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ABSTRACT

This study investigates the use discriminative training methods of minimum 

classification error (MCE) to estimate the parameter of hidden Markov model 

(HMM). The conventional training of HMM is based on the maximum likelihood 

estimation (MLE) which aims to model the true probabilistic distribution of the data 

in term of maximizing the likelihood. This requires sufficient training data and 

correct choice of probabilistic models, which in reality hardly achievable. The 

insufficient training data and incorrect modeling assumption of HMM often yield an 

incorrect and unreliable model. Instead of learning the true distribution, the MCE 

based training targeted to minimizing the probability of error is used to obtain 

optimal Bayes classification. The central idea of MCE based training is to define a 

continuous, differentiable loss function to approximate the actual performance error 

rate. Gradient based optimization methods can be used to minimize this loss. In this 

study the first order online generalized probabilistic descent is used as optimization 

methods. The continuous density HMM is used as the classifier structure in the MCE 

framework. The MCE based training is evaluated on speaker-independent Malay 

isolated digit recognition. The MCE training achieves the classification accuracy of 

96.4% compared to 96.1% of using MLE with small improvement rate of 0.31%. The 

small vocabulary is unable to reflect the performance comparison of the two methods, 

the MLE training given sufficient training data is sufficient to provide optimal 

classification accuracy. Future work will extend the evaluation on difficult 

classification task such as phoneme classification, to better access the discriminative 

ability of the both methods.
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ABSTRAK

Kajian ini mengaji penggunaan cara perlatihan kesilapan klasifikasi minimal 

(minimum classification error (MCE)) dalam penganggaran parameter model Makov 

tersembunyi (hidden Markov model (HMM)). Cara konvensional dalam perlatihan 

HMM adalah berdasarkan pengganggaran kebarangkalian maximum yang bertujuan 

memodelkan taburan kebarangkalian yang tepat dalam memaximakan 

kebarangkalian. Ini memerlukan data latihan yang mencukupi dan pilihan model 

kebarangkalian yang betul, dimana susah dicapai. Data latihan yang tidak mencukupi 

dan model yang tidak tepat selalu menhasilkan model yang tidak tepat. Berbeza 

daripada membelajar taburan yang benar, latihan MCE bertujuan meminimumkan 

kesilapan kebarangkalian untuk mencapai klasifikasi Bayes yang optima. Idea di 

bawah latihan MCE adalah untuk mendefinisikan satu fungsi loss yang berterusan 

dan boleh dibezakan untuk menganggarkan kadar kesilapan yang benar. Teknik 

optimasi gradient boleh digunakan untuk meminimumkan fungsi ini. Online 

generalized probabilistic descent digunakan sebagai teknik optimasi. Model density 

berterusan (continuous density HMM) digunakan sebagai struktur klasifikasi dalam 

rangka MCE. MCE diuji dengan penutur-bebas pegecaman digit Melayu berasingan. 

MCE mencapai ketepatan klasifikasi 96.4% berbanding dengan 96.1% dengan 

mengunakan MLE, dengan peningkatan yang kecil 0.31%. Vokabolari yang kecil 

tidak berupaya memaparkan perbandingan antara dua teknik. Latihan MLE jika 

diberi data latihan yang mencukupi akan memberikn ketrpatan klasifikasi yang 

optima. Kerja masa depan akan menggunakan penilaian dengan mengunakan 

klasifikasi phoneme yang lebih mencabar untuk mendapatkan keupayaan 

diskriminasi antara dua teknik.



iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE i

ABSTRACT ii

ABSTRAK iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF SYMBOLS vii

1 INTRODUCTION 1

1.1 Introduction and Motivation 1

1.3 Objectives of the Research 2

1.4 Scope of Research 3

2 MINIMUM CLASSIFICATION ERROR 

BASED TRAINING OF HIDDEN MARKOV 

MODELS 4

2.1 Introduction 4

2.2 Bayes Decision Theory & MCE/GPD 5

2.3 MCE based Optimization 6

2.3.1 Formulation of MCE Loss Function 6

2.3.1.1 Discriminant Function 7

2.3.1.2 Misclassification Measure 7

2.3.1.3 MCE Loss 8



v

2.3.2 Optimization Methods 8

2.4 MCE Training of HMMs 9

2.4.1 HMM as Discriminant Function 10

2.4.2 MCE Loss & Optimization 11

2.4.3 Derivation of MCE Gradients 11

3 EXPERIMENTAL EVALUATION 15

3.1 Task and Database 15

3.2 Experimental Setup 15

3.3 Experimental Results 16

4 CONCLUSIONS & FUTURE WORKS 17



vi

LIST OF TABLES

TABLES NO. TITLE PAGE

3.1 Number of misclassified tokens of each digit for 

MLE and MCE training on test set evaluation. 16



vii

LIST OF SYMBOLS

HMM - Hidden Markov Model

MCE - Minimum classification error

MFCC - Mel-Frequency Cepstral Coefficients

MLE - Maximum Likelihood Estimation

MMI - Maximum mutual information

CDHMM - Continuous Density Hidden Markov Model

 - HMM Model

Tx1 - Sequence of acoustic feature vectors.



 1

CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Hidden Markov models (HMMs) have been widely studied as statistical pattern 

classification since decades. HMM has been widely used in various applications such as 

speech recognition, image recognition, bioinformatics, and others. HMM is a doubly 

stochastic process which models the temporal structure of sequential pattern through its 

Markov chain, and models the probabilistic nature of the observation via its probability 

density function assigned with each state. The advantages of HMM lie on its established 

statistical framework and working well practically. The conventional parameter 

estimation of HMM are based on maximum likelihood estimation (MLE) which aims at 

optimal statistical distribution fitting in term of increasing the HMM likelihood. The 

optimality of this training criterion assumes sufficient training data and correct choice of 

distribution with enough parameters [Chao et al 1992], which will yield a classifier close 

to the optimal Bayes classifier. However, in reality, the training data is limited to 

reliably train model with many parameters. Furthermore, the underlying assumptions of 

HMM often incorrectly model the real probabilistic nature of sequential data [McDermott 

1997]. 

This deficiency in the conventional training methods motivates the use of 

discriminative training which aims to minimizing the probability of classification error 
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instead of estimating the true probability distribution. Discriminative training methods 

such as maximum mutual information (MMI) [Bahl et al 1986] and minimum 

classification error (MCE) [Juang et al 1997; McDermott 1997] have been proposed. 

MCE is more directly aims to minimizing the recognition error, compared to MMI 

which targeted at optimizing the mutual information [McDermott 1997]. Use of MCE in 

HMM training is the main focus in this research. 

The MCE criterion is more directly aimed at attaining the optimal Bayes 

classification. The central idea of MCE based training is to define a continuous, 

differentiable loss function to approximate the actual performance error rate. Gradient 

based optimization methods can be used to minimize this loss. This approach allows but 

does not require the use of explicit probabilistic models. Furthermore, MCE training 

does not involve the estimation of probability distributions, which is difficult to perform 

reliably. The MCE overcome the problem of using incorrect probabilistic model, since 

the MCE aims at reducing the classification error, and not in learning the true 

probabilistic distribution of the data. In contrast, the MLE will usually fail to yield a 

minimum risk classifier despite sufficient training data is available. Learning to separate 

pattern classes optimally is not necessarily the same problem as learning to model the 

true probability distribution for each class [McDermott 1997]. 

1.2 Objectives of the Research 

The main objective of this study is to investigate MCE based optimization 

methods for parameter estimation of HMM. To achieve the main objective, several sub-

objectives are addressed in this thesis as following: 

(1) To investigate the principle and framework of MCE based optimization. 

(2) To investigate the use of the MCE framework in the training of HMM. 
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1.3 Scope of Research 

The scope of task and the scope of approaches used in this thesis are defined as 

follows: 

(1) The MCE training of HMM is evaluated on isolated Malay digit  

  recognition. 

(2) The techniques and approaches used in solving the tasks are as follow: 

(a) Left-to-right continuous density hidden Markov model (CDHMM) 

with Gaussian mixture densities (Rabiner 1989)is used as 

classifier models and the likelihood of the optimal path serves as 

the discriminant function in the MCE framework. 

