 20 48 21.300 19.100 19.600 20.000 1.153 

25 100 20 4 10 0 0.260 0.002 0.140 0.134 0.129 

26 100 20 4 10 96 12.890 11.360 13.250 12.500 1.004 

27 100 20 4 10 48 11.380 8.940 9.980 10.100 1.224 
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APPENDIX C 

 

PUBLICATIONS 

 

 

Published 

 

Tan, C. W., Razali, F., Mat, R. and Lee, C. T. (2009).  Optimization Studies on 

Combined Acid Hydrolysis Pretreatment and Enzymatic Treatment of Oil Palm Empty 

Fruit Bunch for Production of Glucose.  2nd
 International Conference on Biotechnology 

for the Wellness Industry.  23-26 July 2009, PWTC, Kuala Lumpur, Malaysia. 

 

 

Under Submission 

 

Tan, C. W., Razali, F., Mat, R. and Lee, C. T. (2009).  A Statistical Analysis on Dilute 

Acid Pretreatment and Enzymatic Treatment for the Hydrolysis of Oil Palm Empty Fruit 

Bunch to Glucose.  Journal of Biomass and Bioenergy. Submitted on July 2009. 
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