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Abstract

The evaluation of the correlation between the activations of various organs has great impor-
tance. This work investigated the synchronization of the brain and heart responses to different
auditory stimuli using complexity-based analysis. We selected three pieces of music based on the
difference in the complexity of embedded noise (including white noise, brown noise, and pink
noise) in them. We played these pieces of music for 11 subjects (7 M and 4 F) and computed
the fractal dimension and sample entropy of EEG signals and R-R time series [as heart rate
variability (HRV)]. We found strong correlations (r = 0.9999 in the case of fractal dimension
and r = 0.7862 in the case of sample entropy) among the complexities of EEG signals and HRV.
This finding demonstrates the synchronization of the brain and heart responses and auditory
stimuli from the complexity perspective.

Keywords: Heart; Heart Rate Variability (HRV); Brain; EEG Signals; Complexity; Fractal

Dimension; Sample Entropy; Music.

1. INTRODUCTION

Physiological systems are very complex under neu-
ral regulatory mechanisms™? Although the nature
of the underlying control mechanisms is not fully
understood, however, it is very important to quan-
tify the coupling between the changes in different
organs versus the alterations in brain activity. Since
the chemical and structural entities in the brain
which control the heart rate are known, it is of
interest whether this relationship can also be seen
in the synchronization of the brain and heart activ-
ity. Some researchers evaluated the coupling among
the alterations of heart rate variability (HRV) and
EEG signals employing the same method (e.g. Fast
Fourier Transform? multiscale entropy? informa-
tion theory?). On the other hand, some researchers
investigated the alterations of EEG signals and
HRV using different techniques™® Besides, some
studies examined the variations in heart activity
versus brain activity recorded using other methods
such as fMRI® However, there has not been any
work that analyzed the synchronization of HRV,
EEG signals, and stimuli employing the same tech-
nique. EEG signals and R-R time series (HRV) have

complex structures™M On the other hand, sounds
(as auditory stimuli) also have complex structures.
Therefore, the fractal theory can investigate the
coupling of EEG and ECG signals versus the alter-
ations of the sound (as auditory stimuli).

In general, fractals have repeating patterns that
are distributed on various scales inside them.
The fractal dimension quantifies the complexity
of fractals™ Many works applied fractal theory
to quantify the complexity of various biomedical
and bio-signals (e.g. EMG signals ¥ GSR signals¥
random genome walks T8 speech signaléﬁl) and
images (e.g. X-ray images18).

Specifically, some researchers investigated the
complex structure of EEG signals using fractal the-
ory. The works that quantified the alterations in
EEG signals’ complexity in external stimulation, 12
walking 29 aging 2! and brain diseases?? are worthy
of being mentioned. We can also call some studies
that applied fractal theory to investigate the varia-
tions of the complex structure of HRV. The studies
that evaluated the changes in HRV in normal sub-
jects of different ages/2 for the prediction of cardiac
death 22 to investigate the effect of pharmacological
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adrenergic and vagal modulation2® during non-
REM sleep/28 in patients with the peripheral arte-
rial disease/2T diabetes?® and Chronic Obstructive
Pulmonary Disease (COPD)Y? can be mentioned.

Similarly, other nonlinear analysis methods can
be utilized to study the complexity of EEG signals,
HRV, and sound. In this research, we chose sample
entropy for our analysis. The reason for choosing
sample entropy is because it is independent of the
length of data and works well in the case of data
with short lengths% Since the extracted R-R time
series for different subjects were short and had dif-
ferent lengths, calculating the sample entropy helps
us verify the fractal analysis results. Sample entropy
has been applied widely for the analysis of various
biomedical and biological time series (e.g. EMG sig-
nals 30 speech signals®2 random genome walks /33
PCG signals?®). We can also call several studies
that employed sample entropy to evaluate EEG sig-
nalg?® 87 and HRV BEH0

Since no study has investigated the correlation
among the complexity of HRV, EEG signals, and
external stimuli, we apply fractal theory and sample
entropy to investigate this synchronization from the
complexity point of view.

In the following section, we explain our method of
analysis based on fractal theory and sample entropy.
Then, we present the data collection and analysis
steps. After that, we will bring the results which
will be followed by the conclusion and discussion.