(b) Online Probabilistic descent (GPD) is used the gradient based 

 optimization to minimizing the MCE loss. 

(c) Mel-frequency cepstral coefficient (MFCC) are used for feature 

 extraction. 
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CHAPTER 2 

MINIMUM CLASSIFICATION ERROR BASED TRAINING OF HIDDEN 
MARKOV MODELS 

2.1 Introduction 

The minimum classification error (MCE) framework has been proposed for 

discriminative training, which directly minimize the recognition error rate. This chapter 

discusses the theoretical foundation and formulation of the MCE based optimization. In 

this report, hidden Markov models are estimated using MCE based training.[Chao et al 

1992; Juang et al 1997] The chapter firstly discusses the Bayes decision theory as a 

motivation of formulating MCE method. Next the loss function of MCE is formulated 

and optimized using Generalized Probabilistic Descent (GPD) [Katagiri et al. 1990; 

Juang & Katagiri 1992]. The final section describes the application of MCE in training 

continuous density hidden Markov models (CDHMM). The description in this chapter is 

mainly based on [McDermott 1997; Juang et al 1997; Chao et al 1992; McDermott et al 

2007]. 
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2.2 Bayes Decision Theory & MCE/GPD 

 The description in this section is adapted from [McDermott 1997]. The Bayes 

decision rule minimizes the overall probability of classification error given. 

dxxCPxCPCxCxPerrorP i
i

kk

M

k
k ))(max)((1)(1),()(

1

≠∈=∑∫
= χ

  (1) 

,where the indicator function ))(max)((1 xCPxCP i
i

k ≠ has the effect of integrating only 

over part of observation space that was misclassified by the Bayes decision rule. The 

probability of error conditioned on a discriminant function ),( Λxg k : 

 

dxxgxgCxCxPerrorP i
i

kk

M

k
k )),(max),((1)(1),()(

1
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=

Λ

χ
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)(errorPΛ is defined over regions of the observation space that are determined by the 

choice of classifier and classifier parameter Λ .This is different from the )(errorP which 

is defined over region determined by Bayes’ rule, with knowledge of the true category 

probabilities. The purpose of classifier design is to achieve the minimum error 

probability.  

 )(errorPΛ can be minimized using Generalized Probabilistic Descent (GPD) 

[Katagiri et al. 1990; Katagiri et al. 1991; Juang & Katagiri 1992]. The GPD approach 

improves upon a much earlier approach [Amari 1967] to model expected loss as a 

smooth and easily optimizable function. GPD is optimization framework which locally 

minimizes the overall expectation of loss )(ΛL using gradient search. The expected 

loss )(ΛL is given as: 
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 dxCxpxCPxEL kk

M

k
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,where ),( Λxl is loss function, x is token belonging to class kC and  Λ represents the 

system parameters. )( kCP and )( kCxP are the class a priori and conditional probability 

respectively. The loss function is continuous, first order differentiable, and maps the 

input token x and the classifier parameters Λ to a near-binary number reflecting the 

classification performance – close to 0 for correct classification and close to 1 for 

misclassification. The use of smoothed zero-one classification loss function in GPD 

enables the use of simple gradient-based optimization method which requires objective 

function to be at least first order differentiable. The use of this loss function is referred 

as minimum classification error (MCE). )(errorPΛ is directly related to expected loss of 

(3) where the discontinuous )),(max),((1 Λ≠Λ xgxg i
i

k  can be approximated by 

continuous MCE loss function ),( Λxkl . The overall expected loss is never directly 

calculated, it can be minimized by using the gradient of the local loss ),( Λxkl . 

Minimizing the MCE criterion using GPD is a direct way of minimizing the actual 

number of misclassification. The guiding principle of MCE-based training is that 

minimizing an overall loss defined in terms of a smooth zero-one classification loss 

function will yield a classifier that closely obeys the Bayes decision rule in its 

classification, and thus, minimizes the expected classification error rate [McDermott 

1997]. The following section describe the MCE/GPD framework is described in details. 

