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A B S T R A C T   

This paper presents a novel inertia moment estimation algorithm to enable the Active Force Control Scheme for 
tracking a wheeled mobile robot (WMR) effectively in a specific trajectory within constrained environments such 
as on roads or in factories. This algorithm, also known as laser simulator logic, has the capability to estimate the 
inertia moment of the AFC-controller when the robot is moving in a pre-planned path with the presence of noisy 
measurements. The estimation is accomplished by calculating the membership function based on the experts’ 

views in any form (symmetric or non-symmetric) with lowly or highly overlapped linguistic variables. A new 
Proportional-Derivative Active Force Controller (PD-AFC-LS-QC), employing the use of laser simulator logic and 
quick compensation loop, has been developed in this paper to robustly reject the noise and disturbances. This 
controller has three feedback control loops, namely, internal, external and quick compensation loops to 
compensate effectively the disturbances in the constrained environments. A simulation and experimental studies 
on WMR path control in two kinds of environments; namely, zigzag and highly curved terrains, were conducted 
to verify the proposed algorithm and controller which was then compared with other existed control schemes. 
The results of the simulation and experimental works show the capability of the proposed algorithms and the 
controller to robustly move the WMR in the constrained environments.   

1. Introduction 

Nowadays, mobile robots are widely used in many applications that 
represent hazardous, complex, high accurate or challenging tasks, such 
as aerospace, under-water, military, medicine, inspection, and mining 
etc. In almost all cases, the robots are supposed to navigate autono-
mously in restricted environments; which need a highly robust control 
system to determine its path within the terrain and avoiding obstacles. 
In some conditions such as road environments, the robot is required to 

be robustly controlled in the planned path; otherwise it will crash into 
cars, people or other pedestrians. 

A wheeled mobile robot navigation system in restricted environ-
ments can accomplish many tasks that must be performed in real-time 
such as path planning, localization and control of motion. The path 
planning is the process of finding a path for the robot from the start to 
the goal destinations while avoiding obstacles and disturbances. The 
localization is the robot’s skill to identify its position within a restricted 
environment. The control of motion is the most important task in the 
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WMR navigation system that assures the capability of the robots to track 
the pre-planned path effectively in the restricted environment (Ali et al., 
2012a, 2012b, 2016; Ali, 2014). 

The control of the mobile robot in the restricted areas such as on the 
road’s and in factory’s environments during path execution is still a 
complicated problem in robotics research, since it needs to maintain the 
tracking errors at the zero levels along the motion. At the same time, the 
wheel mobile robot must robustly follow the pre-defined path using a 
suitable control system; otherwise it can cause the robot to crash with 
other objects. The motion control of the robot in such an environment 
becomes quite a challenge and a new controller that can able to reject 
the disturbances in noisy conditions is needed. 

The noise in the robotic applications are presented due to the limi-
tations in the sensors measurements and other input devices which can 
be neither avoided nor controlled its effects inside the controllers, 
especially in the constrained environments, where the tracking errors 
must be remained in the zero-level along the motion. In addition, there 
are some parameters, when designing of the controller’s feedbacks such 
as inertia moments, can’t be directly measured and instead they need to 
be estimated using offline based AI algorithms (Mailah, 1998), which 
ultimately adds high risks on adjusting properly the controllers. 

Mailah et al. (1998) have found practically that the useful estimated 
values of the inertia moments are lied in the range of [0.4 M−1.4 M], 
where M represents the masses of all elements in the robot system. With 
such range, it is easier to design fuzzy logic membership function as it 
depends mainly on the total range of fuzzy sets which are later divided 
into several equally linguistic variables ranges. On the other side, other 
algorithms such as neural network, genetic, iterative-learning, knowl-
edge-based expert, reinforcement and deep learning algorithms need 
moreover massive samples of input and output for the training propose, 
which are almost unavailable as the inertia moment can’t be directly 
measured by sensors. Thus, the fuzzy logic algorithm has been remarked 
as the best AI algorithm to estimate the inertia moment (Ali and Mailah, 
2019a, 2019b). 

Despite preference of utilizing the fuzzy logic algorithm for inertia 
moment estimation, the noise can’t be fully eliminated in the con-
strained environments, due to the highly overlapping of the linguistic 
variables ranges. Thus there is a need to develop an AI algorithm that 
can deal well with noise of overlapping between the linguistic variables 
of the inertia moments sets in the constrained application. This moti-
vated us to develop a new algorithm, called laser simulator logic, to 
avoid the drawbacks of fuzzy logic algorithm when dealing with the 
noise coming from highly overlapping of the linguistic variables during 
estimating of inertia moment in constrained environments. 

2. Related works 

The related literature on wheeled mobile robot control can be clas-
sified into four types, namely, kinematics-based controller, artificial 
intelligence-based control system, dynamic-based controllers and active 
force controllers. The main concern will be given to highlight the sta-
bility characteristics of these controllers. 

2.1. Kinematic based controllers 

The kinematic based controllers have been widely used to control the 
position, velocity and acceleration of WMR. A PD controller has been 
used to avoid obstacles and track the trajectory of the wheel mobile 
robot with non-holonomic movement (Yang et al., 2016). It has resulted 
in big tracking errors in the range of 4.5 m – 10 m if no controller is used. 
However, the region expanded to 4.9 m-8.5 m when PD controller is 
used. A non-linear controller based on a back-stepping strategy has been 
used to control a virtual wheel mobile robot (Chen and Baoli, 2015) in 

the desired formation shapes. It uses a cascade system theorem to study 
the stability of the control system. The results show the capability of the 
control system to reduce the settling time to 5 to 10 s to perform the 
desired formation. A tracking control system based on GPS and Real- 
Time Kinematic (RTK) calculation measurements has been used to 
track the wheeled mobile robot in a path with skipping and slipping 
(Low and Wang, 2008). As a result, this controller shows tracking errors 
in the region of 0 to −1 and 0 to 4 degrees with a settling time of around 
20 s. 

Yoon et al. (2014) have proposed a control scheme to control an 
autonomous wheeled mobile robot taking into consideration the slip-
page and dynamic effects such as fast speed and Coriolis acceleration. 
The modelling is performed using Lagrange-D’alembert which estimates 
the relationship between the states and the constrained forces. The back 
stepping controller is used to track the robot on a particular path in an 
efficient way. A wheeled mobile robot control system has employed the 
use of a back-stepping scheme for tracking the wheeled mobile robot in 
unknown longitudinal and latitude slippage (Cui et al, 2016). Unscented 
Kalman Filter has been incorporated with a low pass filter to estimate 
the parameters of the slippage in real-time. The results have shown that 
the control system is capable of reaching asymptotic stability in a short 
time (the errors are close to zero in 0.2 s). 

Huang and Zhai (2015) have proposed a non-holonomic control 
system for a wheeled mobile robot in the presence of external distur-
bances. In this control, a kinematic controller is used to correct the 
positions’ errors, and a disturbance observer is used to continuously 
estimate the disturbances. The Lyapunov stability theory was used to 
study the stability of the control system which shows that the errors 
between the actual and desired paths tend to be at a zero level in a short 
time. A kinematic based controller has been used to control a wheeled 
mobile robot in a cylindrical environment and pipe (Song et al., 2016). 
The kinematic parameters are integrated with the biaxial clinometer 
method to enable the robot to move horizontally in the pipes. This 
control scheme has resulted in quite significant errors but it remains 
stable after swinging several times. A control of WMR based on an 
estimation of the slip ratio and longitudinal velocity has been accom-
plished using sliding mode control and adaptive unscented Kalman filter 
(Partovibakhsh and Liu, 2015). It has been observed that there are sig-
nificant errors for wheel angular velocity between the measured and 
AUKF estimated methods. However, the slip ratio error of the wheel 
mobile robot using AUKF is stable, starting from time of 2 s until steady 
state. However, the errors of the WMR slip ration are oscillating between 
0 and −0.20. 

2.2. Artificial Intelligence-Based control system 

The artificial intelligence-based control system has been used to 
control mobile robots due to its capability to make the right decisions. 
The D-type iterative learning controller has been used in a simulation 
study for trajectory tracking of WMR (Lu and Fei, 2015) based on ki-
nematics and dynamics parameters. The combination of the iterative 
learning controller and the dynamics of the robot allows for the robots to 
be robustly controlled. The results show that the tracking errors become 
close to zero after the tenth iterations in 10 s. A car-like wheeled mobile 
robot has been controlled in terrain with high uncertainties and noise 
using RBF neural network (Raeisi et al., 2015). It integrates the RBF 
neural network with a linear observer to design a controller that can 
effectively compensate for the uncertainties errors. Lyapunov method 
has been used to study the stability of the proposed controller which has 
converged exponentially to the origin. A fuzzy logic control system is 
employed for controlling a wheeled mobile robot platform to reach the 
goal with obstacles avoidance (Chiu et al., 2015), and follows a refer-
ence trajectory formed by leader–follower steering (Ghiasvand and 
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Alipour, 2013). Both are modelled using Lagrange’s Equation to find the 
relation between the dynamics of the robot and the external distur-
bances and forces. The results show that the former control system is 
able to avoid obstacles with small errors. However, in the latter, the 
tracking errors between the leader and the follower 1,2 and 3 robots are 
in the region of (0.1 m, 0.4 m, 1 m), respectively. 

A non-holonomics WMR path tracking control system in the presence 
of unknown disturbance and uncertainty has been performed using a 
computed torque controller and sliding mode controller (Koubaa et al., 
2014a). An adaptive-neural control is used for the estimation of dis-
turbances and uncertainties compensation. The Lyapunov stability 
method (Koubaa et al., 2014b) is used to analyze the response of the 
control system which resulted in a small error in the range of 0.2 m. A 
neural network-based adaptive control system has been used for tra-
jectory tracking control (Li et al., 2015) as well as outdoor mobile robot 
motion control (Guan et al., 2014). In the former, the neural networks 
control is able to reject the disturbances and approximate the nonline-
arity in the system using a radial basis function. However, in the latter, 
the adaptive controller is able to change the diameter of the WMR wheel 
based on the road conditions. The results show that the tracking errors of 
velocities and posture using adaptive neural network controller is 
converged to zero tracking errors even-though there are external dis-
turbances. A multi-agent robots with a leader–follower consensus 
problem has been solved using an adaptive control strategy (Chen et al., 
2014), which is able to estimate the uncertainties of mechanical parts 
and control the robot dynamics parameters. During the implementation 
of this method, there is an overshoot trajectory tracking error which 
occurs after 2 s from settling time, which is compensated quickly by the 
controller, thereby making it zero. A trajectory tracking control system 
for controlling a WMR manipulator in the presence of disturbances has 
been accomplished using an adaptive control system and kinematic 
controller (Boukattaya et al., 2011). The kinematic controller is used for 
end-effector position control. However, the adaptive controller is used 
for uncertainties estimation and disturbances rejection. The results show 
that the system is stable, and the tracking errors are too small, i.e. near 
zero (0.001 m). 