2. METHOD

In this study, we want to evaluate the synchro-
nization of heart and brain activities. To examine
this correlation in different conditions, we stimu-
late subjects using various music as auditory stim-
uli. We benefit from the complexity concept as
our method of analysis to investigate the correla-
tion between the variations of heart rate and brain
signals and also the complexity of auditory stim-
uli. Since R-R time series, EEG signals, and audio
signals have complex structures, we utilize fractal
theory to investigate how their complexities are
related. We calculate the fractal dimension of EEG
signals and HRV, and in this way, we relate their
complexities. It is known that bigger values of frac-
tal exponent indicate greater complexities !
There have been similar developed techniques for
the calculation of the fractal dimension®2 In this
research, we employ the box-counting method for
our analysis. In this technique, an object is covered

with boxes in different steps, where all boxes have
the same size (¢) in each step®¥ The calculation
algorithm counts the number of used boxes (V) for
coverage of the object in each step, and in the last
step, it calculates the fractal dimension using the

following equation™:

log N
FD = lim 28 V(E). (1)
e—0 logl/e
The general form of fractal dimension of order ¢ is
formulated as follows:

1 log Zjvzl T

FD. = lim
log e

e—=0c—1

(2)
where r; indicates the probability of occurrence:
t .
rj = lim -, (3)

where t; and T', respectively, indicate the time in
the jth bin and whole signals.

In this research, we also employ sample entropy
to verify the fractal analysis results. Sample entropy
can be used to quantify the complexity of sig-
nals. Its main characteristic is its independence
from the data length®¥ Since the recorded ECG
signals from different subjects lead to R-R time
series with different lengths, sample entropy can
overcome this bias (which can affect the calcu-
lation). For a signal, {y(1),y(2),y(3),...,y(n)},
a template vector of length z can be defined
as YZ(Z) = {y,yi+1,yi+2,...,yH,Z,l}. The sample
entropy (SamEn) is formulated as follows:

B
SamEn = —log rolk (4)

Considering the distance function, d[Y; (i), Y. (j)]

(1 # j) as Chebyshev distance and ¢ as the tolerance

(0.2 x standard deviation of data), B and C' indicate

the number of template vector pairs with conditions
in (@) and (@), respectively.

d[Yz+1(1), Ya+1(5)] <&, (5)

AV (D), Vo)) <. ©)

As previously mentioned, we also would like to
bring the complexity of music (as auditory stimuli)
to our analysis. Therefore, we chose three pieces of
music with different complexities. These music files
were obtained from Ref. 46, Hunt et ol embed-
ded different noises with different levels of complex-
ity to the Fur Elise song to change its complexity
and create three new pieces of music with various
complexities. The noises include white noise, pink
noise, and brown noise with the fractal exponent
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Table 1 Fractal Dimension and Sample Entropy

of Noises/4€

Noise Fractal Exponent Sample Entropy
White noise 1.5 2.2

Pink noise 1 1.75

Brown noise 0.5 0.25

and sample entropy listed in Table [Il As this table
shows, the fractal dimension and sample entropy of
noises decrease from white to brown noise, which
indicates the reduction in their complexities. For
further information about the generation of noises
and taken procedures for embedding the noises to
the base music, refer Ref.

We play the music files for subjects and then
investigate the correlation of the complexities of
HRV and EEG signals.

3. DATA COLLECTION AND
ANALYSIS

Monash University’s ethics committee approved the
experiment (No. 17454). Eleven students (7 M and
4F, 1822 years old) have attended the experi-
ment. They did not drink alcohol/caffeine before
the experiment. Subjects signed the informed con-
sent form and agreed to participate. The experiment
has been done in an isolated room from external dis-
turbances.

After obtaining the consent form, we initiated the
data collection while participants sat comfortably
on a chair. We collected EEG and ECG signals using
Muse EEG and Shimmer ECG devices at 256 and
128 Hz. The EEG electrodes placement (based on
the 10-20 system) is shown in Fig. [[l Besides, one
reference (V) and four recording (LA, RA, LL, RL)
electrodes of the ECG device were connected to the
subject’s chest under his/her shirt. Figure [ shows
the placement of ECG electrodes.

Initially, we recorded the signals during rest for
3min. Then, we played the first, second, and third
music. Each music was played for 3 min with consid-
ering 1-min rest among different music. We re-ran
the data collection in another session.