2.3 MCE based Optimization 

2.3.1 Formulation of MCE Loss Function 

This section discusses the formulation of continuous zero-one local loss function 

),( Λxkl in details. The discussion is adapted from [McDermott 1997]. 
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2.3.1.1 Discriminant Function 

The discriminant function ),( Λxg k is defined to reflect the extent to which the 

token x belongs to the class kC . The discriminant function depends on the choice of 

classifier structure. For feed-forward MLP, the discriminant function will be output 

value of the MLP given the input. For hidden Markov model, the discriminant function 

will be the probability of generating the pattern of observation sequence given the model. 

Assuming the greater discriminant function value indicate a better match, the decision 

rule is given as: 

.),(),( jkallforxgxgCDecide kjj ≠Λ>Λ     (4) 

2.3.1.2 Misclassification Measure 

The MCE misclassification measure compares the discriminant function value 

for the correct class and incorrect class. One way to formulate the misclassification 

measure ),( Λxd k for token x of class kC is given as [McDermott 1997] 

ψ
ψ

1

),(
1

1
),(),(












Λ

−
+Λ−=Λ ∑

≠kj
jkk xg

M
xgxd .    (5) 

,where M is the number of classes. This misclassification measure is a continuous 

function of the classifier parameters and attempts to emulate the decision rule. 

0),( >Λxd k implies misclassification and 0),( ≤Λxd k  means correct decision [Juang 

et al 1997]. When ψ approach∞ , the term in the bracket is approximately the value of 

the discriminant function of the best incorrect class ),(max Λ≠ xg jkjj , which is used in 

this study. 
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2.3.1.3 MCE Loss 

The loss function can be defined by embedding the misclassification measure in 

a smoothed zero-one function, for which any member of sigmoid function family is an 

obvious candidates. A general form of the loss function can be defined as [Juang et al 

1997] 

)),((),( Λ=Λ xdlxl kk         (6) 

where l is typically a sigmoid function 

 
)exp(1

1
)(

d
dl

α−+
=         (7) 

α is a positive value. When the misclassification measure is positive, the loss function 

will be close to 1; when it is negative, it will be close to 0. The behavior depends on the 

steepness of the loss function, controlled by the positive scalar valueα .  

2.3.2 Optimization Methods 

The purpose of the MCE training is to find a set of parameters Λ so that the 

expected loss in (3) is minimized. Another kind of loss used is empirical loss given as 

[McDermott 1997] 
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       (8) 
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,where N is the total number of training samples and kN is the number of training 

samples for each class kC . With sufficient training samples, the empirical loss is an 

estimate of the expected loss. The empirical loss can be minimized by Generalized 

Probabilistic Descent (GPD) which recursively update the parameter Λ  using the 

gradient of the local MCE loss ),( Λ∇ xlk [ McDermott et al 2007] 

),(1 nnknnn xl Λ∇−Λ=Λ + ε        (9) 

,where nx is the thn training sample and nε is a time-decreasing learning rate. The typical 

practice in applying the GPD to minimize the empirical loss is to present the training set 

over and over, to simulate the presentation of a very long sequence of training tokens. 

The training cycle is stopped after preset number of iterations [McDermott 1997].  

The sequential, sample by sample update rule in (9) is online based optimization, 

which is used in this study. The advantage of such online algorithm is fast convergence 

by exploiting the data redundancy in the training set. The other approach is batch 

optimization where the update is performed after the presentation of all the training 

samples. The batch approach typically converges slowly, but take advantage of parallel 

processing where different processors are used to accumulate the gradient information 

over subset of training data before each update, hence provide faster computation time. 

[McDermott et al 2007] 

Besides GPD, many other gradient descent methods can be used as optimization 

method. The second-order optimization methods such as Quickprop which require less 

parameters to tune compared to GPD are also used for the MCE based optimization 

[McDermott 1997]. This study focuses on the use of online GPD. 
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2.4 MCE Training of HMMs 

MCE training have been used for parameter estimation of hidden Markov models 

[Chao et al 1992]. This section discusses the application of MCE framework to HMM 

optimization. The discussions in these sections follow [McDermott 1997]. 