2.3. Dynamic based controllers 

The Computed Torque Control and nonlinear model predictive 
control (NMPC) controllers have been used to solve the dynamic model 
of an omni-wheeled robot (Abhishek and Saha, 2016). In this case, a 
system identification has been used to find the model parameters with 
linear least squares technique. The results show that the proposed con-
trol system, when the system identification uses 16 values, is able to 
track a longitudinal and rotational paths with small tracking errors in 
the region of 5–10 mm in the first two seconds which reduces gradually 
to zero in the steady state. A receding horizon following controller has 
been proposed to control WMR to eliminate the effect of disturbances 
and reach asymptotic stability in the following based problem (Liu et al., 
2015). It uses two appropriate terminal-penalty and terminal-region to 
guarantee the optimum control trajectory with small tracking errors in 
the region of (0–0.5 m). A sliding mode control scheme has been pro-
posed for WMR motion control in uncertain environments and non- 
linear trajectories (Zidani et al., 2014). The non-linear control is 
designed based on the Lyapunov stability method, which resulted in 
small tracking errors in the region of (-0.5–0.2) m. A robust WMR con-
trol scheme for rejection of the external disturbances has been intro-
duced using disturbance observer (Huang and Zhai, 2015) and Sliding 
mode dynamic controller (SMDC) (Koubaa et al., 2014a), which allow 
for the tracking errors to be compensated and reach zero error in a short 

time. A sliding mode dynamics has been used for real-time trajectory 
tracking control for a two-wheeled mobile robot (Mu et al., 2015), which 
tends to reach zero tracking errors quickly. It has been found that there 
are small errors between the actual trajectory and reference trajectory 
and the control system, which becomes stable after 5 s. 

2.4. Active force controller 

The AFC generally has two loops; the first loop is used for kinematic 
parameters control and another loop for dynamics control of a mobile 
robot. The active force control has been used to reject the unwanted 
disturbance of frictional force in the pipe (Sabzehmeidani et al., 2011), 
track the wheeled mobile robot in a pre-planning path in a difficult 
environment (Ali et al., 2015), remove the effect of disturbance in the 
system in the dynamic system and reject the noise (Abdullah et al., 
2015). 

The Proportional-integral-derivative (PID), Active Force Control and 
sliding mode controller (SMC) (Sabzehmeidani et al., 2011) have 
resulted by the tracking errors that are oscillating clearly in 1 to 10 s and 
then become stable at zero levels. Resolved Acceleration Control (RAC) 
with Active force control (AFC) (Ali et al., 2015; Ali and Mailah, 2019a) 
have figured out that there is no difference between the reference and 
actual paths when there is no disturbance for the RAC-AFC. However, 
the tracking error has a slight difference between reference and actual 
paths with small errors in the power of 10^-2mm when a constant 
disturbance is used. 

A feedforward active force control (AFC) with a robust controller 
(Mailah et al., 2012) and computed torque control (Abdullah et al., 
2015) show that the tracking errors of AFC oscillates between −0.01 and 
0.02 rad. 

However, the tracking errors in the AFC-computed torque controller 
oscillates between −0.04 and 0.03 rad, thereby AFC is performing better 
than AFC-computed torque controller. 

The comparison between the related works in wheel mobile robot 
control is illustrated in Table 1: 

3. Proposed controller 

This main contribution of this work is to develop a novel AI algo-
rithm for estimating the inertia moment in a noisy environment. In 
contrast with the current noise-elimination algorithms, it is able to deal 
with the unexpected noise that are occurred during real-time explora-
tion and thus reduce the calculated errors. With such an advantage, a 
new AFC controller equipped with the proposed AI based inertia 
moment estimation is able to control WMR robustly during movement in 
the constrained environment. In fact, the current active force control is 
working better than other controllers, especially in the presence of 
disturbances (Ali et al., 2015; Mailah et al., 2012; Abdullah et al., 2015; 
Sabzehmeidani et al., 2011). However it still has some noises especially 
with real-time applications, where the system must compensate the 
disturbances well. 

The sources of noises in Active Force Control (AFC) come from the 
sensors’ measurements such as encoders, accelerometer and gyroscope 
which are almost fused together and increase the noises. The other 
source of uncertainties is the inertia moment estimations that are 
calculated using artificial intelligence and can’t be measured. In fact, 
inertia moment estimations are subjected to the AI algorithm perfor-
mance. Thus, it is required to enhance the current AFC to reject the 
noises and estimate the inertia matrix that will be used to control the 
torques affected on the wheels well. In order to solve the latter’s prob-
lem, a new algorithm, called Laser Simulator Logic, for estimation of 
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WMR inertia moment in a noisy environment has been introduced in this 
paper. Several methods have been used for estimating the inertia 
moment of the AFC controller. The conventional methods that have been 
widely used to estimate the inertia moments include crude- 
approximation (Hewit and Burdess, 1981), iterative-learning (Mailah, 
1998), neural-network (Kwek et al., 2003), knowledge-based expert 
(Pitowarno et al., 2003) and fuzzy-logic (FL) (Ali and Mailah, 2019a, 
2019b). Most of these methods calculate the inertia moment offline and 
thus they are not suitable in the noisy system. In addition, all the pre-
vious methods except fuzzy logic need prior knowledge about some 
samples of input and output of the system, which are almost not avail-
able and making it difficult to use these algorithms in noisy environ-
ments. Although fuzzy logic seems to be the best choice in comparison 
with other algorithms, it is suffering from the following issues: 

1. The linguistic variable ranges in most of the current fuzzy logic 
systems are chosen arbitrarily by users, in which the inference of each 
variable often starts from the middle of each other as shown in Fig. 4. 
The fuzzy logic becomes so noisy when there is an overlapping/ infer-
ence in the linguistic variables starting before the middle of each lin-
guistic variables as shown in Figs. 2 and 8 (a), where the accumulative 
membership values across all linguistic variable for a specific crisp input 
becomes higher than 1. It seems that there are some regions in the lin-
guistic variables where the user is making sure that they are not affected 
by other linguistic variables. This conflicts with the basic idea of fuzzy 
logic that considers every-thing as fuzzy and get different membership 

Table 1 
A comparison between related works’ controllers.  

Author Controller Stability Characteristics 
Yang et al., 2016; PD controller big tracking errors in the range of (4.5 m – 10 m) 
Chen and Baoli, 2015 Non-linear controller based on back- 

stepping 
5–10 s to reach the desired position 

Low & Wang, 2008 GPS and Real-Time Kinematic Errors in the region of 0 to −1 and 0 to 4 degree with a settling time 20 s 
Cui et al., 2016 Back stepping controller with Unscented 

Kalman Filter 
Reach asymptotic stability in a short time; where errors become close to zero in 0.2 s 

Huang and Zhai, 2015 Non-holonomic control, kinematic 
controller 

Errors between actual and desired paths tend to be in a zero level in a short time 

Song et al., 2016 kinematic based controller Big errors but it still remain stable after swinging several times 
Partovibakhsh and Liu, 2015 Sliding mode control and adaptive 

unscented Kalman filter 
Errors of mobile robot slip ration is oscillating between 0 and -0.20. 

Lu and Fei, 2015 D-type iterative learning controller Close to zero after tenth iterations within 10 s 
Raeisi, et al., 2015 RBF neural network Errors are close to zero in 0.5–0.8 s 
Chiu et al., 2015 Fuzzy logic control Mobile robot is able to avoid obstacles with small tracking errors 
Ghiasvand and Alipour, 2013 Fuzzy logic control and using Lagrange’s 

equation 
Tracking errors between the leader and follower robots are small (0.1–0.4 m) 

Koubaa et al., 2014b An adaptive-neural control Small errors in the range of 0–0.2 m 
Li et al., 2015 and Guan et al., 

2014 
Neural network-based adaptive control, 
Adaptive control strategy 

Tracking errors of velocity and posture using adaptive neural network controller is converge to zero 
tracking errors 

Chen et al., 2014 Adaptive control strategy An overshoot of trajectory tracking errors occurs after settling time by 2 s 
Boukattaya et al., 2011 Adaptive control and kinematic controller Stable and the tracking errors are too small, i.e. near to zero (0.001 m) 
Liu et al., 2015 Horizon following controller Small tracking errors in the region of (0–0.5 m) 
Huang and Zhai, 2015 and 

Koubaa et al., 2014a 
disturbance observer, Sliding mode 
dynamic controller 

Compensate the tracking errors and reach zero error in a short time 

Mu et al., 2015 Sliding mode dynamics Tends to reach zero tracking errors in a short time 
Zidani et al., 2014 Sliding mode control and non-linear 

control 
Small tracking errors in the region of (-0.5–0.2) m 

Ali et al., 2015 and Ali and 
Mailah, 2019a 

Resolved Acceleration Control (RAC) with 
Active force control (AFC) 

No difference between reference and actual paths when there is no disturbance applied on RAC- 
AFC. Small errors in power 10^-2mm is occurred when applying disturbances. 

Mailah et al., 2012 Feedforward active force control (AFC) 
with Robust controller 

Tracking error of AFC oscillates between −0.01 to 0.02 rad 

Sabzehmeidani et al., 2011 PID, Active Force Control and sliding mode 
controller (SMC) 

Tracking errors are oscillating clearly in a time 1 to 10 s and then become stable at zero level 

Abdullah et al., 2015 Active force control (AFC) with computed 
torque control 

Tracking errors in AFC-computed torque controller oscillates between −0.04 to 0.03 rad  

Fig. 1. The methodology activities of presented work in this paper.  
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value. 
2. Fuzzy logic type-1 fails to deal with noises at all. However, type-2 

can deal with noises associated with each linguistic variable by taking 
into consideration a range of values suggested by the experts. However, 
none of them is dealing with noises coming from the inference between 
the linguistic variables. This occurs when there is a wide-difference in 
the decisions taken from experts. In other words, the experts in the fuzzy 
type-2 have mapped the linguistic variable into multi-values of mem-
bership function to avoid the noise and uncertainties in each linguistic 
variable. However, they didn’t take into consideration the effect of the 
noise that are coming from the high degree of inference between the 
linguistic variables. 

3. The capability of learning in the fuzzy logic algorithm is impossible. 
Hence, fuzzy logic in its current form has to be integrated with other al-
gorithms to enable learning such as the neural networks (Lotfi and Tsoi, 
1996), genetic and reinforcement algorithms (Chiang et al., 1997) and deep 
learning (Godfrey and Gashler, 2017) which are complex and compute- 
intensive. Thus, a simple method based on solving a set of equations will 
be introduced to enable learning in the laser simulator logic. 

To solve the 1st and 2nd problems, we aim to create a new algorithm, 
called laser simulator logic, that uses a dynamic-scale for membership 
values i.e. normalization. This means that membership value is still 
located in the range (x) ∈ [01], but with a different scale of membership 
value for each crisp value based on the contribution of linguistic vari-
ables at the specific regions, as shown in Fig. 2. 