Out of 88 sets of recorded data from 11 sub-
jects in four conditions (rest and different stimuli),
some recorded data have been removed from pro-
cessing due to disconnection (or low connection)
of recording devices in some periods. First, our

developed code in MATLAB (MathWorks, USA)

RO®OF
CCH

INION

Fig. 1 The placement of EEG electrodes.

Fig. 2 The placement of ECG electrodes.

selected R peaks of ECG signals. Then, it gener-
ated the R—R interval time series from extracted
R peaks. We checked the extracted R peaks visu-
ally for better accuracy. A sample raw ECG signal
with extracted R peaks and its R—R time series are
shown in Figs. Bh and Bb, respectively.

Since auditory stimuli play a major role in chang-
ing the brain’s activity, in this research, we only
analyzed the brain’s reaction to these stimuli by
analysis of the recorded EEG signals from TP9 and
TP10 electrodes. This selection is due to the posi-
tions of these electrodes that are closest to the audi-
tory cortex.

After removing the DC offset, we filtered the
recorded EEG signals employing a fourth-order
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(b) Sample generated R—R time series from the ECG signal (a).

Fig. 3 Sample raw ECG signal (a) and R-R time series (b).

Butterworth band-pass filter (1-40Hz). A sample
filtered EEG signal (1 min) and its frequency infor-
mation [using a periodogram power spectral density
(PSD) estimate] during rest is shown in Fig. [

We computed the fractal dimension and sam-
ple entropy of EEG signals and R-R time series.
The box-counting algorithm was ran using box sizes
1/2,1/4,1/8,1/16,.... All the analyses were con-
ducted in MATLAB.

We checked the normality of the fractal dimen-
sion and sample entropy of the R-R time series
and filtered EEG signals by running the Anderson—
Darling test in MATLAB. In the case of different
groups of data, the test’s result indicates a failure
to reject the null hypothesis. In other words, the
data had normal distributions.

We checked the significance of variations of the
complexity of signals by running the ANOVA test

(a = 0.05). We also conducted pairwise compar-
isons by running the post-hoc Tukey test and effect
size analysis (o = 0.05). We should note that we
computed Cohen’s d as the effect size. We quanti-
fied the correlation between the variations of com-
plexities of EEG signals, HRV, and music using the
Pearson correlation coefficient.

4. RESULT

Figure [ shows the mean fractal dimension of EEG
signals (a) and added noises to the music files (b).

As shown in Fig. Bh, EEG signals obtained the
smallest fractal dimension while subjects rest. The
EEG signals’ fractal dimension increases in response
to the first music, which is because of the sudden
reaction of the resting brain to the music. How-
ever, it decreases by playing the second and third
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Fig. 4 The filtered EMG signal (1min) (a) and its peri-
odogram PSD estimate (b) for a subject during rest.

music. In other words, the complexity of EEG sig-
nals increases and then decreases in response to the
music. Comparing Fig. Bh with Fig. Bb indicates
similar trends of variations for the fractal dimen-
sion of EEG signals and music. Based on these
figures, playing a music file with lower complexity
caused a lower complexity in EEG signals. The cor-
relation coefficient (r = 0.9925) among the vari-
ations of complexities of EEG signals and music
demonstrates a strong positive correlation among
them.

p = 0.0382 and F'(3,79) = 2.9399 demonstrate
that the variations of the EEG signals’ complexity
were significant. Furthermore, the values of Cohen’s
d and p-values from the post-hoc test in Table

Fractal dimension of EEG signal

Rest First music Second music Third music
(2)
1.6

1.4
1.2

0.8
0.6
0.4
0.2

Fractal dimension of noise

Second music Third music

(b)

Fig. 5 The fractal exponent of EEG signals (a) and added
noises to the music (b) Error bars indicate standard devia-
tion.

First music

Table 2 Comparisons of EEG Signal’s Fractal
Dimension.

Comparison p (Post-Hoc Cohen’s
Test) d
Rest condition versus 1st music 0.0403 —0.8586
Rest condition versus 2nd music 0.2306 —0.5581
Rest condition versus 3rd music 0.8989 —0.1617
1st music versus 2nd music 0.8642 0.5197
1st music versus 3rd music 0.1961 0.6915
2nd music versus 3rd music 0.6197 0.3814

demonstrate that a more significant variation of the
music’s complexity causes a more significant varia-
tion in the EEG signals’ complexity.