The methodology activities for performing this work are shown in 
Fig. 1. 

In this methodology, the laser simulator logic has been derived first in 
Section 4 and the proven through comparison with the fuzzy logic algo-
rithm in Section 5. The kinematic and dynamic equations of the four- 
wheeled (two differential wheels and two castor wheels) have been 

derived in Section 6. An active force controller has been developed in 
which the estimation of the inertia moment is calculated using a proposed 
laser simulator logic in section 6. The simulation and real-time experi-
mental works in Sections 6 and 7, have respectively been conducted to 
prove that the controller with the proposed algorithm is performing better 
than other controllers. 

In general, the contribution of this paper can be briefly stated as 
follows: 

- To develop a new AI algorithm for the estimation of the WMR 
inertia moment in the noisy environment which is used in the Active 
Force Control to estimate the applied torque by multiplying the inertia 
moment with the measured acceleration. 

- To create a new control scheme for noise rejection of the current 
Active Force Control (AFC) through adding a quick compensation loop 
to compensate for the acceleration at the beginning of the movement in 
the current AFC. 

4. Laser simulator logic principle 

This paper is mainly aimed at developing an efficient technique, called 
Laser Simulator Inference System, by calculating the inertia moment in a 
noisy environment and dealing with high interference between linguistic 
variables. This algorithm is different than Laser simulator for path planning 
(Ali and Mailah, 2019b). The laser simulator for path planning (Ali and 
Mailah, 2019b) is a novel algorithm that has been used to determine the 
robot’s path within the constrained environment, which has been suc-
cessfully implemented in the road roundabout area as the main area of 
constrains in the roads. However, the Laser Simulator Logic algorithm 
presented in this paper is a novel inference system based on an artificial 
intelligence algorithm that can deal well with the noise coming from a high 
degree of overlapping between the linguistic variables. In other words, it 
helps to avoid the drawbacks of fuzzy logic when there is a significant 
overlapping between linguistic variables that will be discussed later in 
detail. The difference between laser simulator and laser simulator logic is 
illustrated in Table 2. 

As shown in Fig. 2, such a high inference system will cause the 
accumulative membership values for a crisp input/output to exceed 1 as 

Table 2 
Shows the difference between laser simulator based path planning and laser 
simulator logic.  

Features Laser Simulator for Path 
Planning 

Laser Simulator Logic 

Algorithm 
classification 

Path planning algorithm Inference system algorithm 

Purpose Find the most useful path 
planning of robot 

Deal with noise coming from 
highly overlapped linguistic 
variables in the inference 
system. 

Principle of work It generates series of points as 
horizontal and vertical to 
determine the best path 

It calculates the membership 
function with any degree of 
overlapping and guarantees to 
make the accumulative 
membership function values 
for the crisp input always less 
or equal than 1 

Applications Path planning in Robotic Control, classification and 
decision making of any noisy 
systems 

Degree of 
intelligence 

No intelligence since it 
determines the path 
according to the generated 
points between the road 
curbs e.g. middle 

It uses a certain degree of 
intelligence to come up with 
the right decision when 
dealing with the noise of the 
system 

Can each one 
replace the 
other 

No No  

Fig. 2. High inference membership function.  
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shown in cases x1, x2, x3 and x4 in Fig. 2. 
The membership value of the crisp input x1 across all three linguistic 

variables has an accumulative membership value higher than 1. Thus, there 
is a need to make a dynamic range for values of 1 when there is a high 
inference between linguistic variables in membership functions as shown in 
Fig. 2, to accommodate the noises coming from the high inference/over-
lapping of linguistic variables, which can vary from a low level in region 1 
until the high level in Region 3. This can be accomplished by dividing the 

universe of discourse into regions that have a different scale of membership 
based on the inference between the linguistic variables e.g. there are 5 
regions in Fig. 2. 

Most of the users utilize the fuzzy logic system in the form of identical 
triangular, Gaussian or trapezoidal membership functions as shown in 
Fig. 4, in which the linguistic variable can be generally divided into two 
parts, 

The firstone is located before the middle of the linguistic variable, 
and the other one is located after the middle; both give membership 
values that are proportional to the input location. 

In fact, the laser simulator logic depends mainly on these propor-
tional properties between the membership values and its location in the 
range of input/output sets to form the input/output membership func-
tions as shown in Fig. 5. In other words, it will determine the mem-
bership values of each linguistic variable based on its position in the 
range of linguistic variable in the input sets as seen in Eq. 1 and 2; and 
apply the implication to the output set based on the fuzzy rules of the 
system. 

Let us consider a fuzzy set R as a set function on the universe of 
discourse X , with the membership function μi : X→[01], which can be 
written as: R = {(x, μi(x) )|x ∈ X }

The equations of laser simulator will be derived in 2 cases: - (1) 
memberships without inference between the linguistic variables, (2) 
membership with lowly/highly overlapped linguistic variables. Fig. 3 
demonstrates the behaviour of LS with overlapped linguistic variable. 

4.1. Memberships without inference between linguistic Variables: 

In this case, the membership values of laser simulator can be defined 
simply as a proportional ratio to its position in the membership function 
of the linguistic variable range as shown in Fig. 5 and Eqs. 3.1–2: 

μi(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0x < ai

x − ai

(mi − ai)
ai < x < mi

bi − x

(bi − mi)
mi < x < bi

0x > bi

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(1)  

where ai, bi and mi are the starting, end and middle points of the lin-
guistic variable. 

In other words, in the case of single linguistic variable, two ranges in 
the universe of discourse exist with maximum range values equal to mi-ai 
and bi-mi. Eq. 1 can be rewritten as Eq. 2 

μi(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0x < ai

x − ai

(x − ai)+(mi−x)
ai < x < mi

bi − x

(bi − x) + (bi − mi)
mi < x < bi

0x > bi

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2) 

Fig. 3. Fuzzy Logic and Laser Simulator performance with overlapped lin-
guistic variables of membership functions. 

Fig. 4. Common membership functions.  

Fig. 5. Basic of laser simulator logic for a single linguistic variable.  
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Thus, in the case that there is no inference/overlapping between the 
linguistic variables and only one linguistic variable is fuzzified as shown 
in Fig. 5, Eq. 1 and 2 can be written for x1 and x2 (see Fig. 5): 

μx1 = x1−a
(x1−a)+|(m−x1)| andμx2 = b−x2

(b−x2)+|(m−x2)|where x1 and x2 are arbi-
trary crisp inputs values located in the range of the linguistic variable. 

In the implication process of laser simulator logic, the input’s 
membership value calculated by Eq. 1 and 2 will be applied on the 
linguistic variable of the output fuzzy set as stated in the fuzzy rules with 
a proportional ratio to its range of this linguistic variable as in Eq. 3. 
yi = μi(x) × Yi (3)  

where Yi is the output linguistic range, yi is the result of the implication 
process. The crisp output is then determined by: 

y =

∑n

i=1yi

n
(4)  

where n is the number of output linguistic variables in the rules’ 

consequents. 
Fig. 6 shows an example of the implication of LS inference system 

which consists of:  

- 1 fuzzy input set with 2 linguistic variables  
- 1 fuzzy output set with 2 linguistic variables 

The inference rules are: 
If X is A Then Y is C 
If X is B Then Y is D 
Based on Eq. 4, the crisp output y is calculated as follows: 

y =
y1 + y2

2  

4.2. Memberships with inference between linguistic Variables: 

Let us assume that we have j overlapped linguistic variables in a 
membership function X. If a1, a2, a3, ,……, aj are the starting points of the 
overlapped linguistic variables, b1,b2, b3,……, are the end points of the 
overlapped linguistic variables and m1, m2, m3, ……., mj are the middle 
points of the overlapped linguistic variables, as shown Fig. 7. The 
accumulative membership function values for the crisp input (x) across 
all overlapped linguistic variables must achieve Eq. 5: 
∑

j

i=1

μi(x) ≤ 1|x ∈ X (5) 

Two types of inference between linguistic variables are figured out, 
namely low and high inference systems. The low degree of inference 
occurs when the linguistic variable starts from the middle or after the 
middle of the preceding linguistic variable. However, the high degree of 
inference between the linguistic variables occurs when the current lin-
guistic variable starts before the middle of the preceding one. 

In the low inference, both fuzzy logic and laser simulator can guar-
antee Eq. 5, along with the universe of discourse. However, fuzzy logic 
types 1 and 2 can’t guarantee Eq. (1) for some crisp inputs in a highly 
overlapped inference system as will be discussed with depth in Section 5. 
In fact, laser simulator logic can achieve Eq. (5) and deal well with 
highly overlapped inference system, as will be explained in this section. 

The equations of laser simulator logic for lowly and highly over-
lapped membership functions will be derived as follows: 

4.2.1. Low degree of inference between linguistic variables: 
In this case, the membership value of the crisp input is determined as a 

proportional ratio to its position in the linguistic variable range without any 
consideration to other linguistic variables as shown in Fig. 5 using Eq. 1 and 
2. So if there is a lowly overlapped area between linguistic variables in the 
membership functions, the accumulative membership values across all 
linguistic variables for a crisp input are calculated using Eq. 6:   

Fig. 6. Illustrates the implication of the input sets to the output set based on rules.  

Fig. 7. Highly overlapping range of linguistic variables in membership func-
tions: (a) traditional triangle (b) laser simulator logic. 
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In fact, the accumulative value of membership is just a summation of 
individual membership values for the linguistic variables in this mem-
bership function, which looks similar to a triangular membership 
function, where Eq. 5 is achieved along with the universe of discourse. 

4.2.2. High degree of inference between linguistic variables: 
This is the bottleneck case that presents the novelty of laser simulator 

logic algorithm. In such highly overlapped membership function, the 
membership value of the crisp input is determined as a proportional 
ratio not only to its position in a certain linguistic variable range, but 
also to all overlapped linguistic variables within a specific range. In fact, 
the accumulative membership value in fuzzy logic across all linguistic 
variable for a crisp input becomes sometimes higher than 1, as shown in 
Figs. 2, 7(a) and 8 (b) and will be mathematically proven in Section 5. 
This is due to that the membership value in fuzzy logic types 1 and 2 is 
calculated individually for each linguistic variable and doesn’t take into 
consideration that the summation of membership values for a certain 
crisp input must be less than 1 as shown in Eq. 5. Thus, the laser 
simulator membership value of highly overlapped linguistic variables 
depends on all overlapped linguistic variables in a specific range i.e. the 
term |mi-x| in Eq. 1–4 and 6 have to be replaced by a highly overlapped 
range ΔS as in Eqs. 7–16, to assure that the accumulative values of 
membership don’t exceed 1 at any case. 

The highly overlapped range ΔS can be defined: 

ΔS =
∑

j

i=1

ΔSi =

⎧

⎪
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⎪

⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎩

0x ≤ a1

(x − a1) + (x − m1)a1 < x ≤ a2

(x − a1) + (x − a2) + ⋯ +
(

x − aj

)

a2 < x ≤ m1

(b1 − x) + (x − a2) + ⋯ +
(

x − aj

)

m1 < x ≤ b1

(b2 − x) + (x − a3) + ⋯ +
(

x − aj

)

b1 < x ≤ b2

⋮
(

bj−1 − x
)

+
(

x − aj

)

bj−2 < x ≤ bj−1
(

bj − x
)

+
(

x − mj

)

bj−1 < x ≤ bj

0x ≥ bj

⎫
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⎪
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⎪
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⎪
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⎪
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(7) 
Note: the overlapping in Eq. (7) had not occurred in the1st two cases 

(x ≤ a1 and a1 < x ≤ a2)and last two cases (bj−1 < x ≤ bj and x ≥ bj).In 
Eq. (7), the universe of discourse has been divided into several ranges 
located between ai, bi and mi, in which ΔS values assure that the accu-
mulative values of membership in each range don’t exceed 1. The 
accumulative membership value of crisp x in highly overlapped infer-
ence system is then calculated using Eq. (8): 

∑

j

i=1

μi(x) =
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(8) 

Eq. (8) is useful when there are a few linguistic variables with high 
overlapping. However, it becomes difficult when there are more than 
four-overlapped linguistic variables. Thus, to decrease the number of 
possible ranges in Eq. (7), ΔS can be briefly written as in Eq. (9) to easily 
find the membership value for each linguistic variable, no matter 
whether the crisp value x is located before or after the middle of the 
linguistic variable mi. 

This can be accomplished using the following expression: 

min((x − ai), (bi − x) ) =

{

x − aiai < x < mi

bi − xmi < x < bi

}

So Eq. (7) can be rewritten as in Eq. (9) as follows: 
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(6)   
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ΔS =
∑

j

i=1

ΔSi =
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(9) 

Consider that the starting of the highly overlapped linguistic vari-
ables might not be in sequential presentation as in Eqs. 7–9 which means 
that the starting and ending of each linguistic variable can occur arbi-
trarily, let us define a step function u(x−ai) to eliminate the contribution 
part of the linguistic variable in ΔS, when it still has not occurred yet or 
already exceeded: u(x − ai) =

{1x ≥ ai
0x < ai

}

To eliminate the contribution part of the linguistic variable when it 
still has not occurred, we should use: 

u(x − ai) × min((x − ai), (bi − x)) =

{

min((x − ai), (bi − x))x ≥ ai

0x < ai

}

To eliminate the contribution part of the linguistic variable when it 
has exceeded: 

u(bi − x) × min((x − ai), (bi − x)) =

{

min((x − ai), (bi − x))x ≤ bi

0x > bi

}

Eq. 9 can be rewritten as in Eq. 10: 

ΔS =
∑

j

i=1

ΔSi =

To establish a general equation that can determine the membership 
values in both low and high overlapping cases, there is a need to include 
the part |(mi − x)| in Eq. 10 when there is a low overlapping, and this 
part should be neglected when there is a high occurrence of overlapping. 

This can be done by using step function u(x−ai) in the form: 
1−u(x−ai) =

{0x ≥ ai
1x < ai

}

, which will be inserted into Eq. 10 using 
multiplication form as follows: 

∏j
i=1[1−u(x − ai) ] = (1−u(x − a1) )× (1−u(x − a2) )× ⋯×

(1−u 
(x − aj

) )

=

⎧
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0a1 ≤ x ≤ aj
1x < a1
1x > aj

⎫

⎬

⎭

, So the general ΔS for both low and high 

overlapped linguistic variables can be calculated by Eq. 11. 
The general laser simulator membership value for both low and 

highly overlapped linguistic variables can be calculated using Eq. 12 
The general accumulative values of membership function for both 

low and high overlapping based on ΔS are calculated in Eq. 11, is as: 
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5. Mathematical and analytical comparison between fuzzy logic 
and laser simulator logic 

To prove that Laser Simulator logic performs better than fuzzy logic 
when they are used in a noisy environment with highly overlapped 
linguistic variables, mathematical and analytical comparisons are pro-
vided as follows: 

5.1. Mathematical comparison 

To mathematically prove that fuzzy logic is no longer suitable for a 
high degree of overlapping between linguistic variables, let us assume 
that we have an input fuzzy set with triangular membership functions, in 
which several linguistic variables j are highly overlapped with each 
other in following parameters: a1, a2, a3, ,……, aj are the starting points 
of the overlapped linguistic variables, b1,b2, b3,……, bj are the end points 
of the overlapped linguistic variables and m1, m2, m3, ……., mj are the 
middle points of the overlapped linguistic variables. We have chosen 
triangular membership function due to its similarity to a laser simulator 
in lowly overlapped linguistic variables. The membership function for 
each linguistic variable can be determined by Eq. 14: 

μi(x) =
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⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(14) 

If the point is located in the highly overlapped area, then its accu-
mulative membership value is calculated as in Eq. 15: 

∑

j

i=1

μi(x)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0x< a1

1−
2|x−m1|

b1 −a1

a1 ≤ x≤ a2

1−
2|x−m1|

b1 −a1

+1−
2|x−m2|

b2 −a2

+⋯+1−
2
⃒

⃒x−mj

⃒

⃒

bj −aj

a2 < x≤ b1

1−
2|x−m2|

b2 −a2

+1−
2|x−m3|

b3 −a3

+⋯+1−
2
⃒

⃒x−mj

⃒

⃒

bj −aj

b1 < x≤ b2

⋮

1−
2
⃒

⃒x−mj

⃒

⃒

bj −aj

bj−1 < x≤ bj

0x> bj

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(15) 
To find out the point of membership function, in which the accu-

mulative membership values starts to become higher than 1, let us as-
sume the membership functions with two highly overlapped linguistic 
variables. More highly overlapped linguistic variables will result in a 
high probability to get membership values higher than 1. Eq.7 can be re- 
written with two linguistic variables as in Eq. 8: 

μ1(x)+ μ2(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 −
2|x − m1|

b1 − a1

x < a2

2 −
2|x − m1|(b2 − a2) + 2|x − m2|(b1 − a1)

(b1 − a1)(b2 − a2)
a2 ≤ x ≤ b1

1 −
2|x − m2|

b2 − a2

x > b2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(16) 
If m1 = a1 +b1−a1

2 and m2 = a2 + b2−a2
2 , one can write Eq. 16 as follows: 
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μ1(x)+μ2(x)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1−
|2x−a1 −b1|

b1 −a1

a1 ≤ x≤ a2

2−
2|x|(b2 −a2)+2|x|(b1 −a1)+a1a2 −b1b2

(b1 −a1)(b2 −a2)
a2 < x≤ b1

1−
|2x−a2−b2|

b2 −a2

b1 < x≤ b2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(17) 

By solving Eq. 17, one can determine the values of × in the highly 
overlapped area a2 ≤ x≤ b1that are bigger than 1 as follows: 

μ1(x)+ μ2(x) = 2−
2|x|(b2 − a2) + 2|x|(b2 − a2) + a1a2 − b1b2

(bi − ai)(b2 − a2)
> 1 

The solutions are: 
μ1(x) + μ2(x) ≤ 1 ifx ≤ a1a2+a1b2+a2b1−3b1b2

2(a1+a2−b1−b)

or x ≥ bi −a1a2+a1b2+a2b1−3b1b2
2(a1+a2−b1−b) ; 

However μ1(x) + μ2(x) ≥ 1 if 
a1a2 + a1b2 + a2b1 − 3b1b2

2(a1 + a2 − b1 − b)
≤ x ≤ bi −

a1a2 + a1b2 + a2b1 − 3b1b2

2(a1 + a2 − b1 − b)

An example is x = mi which is located in a range ai+1 ≤ x ≤ bi,
Equation 3.16 can be written:   

Since there is an overlap between the linguistic variables, this 
expression will always be guaranteed: |(a1−a2)+(b1−b2)|

(b2−a2) < 1 and 
thusμ1(x) + μ2(x) > 1. 

The border |(a1−a2)+(b1−b2)|
(bi+1−ai+1) becomes equal or bigger than 1, only if 

there is no overlapping between linguistic variables i.e., the latter’s 

μ1(x)+ μ2(x) = 2−
2|m1 − m2|(b1 − a1)

(b1 − a1)(b2 − a2)
= 2−

2|m1 − m2|

(b2 − a2)
= 2−

|(a1 − a2) + (b1 − b2)|

(b2 − a2)

Fig. 8. Comparison between laser simulator logic and fuzzy logic when there is an overlapping.  
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linguistic starts from the middle (or after the middle) of the former 
linguistic variables and the former linguistic variable ends at the middle 
of the latter linguistic variable (or before the middle). The same goes to 
x = m2   

This will be resulted by errors when implicating the membership 
values of highly overlapped linguistic variables of fuzzy input mem-
berships on the output membership functions based on the consequence 
of the rules. 

Eq. 18 and 19 show the crisp output after implication and defuzzi-
fication using centroid in Mamdani and singleton in Sugeno, respec-
tively. 

y =

∫

μi(x)ydy

μi(x)dy
≈

∑n

i=1μi(x) × Δyi
∑n

i=1μi(x)
(18)  

y =

∑n

i=1μi(x) × yi
∑n

i=1μi(x)
(19) 

where n is the number of output linguistic variables as stated in the 
rules. Δyi and yi are the universes of discourses of output membership 
that have been implicated by the membership value of input member-
ship in Mamdani and Sugeno, respectively. Since the accumulative 
membership values are highly overlapped, linguistic variables that are 
bigger than 1 in certain ranges, μi(x) can be decomposed into: 
μi(x) = μti(x)+ δi (20) 

where μti(x) are the right membership values when the accumulative 

membership values of highly overlapped linguistic variables become less 
or equal to 1. δi are the errors raised by the effect of highly overlapped 
linguistic variables. Eq. 18 and 19 can be rewritten as Eq. 21 and 22, 
respectively:   

y =

∑n

i=1μi(x) × yi
∑n

i=1μi(x)
=

∑n

i=1(μti(x) + δi)×yi
∑n

i=1(μti(x) + δi)

=

∑n

i=1μti(x) × yi
∑n

i=1(μti(x) + δi)
+

∑n

i=1δi × yi
∑n

i=1(μti(x) + δi)
(22) 

Where the expression 
∑n

i=1δi×xi
∑n

i=1(μti(x)+δi)
indicates the errors caused by the 

highly overlapped linguistic variables. 
If the laser simulator is used to find out the membership values of the 

two highly overlapped linguistic variables as in Eq. 17, it can be written 
as similar to Eq. 23 

Table 3 
Laser Simulator Logic vs Fuzzy Logic.  

Features Fuzzy logic Laser Simulator Logic 
Accumulative membership 

function 
Not guaranteed to be less or equal to 1 Guaranteed to be less or equal to 1 

Calculation of implication/ crisp 
output 

The calculation is hard and rare to be used. Thus it depends mainly on the 
drawings of input/output membership function to find the implication. 