Figure [@ illustrates the R-R time series’ fractal
dimension during rest and auditory stimulation.

As shown, the HRV has the biggest fractal dimen-
sion during rest. The fractal exponent of the HRV
decreases in response to the first music. Playing the
second and third music led to reducing the frac-
tal dimension of HRV. Therefore, the complexity of
HRYV decreases in response to the first to the third
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Fig. 6 R-R time series’ fractal dimension. Error bars indi-
cate standard deviation.

music. Since the heart has less reaction to the music
compared to the brain, therefore, we cannot see any
increment in the complexity of HRV after playing
the first music for subjects. Comparing Fig. [6] with
Fig. Bb indicates similar trends of variations for the
fractal dimension of HRV and the fractal dimen-
sion of noises in the music. Based on these figures,
playing a music file with lower complexity caused
a lower complexity in HRV. The correlation coeffi-
cient (r = 0.9951) between the changes of the com-
plexity for HRV and music demonstrates a strong
correlation among them.

Furthermore, comparing the complexities of HRV
(Fig. @) and EEG signals (Fig. Bh) demonstrates
similar trends in the case of stimulations. In other
words, the changes in brain and heart responses
to music are correlated; playing music with higher
complexity causes higher complexity in EEG sig-
nals and HRV. In addition, the correlation coeffi-
cient (r = 0.9999) states a strong correlation among
the complexities of EEG signals and R-R time
series. This finding demonstrates the synchroniza-
tion among heart and brain responses.

p = 0.4597 and F'(3,79) = 0.8712 indicate that
the alterations in the complexity of HRV were
insignificant. This result was expected since, in gen-
eral, the heart has less reaction to the music com-
pared to the brain, which is the main processing
unit of the body (and showed a significant response
to the music). The effect sizes in Table [ state
that a more significant change in the music’s com-
plexity causes a more significant alteration in the
HRV’s complexity. Furthermore, the post-hoc test
findings in this table demonstrate no significant dif-
ference in the complexity of the R—R time series
between different conditions. As can be seen, mak-
ing a larger alteration in music’s complexity causes

Table 3 Comparisons of R—R Time Series’ Fractal
Dimension.

Comparison p (Post-Hoc Cohen’s
Test) d
Rest condition versus 1st music 0.8276 0.2698
Rest condition versus 2nd music 0.6678 0.3251
Rest condition versus 3rd music 0.4102 0.4907
1st music versus 2nd music 0.9927 0.0842
1st music versus 3rd music 0.9072 0.2299
2nd music versus 3rd music 0.9791 0.1204

a more significant alteration in R-R time series’
complexity. In this research, we look for the cou-
pling among the changes in the complexity of EEG
signals and HRV, not the significance of variations
in response to different music. The difference in
the complexity of HRV between different groups
could become significant if we change the tempo
and specifically the volume of different music. How-
ever, to make the experiment pleasant for the par-
ticipants, we kept the volume low.

As was mentioned previously, since the HRV of
subjects had various lengths, to verify the frac-
tal analysis results, we also computed the sample
entropy of EEG signals and R-R time series in var-
ious conditions. Figure [0 illustrates the EEG sig-
nals’ sample entropy (a) and the sample entropy of
added noises to music files (b).

As can be seen in Fig. [fh, during rest, EEG sig-
nals had the smallest sample entropy. By playing
the first music, the EEG signals’ entropy increases.
By playing second and third music for participants,
the EEG signals’ entropy decreases. Therefore, EEG
signals’ complexity increases in response to the first
music. As was indicated, this result is due to the
sudden reaction of the resting brain to the music.
After that, by playing other music files to sub-
jects, the complexity of their EEG signals decreases.
Comparing Fig. [Th with Fig. [lb indicates simi-
lar trends of variations. The correlation coefficient
(r = 0.9968) indicates a strong correlation between
the complexities of EEG signals and music. There-
fore, like the fractal analysis results, the alterations
in the complexities of EEG signals and music are
synchronized.

p = 0.0143 and F(3,79) = 3.7434 state the sig-
nificant variations in the EEG signals’ entropy. The
effect sizes and p-values from the post-hoc test in
Table [ demonstrate that a more significant varia-
tion in the music’s complexity causes a more signif-
icant change in the EEG signals’ complexity.
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0.5
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Fig. 7 The sample entropy of EEG signals (a) and added
noises to the music (b) Error bars indicate standard devia-
tion.