The calculation is simple and can be easily implemented as 
discussed in Section 6.2. 

Dealing with Highly overlapping 
of linguistic variables 

Fuzzy logic becomes noisy in this case It works well with high noisy 

Drawing Hard to be drawn manually Simple 
Ability for learning Can’t learn directly if we have a sample of input/output. Thus we use an 

additional algorithm for learning such as genetic, neural networks, etc. 
Can be leant if we have some samples of input and output. 

Real time systems It needs a lot of experiments to adjust the inference of membership functions Inference system can be easily adjusted especially if we have 
samples of input/output 

Nature of fuzzification Can be linear (triangular and trapezoidal membership) or non-linear 
(Gaussian) 

Linear. The crisp value has proportional ratio to its position in 
the range of membership function linguistic variable 

Nature of defizzification Several methods can be used: center of gravity, adaptive integration, etc. Weighted average  

μ1(x)+ μ2(x) = 2−
2|m2 − m1|(b2 − a2)

(bi − ai)(b2 − a2)
= 2−

2|m2 − m1|

(b1 − a1)
= 2−

|(a2 − a1) + (b2 − b1)|

(b1 − a1)
≥ 1   

y =

∑n

i=1μi(x) × Δyi
∑n

i=1μi(x)
=

∑n

i=1(μti(x) + δi)×Δyi
∑n

i=1(μti(x) + δi)
=

∑n

i=1μti(x) × Δyi
∑n

i=1(μti(x) + δi)
+

∑n

i=1δi × Δyi
∑n

i=1(μti(x) + δi)
(21)   
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μ1(x)+ μ2(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0x ≤ a1

x − a1

(x − a1)+(m1−x)
a1 < x ≤ a2

x − a1

(x − a1) + (x − a2)
+

x − a2

(x − a1) + (x − a2)
a2 < x ≤ m1

b1 − x

(b1 − x) + (x − a2)
+

x − a2

(b1 − x) + (x − a2)
m1 < x ≤ m2

b1 − x

(b1 − x) + (x − a2)
+

b2 − x

(b1 − x) + (x − a2)
m2 < x ≤ b1

b2 − x

(b2 − x)+(m2−x)
b1 < x ≤ b2

0x > b2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(23) 
From Eq. (23), it is clearly stated that the accumulative values of highly 

overlapped areas (a2 < x ≤ m1,m1 < x ≤ m2 and m2 < x ≤ b1)can’t 
exceed 1. Thus the implication of fuzzy input memberships on the output 
membership functions based on consequent of the rules, will be accom-
plished using Eq. 4 without errors. 

y =

∑n

i=1μi(x) × Yi

n
(24) 

where Yi is the output linguistic range. 
Thus the difference between crisp outputs in fuzzy logic yFL and laser 

simulator yLS for highly overlapped linguistic variables can be written: 

yFL − yLS =

∑n

i=1δi × xi
∑n

i=1(μi(x))
(25)  

5.2. Analytical comparison between fuzzy logic and laser simulator 

From Eqs. 1 and 6, it is noticeable that the membership function 
values in laser simulator logic are similar to symmetric triangular 
membership function of fuzzy logic type-1 in the case where there is no/ 
low overlapping between linguistic variables. However it works differ-
ently when there is an overlapping between the linguistic variables such 
as in Fig. 8, where the accumulative membership values of fuzzy logic 
exceed 1. Fig. 8 shows a fuzzy set (tips) with three linguistic variables 
with a degree of overlapping (cheap 0–20, average 1–29, generous 
5–30). The laser simulator logic has the capability to deal well with a 
high degree of inference/overlapping between linguistic variables as 
shown in Fig. 8.a. In fact, the inference between linguistic variables in 
the current fuzzy systems is determined arbitrary and the universe of 
discourse is just divided into equal partitions as shown in Fig. 4. Another 
common practice in the current fuzzy logic type 1 or 2 algorithms is that 
one can’t overlap more than two linguistic variables as the total 

membership value in this case becomes bigger than 1 as shown in Fig. 8. 
b. The laser simulator can solve this problem by generating a dynamic 
membership function in which one can overlap easily more than two 
linguistic variables as shown in Fig. 8.a. 

Based on fuzzy logic type 1 and 2, the input x = 10 has a total 
membership value is approximately μ = 1.9 as shown in Fig. 8.b which is 
not valid, since the accumulative membership values of a crisp input 
should not exceed 1. However, the laser simulator assures that the 
membership value of each input value can’t exceed the value of 1 using 
Eq. (1) and (2). 

The calculation when crisp input x = 10 for laser simulator is 
accomplished based on Eq. (8): 

For the 1st linguistic variable (cheap): 

μ1 =
x−LS1

(x−LS1)+(x−LS2)+(x−LS3)
=

10−0

(10−0)+(10−1)+(10−5)
=

10

24 

For the 2nd linguistic variable (average): 

μ2 =
x−LS2

(x−LS1)+(x−LS2)+(x−LS3)
=

10−1

(10−0)+(10−1)+(10−5)
=

9

24 

For the 3rd linguistic variable (generous): 

μ3 =
x−LS3

(x−LS1)+(x−LS2)+(x−LS3)
=

10−5

(10−0)+(10−1)+(10−5)
=

5

24 

So μ = μ1 + μ2 + μ3 = 24
24 

As a result, the capability of noise elimination and simplification of 
drawing in laser simulator logic help to easily find the start, end and range 
of linguistic variables if we know some samples of input/output. Table 3 
summarizes the difference between laser simulator logic and fuzzy logic 

6. Modelling of wheeled mobile robot 

The wheeled mobile robot in this research is driven by two differ-
ential and two castor wheels to enable the robot to move in the con-
strained environments using active force control (AFC) as shown in 
Fig. 9. The local and global coordinate systems are used to describe the 
movement of the wheeled mobile robot as shown in Fig. 9. 

Where 
C: The center of mass mobile robot, d: The distance between the 

center of mass and driving wheels’ axis in the x-direction 
P: The intersection of the axis of symmetry with the driving wheels 

axis 
w: The distance between each driving wheel and the robot axis of 

symmetry in the y-direction 

6.1. Kinematics of wheeled mobile robot 

The wheeled mobile robot is driven by two differential drive and two 
castor wheels. 

The velocity of the wheeled mobile robot on the right and left wheels 
can be calculated using Eq. 26: 

Velocity for right wheel is: Vr = θ̇r.r 
Velocity for left wheel is: Vl = θ̇l.r 
Where θr and θl are the angular velocity of the right and left wheel, 

respectively. 

V =
Vr + Vl

2
=

rθ̇r + rθ̇l

2
=

[r

2

r

2

]

[

θ̇r

θ̇l

]

(26) 

The heading rotation angle of the robot can then be calculated as the 
difference between the angular velocity of the right and left wheels as in 
Eq. 27: 

φ̇ =
rθ̇r − rθ̇l

2w
=

[ r

2w

−r

2w

]

[

θ̇r

θ̇l

]

(27) 

Fig. 9. Local /global coordinate system with wheeled mobile robot.  
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The global coordinate system (x, y, φ) can be described by means of 
the local coordinate system (V,ω) as shown in Eq. 28 
⎡

⎣

ẋ

ẏ

φ̇

⎤

⎦ =

⎡

⎣

cosφ dsinφ

sinφ −dcosφ

0 1

⎤

⎦

[

V

φ̇

]

(28) 

The velocity of the robot in x and y directions (ẋandẏ) can be written 
by means of the wheel’s angular velocity as described in Eqs. (29) and 
(30): 

ẋ =
[rcosφ

2

rcosφ

2

]

[

θ̇r

θ̇l

]

+

[

rdsinφ

2w

−rdsinφ

2w

]

[

θ̇r

θ̇l

]

(29)  

ẏ =

[

rsinφ

2

rsinφ

2

]

[

θ̇r

θ̇l

]

−

[

drcosφ

2w

−drcosφ

2w

]

[

θ̇r

θ̇l

]

(30) 

Based on Eqs. (26)–(30), the velocity of wheel mobile robot in x, y 
and φ directions can be written as: 

⎡

⎣

ẋ

ẏ

φ̇

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r

2
cosφ +

dr

2w
sinφ

r

2
cosφ −

dr

2w
sinφ

r

2
sinφ −

dr

2w
cosφ

r

2
sinφ +

dr

2w
cosφ

r

2w

−r

2w

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

θ̇r

θ̇l

]

(31)  

6.2. Dynamic of mobile robot 

The dynamic of a mobile robot is calculated using the Lagrange 
equation. In fact, this equation depends on the calculation of the po-
tential and kinetic energy of the whole system. It considers that the 
energy inside the system is equal to the energy applied by external forces 
as in Eq. 32. 

The Lagrange dynamic equation can be written as Eq. 32: 
d

dt

(

∂L

∂q̇

)

+
∂L

∂q
= τ−AT(q)λ (32) 

Where, L = K – V 
K = kinetic energy, 
V = potential energy in system, 
τ = torque vector 
AT (q) = transpose of constraint matrix 
λ = lagrange multipliers vector. 

Since robot height is just 20–30 cm, the potential energy is too small 
and therefore can be neglected, so: 

L = K – V = K 
To establish the kinetic energy, the robot has been divided into three 

parts, namely the robot’s body, left and right wheels. 

6.3. Robot body 

The kinetic energy of the body is raised from the mass-energy of its 
elements during movements such as aluminium sheets and profiles, 
electrical battery and cards, motor and gearbox. The kinetic energy of 
the body contains translational and rotational kinetic energies as 
follows: 

So, the total energy for the body is: 
Kb=1

2 mb ẋ2 + 1
2 mb ẏ2+1

2 Ib φ̇2 (33) 
The total kinetic energy on the right wheel is: 
Krw= 1

2mwR(ẋ + bφ̇cosφ − dφ̇sinφ)2 + 1
2mwR(ẏ + bφ̇sinφ + dφ̇cosφ)2 +

1
2 IwR θ̇R

2 
+ 1

2 IwRφ̇2 (34) 
The total Kinetic energy on the left wheel is: 
Klw= 1

2mwL(ẋ + bφ̇cosφ + dφ̇sinφ)2 + 1
2mwL(ẏ + bφ̇sinφ + dφ̇cosφ)2 +

1
2 IwR θ̇R

2 - 12 IwRφ̇2(35) 
The total kinetic energy for the wheeled mobile robot can be written 

as: 
L = Kb + Kwr + Kwl 
L = 1

2 mb ẋ2 + 1
2 mb ẏ2 + 1

2 Ib φ̇2 + 1
2mwR(ẋ + bφ̇cosφ − dφ̇sinφ)2 +

1
2mwR(ẏ + bφ̇sinφ + dφ̇cosφ)2 + 1

2 IwR θ̇R
2 

+ 1
2 IwRφ̇2 +

1
2mwL(ẋ − bφ̇cosφ + dφ̇sinφ)2 + 1

2mwL(ẏ + bφ̇sinφ + dφ̇cosφ)2 + 1
2 IwL θ̇L

2 - 
1
2 IwRφ̇2 (36) 

By deriving L dL

dq̇
, d

dt
.dL

dq̇ 
and dL

dq 
Eq. 36 can be written as Eq. 40. 