First music

Table 4 Comparisons of the EEG Signals’ Sample
Entropy.

Comparison p (Post-Hoc Cohen’s
Test) d
Rest condition versus 1st music 0.0347 —0.8006
Rest condition versus 2nd music 0.0812 —0.6830
Rest condition versus 3rd music 0.9523 —0.1201
1st music versus 2nd music 0.9866 0.2879
1st music versus 3rd music 0.1261 0.8145
2nd music versus 3rd music 0.2447 0.6626

Figure [ illustrates the sample entropy of
the R-R time series during rest and auditory
stimulation.

According to the result, the R—R time series had
the biggest sample entropy during the rest. As can
be seen, the entropy of HRV decreased in response
to the first music. Similarly, the sample entropy of
HRV decreased when we played second and third
music for subjects, which means reductions in the
complexity of HRV. As was stated previously, since
the heart has less reaction to the music compared to

22

1.8

1.6

14

1.2

Sample entropy of R-R time series

Rest First music Second music Third music
Fig. 8 The sample entropy of the R—R time series. Error

bars indicate standard deviation.

Table 5 Comparisons of the Sample Entropy of
R—-R Time Series.

Comparison p (Post-Hoc Cohen’s
Test) d
Rest condition versus 1st music 0.9958 0.0665
Rest condition versus 2nd music 0.9636 0.1586
Rest condition versus 3rd music 0.9414 0.1788
1st music versus 2nd music 0.9947 0.0752
1st music versus 3rd music 0.9875 0.0966
2nd music versus 3rd music 0.9991 0.0267

the brain, therefore, we cannot see any increment in
the complexity of HRV after playing the first music
for subjects. Comparing Fig. Bl with Figs. [fh and [@b
in the case of stimulations indicates similar trends
of variations for the entropy (complexity) of HRV,
EEG signals, and the music. The correlation coef-
ficient (r = 0.8324) indicates a strong correlation
among the complexities of HRV and music. Further-
more, the correlation coefficient (r = 0.7862) indi-
cates a strong synchronization between the sample
entropies of EEG signals and HRV.

p = 0.9410 and F'(3,79) = 0.1317 indicate that
the changes of the complexity of HRV were insignif-
icant. The effect sizes in Table [ state that a
more significant alteration in the music’s complex-
ity causes a more significant alteration in the com-
plexity of the R—R time series. Furthermore, the
p-values in this table indicate no significant differ-
ence in the complexity of the HRV among various
conditions. As can be seen, making a larger alter-
ation in the music’s complexity causes a more signif-
icant alteration in the R-R time series’ complexity.
As previously mentioned, we look for the coupling
among the changes in the complexity of EEG signals
and HRV, not the significance of their variations in
response to different music.
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Therefore, the results of the sample entropy of
EEG signals and HRV verified the results of the
fractal analysis. Overall, our findings show that the
heart and brain responses to auditory stimuli are
synchronized.

5. DISCUSSION

We evaluated the coupling among brain and heart
activities by assessing the complexity of their phys-
iological signals. For this purpose, three pieces of
music with different levels of complexity were played
for the participants. We quantified the complexity
of EEG signals and R-R time series using fractal
theory. Besides, we analyzed the sample entropy of
these signals to verify the fractal analysis results.

According to the findings, when we stimulate
subjects, EEG signals’ complexity increased. This
increase is related to the sudden reaction of the
brain to music 7 Besides, making a bigger decrease
in the music’s complexity caused a bigger decrease
in the EEG signals’ complexity. Analysis of the
complexity of the R—R time series showed that it
decreased in response to the music. This result is
potentially due to the lower reaction of the heart
than the brain to external stimuli®® Applying a
bigger decrease in the music’s complexity caused
a bigger decrease in the complexity of HRV. Sta-
tistical analyses also supported these results. Fur-
thermore, a strong positive correlation was obtained
among the changes of the EEG signals and HRV in
response to stimulations.