Since the wheeled mobile robot has a non-holonomic movement, the 
following constraints are applied to the robot movement:  

1- No slippage during movement 

Fig. 10. PD-AFC Controller with Laser Simulator Logic and Quick Feedback compensation loop.  

Table 4 
Input (φ 0) linguistic variable ranges.  

Very Low Low Medium High Very High 
0–70 0 20–160 0 80–250 0 150–300 0 280–3600  
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Table 5 
Output INR/INL (Kgm2) linguistic variable ranges.  

Very Small Small Medium Large Very Large 
0.335–0.360 0.345–0.395 0.365–0.415 0.398–0.435 0.418–0.440  

                  (b) Output (INR kgm2)                                                     (c) Output (INL kgm2) 

(a) 0) 

Fig. 11. Membership functions for inertia estimation using fuzzy logic.  

(a) 0)                   (b) Output (INR and INL kgm2)        

Fig. 12. Membership functions for inertia estimation using laser simulator logic.  
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2- There are only forward and backward movements; no movements in 
the side of the wheels 

These constraints can be written in Eqs. 37–39 as follows: 
mẍ + 2 mwd sin φ φ̈ + 2 mwd cos φ φ̇2  = 0 (37) 
mÿ – 2 mwd cos φ φ̈ + 2 mwd φ̇2 sin φ = 0 (38) 
Ïφ + + 2 mwd sin φ ẍ – 2 mwd cos φ ÿ  = 0 (39) 
So the general equation to describe the dynamic movement of the 

robot can be written as: 
M(q)..q.. +V(q, q̇) = τ−AT(q)λ (40) 

⎡

⎢

⎢

⎢

⎢

⎣

m 0 2mωdsinφ 0 0
0 m −2mωdsinφ 0 0

2mωdsinφ −2mωdsinφ I 0 0
0 0 0 IwR 0
0 0 0 0 IwL

⎤

⎥

⎥

⎥

⎥

⎦
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⎢
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⎢

⎣

ẍ
ÿ
φ̈

θ̈R
θ̈L

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

2mwdcosφφ̇2

2mwdφ̇2sinφ

0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
τr
τl

⎤

⎥

⎥

⎥

⎥

⎦

-+where m is the total mass of the mobile robot 

which is m = mb + mwR+ mwL, τr and τlare the applied torques on the 
right and left wheels, respectively. m is the total mass of robot, mw: is 
mass of the wheel, I is the moment inertia of the robot and Iw is the 
moment inertia of the wheel. 

Eq. 40 can be re-written if one replaces ẍ , ÿ and φ̈ from Eq.31 (after 

applying second derivation) with S(φ) =
⎡

⎣

ẍ
ÿ
φ̈

⎤

⎦ as Eq. 41: 

M(q)S(ϕ)..θ.. +M(q) ˙S(ϕ)θ̇+V(q̇) = τ−AT(q)λ (41) 
If Eq. 41 is multiplied by ST(φ) (transpose of S(φ)), the part ST(φ) 

AT(q) becomes equal to zero as stated in Eqs. 37–39. Thus the final 
equation of WMR dynamics can be written as Eq. 42: 
ST(ϕ[unknown template] (42)  

6.4. Design of controller 

The proposed PD-AFC-LS-QC controller consists of three feedback 
control loops as shown in Fig. 10, namely the internal, external and quick 
compensation loops to effectively compensate the disturbances in the 
constrained environments. The external loop is used to control the kine-
matics parameters of the WMR control system via a PD controller. How-
ever, the internal loop is used to control the dynamic of robot and 
disturbance rejection via AFC controller. On the other hand, a quick 
compensation loop has been introduced in this paper to compensate the 
difference between the reference and actual acceleration via the P 

controller, especially at the beginning of a movement. Thus, the proposed 
PD-AFC-LS-QC controller will possess the advantages of PD, AFC and QC 
controllers. 

In the proposed controller, the PD is used to control the kinematics 
parameters of the mobile robot through a continuous comparison be-
tween the reference and actual acceleration in x, y and φ as in Eqs. 43–45 
ẍact (43)  

ÿact (44)  

ϕ̈act (45) 
Whereas, AFC is used to estimate the disturbances affected to the 

control system by comparing the applied torque on actuators (motor) 
with the actual torque measured by sensors as in Eq. 46 
τ*

d = τ− IN..θ.. (46)  

where IN is inertia matrix, ..θ..is wheel’s angular velocity, τ*
dis the 

disturbance torque applied on the wheel and τ is the DC-motor’s torque. 
The DC-motor has a linear relationship between the torque and current: 
τ = Kt It, where It is the current supplied to DC-motor and Kt is the DC- 
motor torque’s constant. The moment’s inertia IN can’t be measured 
using sensors. Thus, it is estimated through a well-known AI algorithms 
such as crude-approximations (Hewit and Burdess, 1981), iterative- 
learning (Mailah, 1998), neural-network (Kwek et al., 2003), 
knowledge-based expert (Pitowarno et al., 2003) and fuzzy-logic (FL) 
(Ali & Mailah, 2019a,b). 

As explained in Section 4, a novel method, called laser simulator 
logic has been developed to estimate the inertia moment of WMR during 
movement. The moment of inertia will then be multiplied by the angular 
velocity of the robot wheel to estimate the actual torque. 

The added QC loop enables a quick compensation of the acceleration, 
especially at the begining of the movement, where PD faces some delays, 
due to AFC loop calculations and AI-based Inertia moment estimation. 
The compensation is calculated using Eq. 47 

e = kp( ¨xact - ¨xref ) (47) 

6.5. Estimation of inertia matrix 

The mass matrix M(q) in Eq. 34 is used to determine the range of the 
inertia moment values to overcome the disturbances. It has been found 
practically by Mailah, 1998 that the range of inertia moment can be 
described as in Eq. 48: 
0.4M(q)⩽IN⩽1.4M(q) (4.38) 

The designs of fuzzy logic and laser simulator logic algorithms are 
passed through three main processes, namely; fuzzification, rule 

                (a)                                                                                 (b) 

Fig. 13. Pre-planned path for testing the proposed control system in simulation (a) Zigzag path (b) circular path.  

M.A.H. Ali et al.                                                                                                                                                                                                                                



Expert Systems With Applications 183 (2021) 115454

16

Fig. 14. Results for all controller schemes in zigzag path without disturbance.  
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(f) x track errors for PD-AFC types                                          (g) y track errors for PD-AFC types 

(h) y track error for PD-AFC (LS and LS-QC)  

 (i) x track error for PD-AFC (LS and LS-QC) 

(j) y track error for PD-AFC-LS-QC                                                             (k) x track error for PD-AFC -LS-QC 

ut disturbance 

Fig. 14. (continued). 
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Fig. 15. Results of all controllers’ schemes in circular path without disturbance.  
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        (f) x track errors for PD-AFC types                                                                        (g) y track errors for PD-AFC types 

(h) y track error for PD-AFC (LS and LS-QC)  

 (i) x track error for PD-AFC (LS and LS-QC) 

(j) y track error for PD-AFC-LS-QC                                                        (k) x track error for PD-AFC -LS-QC 

Fig. 15. (continued). 
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interface and defuzzification to estimate the inertia matrix based on the 
changes of head angle of the robot φ. Heading angle φ has been chosen 
as the input set of the fuzzy logic and laser simulator logic algorithms 
since the inertia matrix M(q) varies only based on its values along with 
the time as illustrated in Eq. 40. Two output fuzzy sets are used for 
calculating the wheel’s inertia matrix, namely the right and left wheel 
inertia matrices. The membership functions for both fuzzy logic and 
laser simulator have highly overlapped linguistic variables, since it the 
control system is so noisy in this work. 

Fuzzification: With this process, the crisp values are transformed into 
linguistic variables, which are involved in the input or output fuzzy sets. 
The input fuzzy set (φ) is fuzzified into the following linguistic variables: 

φ = {Very Low, Low, Medium, High, Very High}. 
Two output-fuzzy sets are used to calculate the wheel’s inertia 

matrix, namely the right and left wheel inertia matrices which are 
decomposed into the following linguistic variables: 

INR-INL = {Very Small, Small, Medium, Large, Very Large}. 
The triangular membership function has been chosen to present the 

input/output sets of the fuzzy logic algorithm due to of the similarity 
between the fuzzy logic with triangular function and the laser simulator 
which makes it easy for comparison later on. The overlapping between 
the linguistic variables has been carried out after conducting some ex-
periments, in which we found the following suitable ranges for each 
input/output linguistic variables as illustrated in Tables 4 and 5: 

It is clearly stated in Tables 3 and 4 that there are overlapping in the 
linguistic variables of input and output. 

The overlapping of linguistic variables is considered same in both 
fuzzy and laser simulator logic to enable for analyzing the performance 

Fig. 16. Results for all controllers schemes in zigzag with disturbance τd =

⎡

⎣

104cos(t)
104cos

(

t + π

2
)

⎤

⎦ Nm.  
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 (f) x track errors for PD-AFC types                                  (g) y track errors for PD-AFC types 

(h) y track error for PD-AFC (LS and LS-QC)           (i) x track error for PD-AFC (LS and LS-QC) 

Fig. 16. (continued). 

Fig. 17. Results of all controllers’ schemes in a circular path with disturbance.  
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                      (b) y track errors for all controllers                            (c) y track errors for  all controllers 

  
     (d) y track errors for of all controllers except PD             (e) x track errors for of all controllers except PD    

 
                  (f) x track errors for PD-AFC types                     (g) y track errors for PD-AFC types 

 
         (h) y track error for PD-AFC (LS and LS-QC)            (i) x track error for PD-AFC (LS and LS-QC) 

Fig. 17. (continued). 
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of each one as will be discussed in Section 7. 
Fig. 11 illustrates the membership functions of the input/output 

fuzzy sets in fuzzy logic based on Tables 3 and 4. Fig. 12 shows the 
membership functions of the input/output sets in laser simulator logic 
based on Tables 3 and 4. 

Rule Interface: Both of fuzzy logic and laser simulator logic use the IF- 
THEN statements, which are utilized to describe the relationship be-
tween the input and output sets. In this work, the Mamdani method has 
been used for implication, aggregation of the rules in the fuzzy logic 

algorithm as follows: Rules in fuzzy logic:  

1. If (phi is M) then (INL is ML) & (INR is MR)  
2. If (phi is VL) then (INL is VLL) & (INR is VSR)  
3. If (phi is L) then (INL is LL) & (INR is SR)  
4. If (phi is H) then (INL is SL) & (INR is LR)  
5. If (phi is VH) then (INL is VSL) & (INR is VLR) 

Same rules, but with different style, are used in laser simulator as 
follows: 

Table 6 
Mean tracking errors of zigzag path (in mm).   

Without disturbance With disturbance 
Mean tracking 
errors (mm) 

PD AFC- 
FL 

AFC- 
LS 

PD-AFC-FL PD-AFC-LS PD-AFC- 
LS-QC 

PD AFC- 
FL 

AFC- 
LS 

PD-AFC-FL PD-AFC-LS PD-AFC- 
LS-QC 

X track errors −125  0.7  0.06 −0.05 ×
10−3 

0.75 ×
10−5 

0.65 ×
10−5 

−2.8 ×
106  

0.7  0.06 −0.05 ×
10−3 

0.75 × 10−5 0.65 ×
10−5 

Y track errors −100  0.115  0.075 −0.05 ×
10−3 

−0.55 ×
10−5 

−0.5 ×
10−5 

−4.25 ×
106  

0.11  0.075 −0.05 ×
10−3 

−0.55 ×
10−−5 

−0.5 ×
10−5  

Table 7 
Mean tracking error of circular path (in mm).   

Without disturbance With disturbance 
Mean tracking 
errors (mm) 

PD AFC-FL AFC-LS PD-AFC- 
FL 

PD-AFC- 
LS 

PD-AFC- 
LS-QC 

PD AFC-FL AFC-LS PD-AFC- 
FL 

PD-AFC- 
LS 

PD-AFC- 
LS-QC 

X track errors −0.65 5 × 10−3 4 × 10−3 0.1 × 10−5 0.75 ×
10−5 

0.7 ×
10−5 

−2.8 ×
106 

5 × 10−3 4 × 10−3 0.1 × 10−5 0.75 ×
10−5 

0.7 ×
10−5 

Y track errors −2 0.01 ×
10−3 

0.05 ×
10−4 

−0.65 ×
10−5 

−0.5 ×
10−5 

−0.6 ×
10−5 

−4.25 ×
106 

0.01 ×
10−3 

0.05 ×
10−4 

−0.65 ×
10−5 

−0.5 ×
10−5 

−0.6 ×
10−5  

  (a) sensor, cards, motor driver and On board PC 

connection 

(b) Connection between processing units (red color for 

current and other colors for data)  

(c) Platform chassis components 

Fig. 18. Embedded system for the robot platform.  
Fig. 19. Torque-current characteristic of DKM-motors (120 W) (White Drive 
Products, 2005). 
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1 rule: If phi is Very Low Then INR is Very Small and INL is Very 
Large 

2 rule: If phi is Low Then INR is Small and INL is Large 
3 rule: If phi is Medium Then INR is Medium and INL is Medium 
4. rule: If phi is High Then INR is Large and INL is Small 
5. rule: If phi is Very High Then INR is Very Large and INL is Very 

Small 
Defuzzification: Fuzzy logic uses the Mamdani inference mechanism 

for the defuzzification process with the centroid weighted method. The 
crisp output is given by Eq. 49: 

x =

∫

μi(x)xdx

μi(x)dx
(49)  

whereμi(x) is membership value, x is a universe of discourse of output 
membership that has been implicated by the membership value of the 
input membership in Mamdani. 

Laser simulator logic uses an average output in defuzzification pro-

cess as follows: 

x =

∑n

i=1μi(x) × xi

n
(50) 

where n is the number of output linguistic variables as stated in the 
rules, Yi is the output linguistic range. 

7. Simulation setup and results 

The simulation is performed in MATLAB/Simulink in two kinds of 
constrained paths, namely the zigzag and highly curverd paths, all with 
and without presence of disturbances. The performance of the proposed 
control system (PD-AFC with laser simulator and Quick feedback 
Compensation) PD-AFC-LS-QC has been compared with several control 
systems such as: 

- PD controller (PD) 
- AFC with Fuzzy logic (AFC-FL) 
- AFC with laser simulator (AFC-LS) 
- PD-AFC with fuzzy logic (PD-AFC-FL) 
- PD-AFC with laser simulator (PD-AFC-LS) 

7.1. Simulation results of controllers without disturbances 

A zizag and circular paths were selected to test the new proposed 
control system PD-AFC-LS-QC and comparisons were made with other 
controllers. Fig. 13 shows the pre-planned path for testing the proposed 
control system. 

The simulation has been run with the following parameters: 
Simulation Parameters: Integration method: ODE3 (Bogacki-Shanpine) 
Simulation step: Fixed step, fixed step size: Auto 
WMR parameters: r = 0.15 m, b = 0.75 m, d = 0.03 m, m = 31.0 kg, 

mw = 0.5 kg, I = 15.625 kgm2 , Iw = 0.005 kgm2 

Controller parameters: Kpx = 1/s2, Kpy = 2/s2, Kpφ = 1/s, Kdx = 1, 
Kdy = 2 , Kdφ = 1, Kt = [0.263 0.263]TNm/A 

Fig. 14 shows the implementation of the controllers on the zigzag 
path without disturbance. All the controllers have tracked well the 
zigzag path as shown in Fig. 14(a), except for PD controller. It can be 
noticed that there are accumulative errors raised from the beginning to 
the end of the path. However, other controllers are almost similar in 
relation to the reference trajectory. Thus they overlap each other along 
the path. The tracking errors in x and y direction for PD are at the level of 
102 with maximum errors of 250 mm as shown in Fig. 14 (b) and (c). On 
the other hand, the difference between the actual and reference paths by 
AFC-FL, AFC-LS, PD-AFC-LS, PD-AFC-FL and PD-AFC-LS-QC is too small 
with a tracking error less than 0.30 mm in both x and y directions as 

(b)  Output INR and INL  

Fig. 20. Membership functions of the LS: (a) input set (φ) (b) output set 
INR/INL. Fig. 21. A sequence of WMR movements on a circular path.  

M.A.H. Ali et al.                                                                                                                                                                                                                                



Expert Systems With Applications 183 (2021) 115454

25

shown in Fig. 14 (b), (c). Fig. 14 (d) and (e) show that the AFC-LS and 
AFC-FL have higher tracking errors in both × and y in comparison with 
PD-AFC-LS, PD-AFC-FL and PD-AFC-LS-QC controller with maximum 
tracking errors in the corners equal to 0.28 mm. The PD-AFC-LS, PD- 
AFC-FL and PD-AFC-LS-QC have low tracking errors in both x and y 
directions with a maximum error that is equal to 2 × 10−3 mm as shown 
in Fig. 14 (f) and (g). The PD-AFC-LS and PD-AFC-LS-QC illustrate a 
better performance with tracking errors of less than 1 × 10−5 mm as 
shown in Fig. 14 (h) and (i). PD-AFC-LS-QC possesses the best perfor-
mance of the control system with the capability to eliminate the noise 
that still occurs in PD-AFC-LS as shown in Fig. 14 (j) and (k). 

Fig. 15 shows the implementation of the controllers on a circular 
path without disturbance. Similar to the zigzag path analysis, all con-
trollers except for the PD controller can track the circular path with 
small errors. The tracking errors in x and y direction for PD have a 
maximum error of 5 mm as shown in Fig. 15 (b,c). On the other hand, the 
difference between the actual and reference paths by AFC-FL, AFC-LS, 
PD-AFC-LS, PD-AFC-FL and PD-AFC-LS-QC is too small with a tracking 
error of less than 0.25 mm in both x and y directions as shown in Fig. 15 
(b), (c). Fig. 15 (d) and (e) show that the AFC-LS and AFC-FL have higher 
tracking errors in both x and y in comparison with PD-AFC-LS, PD-AFC- 

FL and PD-AFC-LS-QC controller with maximum tracking errors that are 
equal to 10−3mm. The PD-AFC-LS, PD-AFC-FL and PD-AFC-LS-QC have 
low tracking errors in both × and y with a maximum error that is equal 
to 5 × 10−5 mm as shown in Fig. 15 (f)and (g). The PD-AFC-LS and PD- 
AFC-LS-QC show a better performance with tracking errors of less than 
1 × 10−6 mm as shown in Fig. 15 (h) and (i). PD-AFC-LS-QC has the best 
performance of the control system with the capability to eliminate the 
noise that still exists in PD-AFC-LS as shown in Fig. 15 (j) and (k). By 
looking to zooming areas in Fig. 14 a and Fig. 15 a, one can see that there 
are slight differences between the AFC family controllers in the thickness 
of trajectories’ lines which means there are some controllers that are 
oscillating along their trajectory such as AFC-FL, AFC-LS and PD-AFC- 
FL, and some others are robust enough in their path such PD-AFC-LS 
and PD-AFC-LS-QC. 

7.2. Simulation results of controllers in the presence of disturbances 

A variable harmonic disturbance has been applied on the zigzag and 
circular paths. 

Fig. 16 shows the actual paths of all the controllers when they are 
tracking the zigzag path as shown in Fig. 13 with a high variable har-

monic disturbance described by the equation: τd =

⎡

⎣

104cos(t)
104cos(t + π

2)

⎤

⎦. 

PD controller presents an actual trajectory that is different from the 
reference by 106 times, so we didn’t draw it in Fig. 16 as its trajectory is 
too far from the reference and other controllers trajectories, however 
other controllers have the trajectory that is almost similar to reference 
path. Thus they overlapeach other as shown in Fig. 16 (a). The tracking 
errors of the PD controller are in the range of 106 mm which can be 

(a) y track errors 

(b) x track errors  
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Fig. 22. Real-time WMR tracking errors when moving in a circular path.  

Fig. 23. Robot control in indoor path navigation with obstacles: (a) robot at the 
starting position. (b) robot avoiding obstacle (c) robot control path (red line for 
the optimum path, red dotted points for the path planning, and star blue for the 
actual path after applying control system). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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considered as large tracking errors that can’t be compensated by any 
kind of controller as shown in Fig. 16 (b) and (c). However, other con-
trollers have small tracking errors in x and y directions with maximum 
errors of 0.32 mm as shown in Fig. 16 (d), (e) which are quite similar to 
the previous case when no disturbance has been applied. 

There is a sensible difference between the AFC controllers (with LS 
and FL) and PD-AFC controller (with LS and FL) as shown in Fig. 16 (d) 

(a) y track errors 

(b) x track errors 

Fig. 24. Real-time WMR tracking errors when in indoor path control 
with obstacle. 

(a)                                   (b) 

Fig. 25. Unicycle-like robot control in outdoor path navigation with obstacles: 
(a) robot at the starting position. (b) robot control path with obstacle avoidance 
(red dots the path planning and black dash is the path after applying control 
system). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

(a) y  track errors 

(b) x track errors 

Fig. 26. Real-time WMR tracking errors when move-in outdoor path with 
an obstacle. 

Table 8 
Mean tracking error (mm).   