In this study, we observed that the complexity of
EEG signals increased due to listening to the first
music, whereas the complexity of HRV decreased.
We mentioned that this behavior is potentially due
to the reaction of the resting brain to a stimulus
that causes a bigger change in the complexity of
EEG signals. On the other hand, since the heart has
less reaction to the music compared to the brain,
therefore, we cannot see any increment in the com-
plexity of HRV after playing the first music for sub-
jects. In fact, the increment in the EEG signals’
complexity or decrement in the complexity of HRV
due to the first music is dependent on the tempo,
type, and volume of the music. We can find stud-
ies that found increases in the EEG signals’ com-
plexity in response to music (auditory stimuli). In
contrast, some works stated that the EEG signals’
complexity decreases in response to the auditory
stimulation using music®? It should be noted that

this behavior is not limited to EEG signals. We can
find some works that investigated the fractal dimen-
sion of HRV in response to auditory stimuli. For
instance, the reported results on decrement®™ and
increment® of the fractal dimension of HRV sig-
nals in response to auditory stimulation compared
to the rest condition are worthy of being mentioned.
Therefore, this behavior of variations of complexity
compared to the rest does not indicate the weak-
ness of the fractal dimension and sample entropy in
quantifying the complexity of signals.

Besides, the changes in the complexity of EEG
signals can be verified by comparing them to other
studies. As an example, in Ref.[53], it was shown that
presenting a visual stimulus increases the complex-
ity of EEG signals, and by increasing the complex-
ity of visual stimuli, the complexity of EEG signals
increases. A similar trend was observed in another
research™ for the application of olfactory stimuli
with increasing complexities.

Therefore, the alterations in the responses of the
heart and brain and applied auditory stimuli are
correlated. Our methodology (simultaneous appli-
cation of fractal theory and sample entropy) is one
step forward compared to the works®» 57 that only
focused on employing techniques that are depen-
dent on the length of data, without considering that
the HRVs of subjects may have different lengths
even for the same duration of data recording, and
it can affect the results.

When we listen to a piece of music, ERPs cap-
ture electrical responses in the cortex due to the
stimulus. Then, ANS will communicate with the
cardiac system. When the heart’s intrinsic nervous
system processed the information, signals are trans-
ferred to the heart’s sinoatrial node and other tis-
sues in the heart. Although the exact descending
pathway responsible for the autonomic and cardio-
vascular effects of auditory stimulation with musical
auditory stimulation remain to be determined, how-
ever, the neural connection between the hypotha-
lamic tuberomammillary nucleus (TMN) and the
suprachiasmatic nucleus (SCN) could be a part
of the neural pathway. The details of the mech-
anism are not certain, and further study will be
needed.

In Ref. 58, we have shown that the Hurst expo-
nents of EEG signals and auditory stimuli vary
together. Due to the direct relationship®® between
the Hurst exponent (H) and fractal dimension of
time series, F' = 2— H, the fractal dimension of EEG

2150238-9
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signals and auditory stimuli vary together. Since the
heart activity is controlled by the brain, the trend
of the changes of the complexities of EEG signals
and auditory stimuli is reflected in the variations of
the complexity of HRV and auditory stimuli.

In this study, we considered three music with
the same base. However, in further studies, we can
investigate the coupling between heart and brain
activities in the case of other types of music without
a similar base. We can further evaluate this coupling
in the case of other stimuli. As an example, we can
present different olfactory stimuli with various com-
plexities to subjects and then investigate how the
complexities of EEG signals, R-R time series, and
stimuli are correlated. We can also evaluate the cou-
pling among other organs (e.g. skin) and the brain
due to stimulation. Since the human body is con-
trolled by the brain, we expect to see similar syn-
chronizations.

We can conduct similar investigations on patients
with heart [e.g. coronary artery disease (CAD)S0]
and brain (e.g. Epilepsy®l) disorders. Therefore,
we can discover the heart—brain synchronization
when these organs have disorders that affected their
activities. Modeling the relationship between HRV
and EEG signals versus stimuli is another potential
future work that can help for the prediction of HRV
based on the influence of stimuli on brain activity.
To do this, we can potentially benefit from math-
ematical modeling (e.g. fractional diffusion equa-
tions266) and computational analysis/6762

This study analyzed the interaction between the
brain and heart. Besides correlation with the brain,
different organs also interact ™ Therefore, we can
potentially extend our investigation and analyze
the complex structures of different biosignals (e.g.
EMG, ECG signals). Overall, all these studies can
help researchers decode the relationship among
different organs’ activities versus brain activities,
which significantly impact health sciences.
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