Circular 
Path 

Indoor Path with 
Obstacle 

Outdoor Path with 
Obstacle 

X track error 
(mm) 

0.5 1.5 5 

Y track error 
(mm) 

8 × 10−3 1 1.5  
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and (e) where the tracking errors in PD-AFC are almost zero along with 
the motion. However, AFC has errors in the region of 0.25 mm. PD-AFC- 
FL, PD-AFC-LS and PD-AFC-LS-QC present a good response against the 
applied disturbance with maximum errors of 10−3 mm as shown in 
Fig. 16 (f) and (g). The proposed PD-AFC-LS-QC controller has possessed 
the best performance against the disturbances among all controllers as 
shown in Fig. 16 (h), (i) with a maximum error of 10−6mm. 

Fig. 17 shows actual paths of all the controllers when they are 
tracking the circular path with quite high variable disturbance described 

by the following equation: τd =

⎡

⎣

104cos(t)
104cos(t + π

2)

⎤

⎦. 

Similar to the case mentioned above, the PD controller leads to an 
actual trajectory which causes the actual path to be totally different from 
the reference, thus it is not drawn in Fig. 17 as there is no similarity at all 
between PD’s and the original trajectories; however other controllers 
have the trajectory which is exactly similar to the reference path as 
shown in Fig. 17 (a). The tracking errors of the PD controller are in the 
range of 106 mm which can’t be compensated in any way as shown in 
Fig. 17 (b) and (c). However, the other controllers have small tracking 
errors in x and y directions with a maximum error of 12 × 10−3mm as 
shown in Fig. 17 (d), (e) which are quite similar to the previous case 
when no disturbance has been applied. There is a sensible difference 
between the AFC controllers (with LS and FL) and PD-AFC controller 
(with LS and FL) as shown in Fig. 17 (d) and (fe where the tracking errors 
in PD-AFC are almost zero along with the motion. However, AFC has 
errors in the region of 10−3mm. PD-AFC-FL, PD-AFC-LS and PD-AFC-LS- 
QC have a good response against the disturbance with maximum errors 
of 10−5 mm as shown in Fig. 17 (f) and (g). 

The proposed PD-AFC- LS-QC controller presents the best perfor-
mance against the disturbance among all controllers as shown in Fig. 17 
(h) and (i) with a maximum error of 10−6mm. same analysis goes to the 
zooming areas in Fig. 16 a and 17 a, where there are slight differences 
between the AFC family controllers in the thickness of trajectories’ lines 
which mean there are some controllers that are oscillating along their 
trajectory such as AFC-FL, AFC-LS and PD-AFC-FL, however some others 
are robust enough in their path such PD-AFC-LS and PD-AFC-LS-QC. 

x Track errors for PD-AFC types (g) y track errors for PD-AFC types 
The mean tracking errors for zigzag and circular path without/with 

disturbances are illustrated in Tables 6 and 7 respectively. From these 
tables, we can see that only PD controller is affected when applying 
disturbances, however other controllers are able to robustly eliminate 
the effect of disturbances, especially PD-AFC-LS-QC. 

8. Real-time mobile robot control 

The PD-AFC-LS-QC has been tested in a real-world environment in 
real-time as follows: 

8.1. Experiment setup 

A medium-size wheeled mobile robot (WMR) platform as shown in 
Fig. 18 has been built in the lab to perform the control system in real- 
time. It is equipped with three units to apply the proposed control sys-
tem on the robot, namely, measurement, processing and driving units. 
The measurement unit uses two sensors, namely, encoders and the 
current sensor for measuring the actual acceleration and torque of AFC. 
The processing unit is used to prepare the signal and data in the useful 
form before it is utilized in the AFC calculations. The driving unit acts as 
the controller through PWM signals and motor drivers on the DC motors. 

The proposed PD-AFC-LS-QC controller has been used to track the robot 
in a circular path with a diameter of 1 m. This controller has been selected 
since it presents the best performance in the simulation study among all the 
other controllers. Similar to the simulation study, this controller has three 
loops, namely, external, internal and quick compensation loops. 

In this control system, the current sensors are used to measure the 

applied torque on the motors due to the linear relation between the 
torque and current in brushed DC-motors DKM τ = ktI. Kt is the torque 
constant which can be determined easily in DKM-DC motors from the 
characteristics of torque-current as shown in Fig. 19. 

The rotary encoders have been used to claculate the angular accel-
eration of the wheels. Based on the measurement of the encoder, one can 
calculate the angular position of the wheels, in rpm by Eq. 51 

n =
Pcur

T Prf

(51) 

Pcur is the number of encoder pulses for the whole robot wheel 
movement from the initial to current positions, Prf is the full rotation’s 
pulses number, T is the sampling time of acquiring data. 

The acceleration is then computed by applying a second derivation 
on every two successive measurements of the encoder (Ali and Mailah, 
2019b) as in Eq. 52: 

a =
∂2(x2 − x1)

∂T2
(52) 

In the experimental work, the Laser Simulator Logic has been used 
for estimating the inertia matrix, since it has been proven in simulation 
in Section 7, that Laser Simulator Logic can estimate effectively the 
inertia moment better than fuzzy logic. On the other hand, the distur-
bances are estimated using Eq. 46. 

The WMR sensors measurements and the inertia moment calacula-
tions are used to estimate the actual torque of the motor which is later 
comapred with the applied torque to find the disturbance torque as seen 
in Eq. 40. Similar to the simulation, the Laser Simulator linguistic var-
iables and membership functions, have a highly overlapped condition 
where there are some linguistic variables covering a large range in the 
universe of discourse. However, some others have a small range. The 
input LS set is: φ={Very-low, Low, Medium, High, Very-High} as shown 
in Fig. 20 (a). The output LS sets are: INR-INL={ Very-Small, Small, 
Medium, Large, Very-Large} as shown in Fig. 20 (b). 

WMR Parameters: 
r = 105.4 mm, b = 500 mm, d = 16.5 mm, m = 36 kg, mw = 1.5 kg, I 

= 10.0567 kg.m2 , Iw = 0.0083 kgm2, V = 0.15 m/s. 
Controller Parameters: 
Kpx = 2/s2, Kpy = 2/s2, Kpφ = 2/s, Kdx = 1, Kdy = , Kdφ = 1 , Kn =

0.00108 Nm/rpm 

8.2. Experiments’ results and discussion 

In this work, it has been considered that the slippage of the lab 
ground is the disturbance of the PD-AFC-LS-QC control system. The 
robot has been forced to track a circular path with a diameter of 1 m. 
Fig. 21 shows the capability of the robot to track the circular path. The 
tracking errors in both x and y directions have been shown in Fig. 22. In 
comparison with simulation, the tracking errors become more promi-
nent, but they are still in an acceptable range. PD-AFC-LS-QC has 
tracking errors in the y direction in the region of 10−3 mm, which is 
bigger than the simulation value by around two times with a maximum 
value equal to 9 × 10−3 mm that occurs at the beginning of the move-
ment. On the other hand, the tracking errors in the x direction are bigger 
than tracking errors of y. It is in the region of 10−1 mm, which is 
different compared with the simulation where the errors were in the 
region of 10−5mm. It is noticeable that the errors of x become zero after 
the settling time. However, in y-direction, they fluctuate slightly before 
they become stable and reach zero. In general, the results show that the 
proposed PD-AFC-LS-QC controller is capable of maintaining the robot 
on its path and reject the noises. 

The robot has been tested in the other two environments, namely in-
door (as shown in Fig. 23) and outdoor environments, (as shown in Fig. 25). 
In the indoor experiments, the robot has an obstacle in-front of its path 
which needs to be avoided. This forms a significant disturbance to the 
control system which aims to maintain the robot in the middle path 
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between the curbs, in a long movement. Fig. 23 shows three types of paths:  

- Red continuous line: the optimum path for navigation (without 
errors)  

- Dotted maroon points: path planning of the robot  
- Star blue points: actual path control. 

It can be seen from Fig. 23 that the robot can avoid the obstacle and 
track the path with small errors. It has been noticed that the robot un-
dergoes a jump when detecting the obstacle. This is due to that the algo-
rithm is busy with obstacle detection and doesn’t calculate the path at that 
moment. The path started to be determined after the robot confirms to pass 
the obstacle. 

Fig. 24 shows the tracking errors in both x and y directions for the in-
door application which is at the level of 1.5 mm and 1 mm, respectively. 

In the outdoor experiments, a unicycle-like robot system has an 
obstacle on the right side of its path which requires the robotic system to 
move to the left. Otherwise, it can crash on the side car. The path is then 
created and the control system must be able to avoid the obstacle and 
reject its effect on the path which is to go in the middle of the road. 
Fig. 25 shows a path control in road environment with obstacle avoid-
ance. Two paths are generated, namely the planner path (red dash) and 
control path (black dash) after applying control system. Control path in 
Fig. 25 shows that the robot can track the path with the presence of an 
obstacle to avoid the obstacle with small errors. 

Fig. 26 shows the tracking errors in both × and y for outdoor ap-
plications which are at the level of 5 mm and 1.5 mm, respectively. 

A comparison between the mean tracking errors of the previous three 
experiments is illustrated in Table 8. 

9. Conclusion 

A novel algorithm for estimating the inertia matrix of AFC in a noisy 
environment and highly overlapped linguistic variable has been devel-
oped in this research. This algorithm is capable of accurately estimating 
the inertia matrix even though the linguistic variables are located in 
asymmetric distribution on the universe of discourse. A simulation study 
considers the use of Laser Simulator Logic to estimate the inertia 
moment in many controllers has been performed in Simulink and a 
comparison with fuzzy logic has been made. 

Laser Simulator Logic shows a better performance in comparison 
with fuzzy logic in all the simulation study. A real-time experiment by 
WMR has been conducted to show the evidence of Laser Simulator in the 
real-time, which presents a good estimation of the inertia matrix in the 
presence of disturbances. 

A medium-size wheeled mobile robot (WMR) platform has been built 
in the lab to perform the control system in real-time. It has been tested 
successfully with a circular path that has been developed in the lab to 
check the performance proposed algorithm in real-time. 

A new robust control scheme, called PD-AFC-LS-QC has been pro-
posed and tested in the simulation and experimental works. In contrast 
with the traditional AFC controller that uses just two control loops, this 
controller uses three loops, namely, external, internal and quick 
compensation loops. In the external loop, a PD controller is used to 
control the kinematic parameters of the control system. Whereas, the 
internal loop is used to control the disturbances and dynamics of the 
robot. The quick compensation loop is used to quickly compensate for 
the difference between the actual and reference accelerations. The re-
sults of the simulation show that the proposed algorithm has the best 
performance among all the controllers either in zigzag or circular en-
vironments, mainly when the disturbances are applied. In order to 
confirm the results of the simulation for the proposed algorithm, a real- 
time experiments in three environments, namely the circular, indoor 
and outdoor paths have been conducted to show that the proposed 
controller scheme is robust enough in the real-time control and able to 
track the robot effectively on its reference path. 
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