2.4.1 HMM as Discriminant Function 

Details of the hidden Markov modeling refer to [Rabiner 1989]. In HMMs, The 

observation probability density function of observation tx at time t, given the mean 

vectors is,µ and covariance matrices is,Σ of an HMM state s, is typically a Gaussian 

mixture density: 

),,,()( ,,
1

, isist

I

i
ists xNcxb Σ=∑

=

µ       (10) 

,where I is the number of mixture components in state s and isc , are mixture weights 

satisfying the constraint: 

.1
1

, =∑
=

I

i
isc          (11) 

),,( ,, isistxN Σµ is the multivariate Gaussian density of d-dimensional observation vector 

tx  given as 

 )).()(
2
1
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)2(

1
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2/12/
µµ

π
µ −Σ−−

Σ
=Σ − xxxN T

D
   (12) 
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Consider M classes each class corresponds to a HMM. We denote ).......,( 211 T
T xxxx = is 

a sequence of D-dimensional feature vectors, and ).........,( 21
j
T

jjj θθθ=Θ to be optimal 

HMM state sequence of Tx1 given
thj HMM jλ ,obtained using Viterbi segmentation. The 

HMM discriminant function ),( 1 ΛT
j xg is the log-likelihood score of Tx1 along the 

optimal path in thj HMM jλ , given as [Chao et al 1992] 

 )(loglog),(log),(
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j
t
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,where j
t

j
t

a θθ 1−
is the state transition probabilities from state j

t 1−θ to state j
tθ . The GPD 

based on discriminant function (13) is often called segmental GPD [Chao et al 1992]. 

2.4.2 MCE Loss & Optimization 

The MCE loss of (7) formulated in the previous section is used with slightly 

different discriminant function required by the nature of HMM discriminant function. 

Following [Chao et al 1992], the definition is given as  
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The sequential gradient based GPD approach in [9] can be used to update the 

HMM parameters (mean vector, covariance matrices, and mixture weights) to minimize 

the expected loss. This involves capturing the gradient of the MCE loss ),( 1 ΛT
k xl with 

respect to each of these parameters. The following section describes the summarized 

derivation of the MCE gradient using the chain rule of differential calculus. The 
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discussion is adapted directly from the Appendix of [McDermott et al 2007] with some 

modifications.    

2.4.3 Derivation of MCE Gradients 

Only the gradient for a single token is described. Assuming that the sequence of 

observation vectors Tx1 belongs to class k and considering a set of M HMMs each 

representing a class, to form the whole classifier parameters setΛ . The derivation of the 

loss )),(( 1 ΛT
k xdl w.r.t. a component sφ of an observation probability )( ts xb on the 

Viterbi state sequence ).........,( 21
j
T

jjj θθθ=Θ for a thj HMM jλ is 

s
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t tsj

k

k

k

s

k xb
xbg

d
d
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j
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      (15) 

,where the abbreviations )( kk dll = and ),( 1 Λ= T
jj xgg are used. Furthermore , from (7) 
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Assuming a large value of ψ , the expression reduces to 
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In this case, the derivatives only exist for the correct and best incorrect class. 

 In practice, 
s

kl
φ∂
∂

is accumulated along jΘ for each model jλ , adding to the partial 

derivative of the loss function with respect to each component sφ , which potentially 

ranges over all mixture weights, mean vector, and covariance components. 

 Now, the rest of the partial derivatives can be specified. The Gaussian mixture 

density has been defined in (10). Using the abbreviation ),,()( ,,, isisttis xNxN Σ= µ ,the 

partial derivatives of )( ts xb with respect to the transformed mixture weights 

isis cc ,, log= , mean vector component dis ,,µ , and transformed inverse covariance 

component 1
,,,, log −= disdis σσ are respectively, 
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These term are used to expand 
s

ts xb
φ∂

∂ )(
in (15). Adaptation of isc ,  ,followed by the back 

transformation )exp( ,, isis cc = during parameter updating, enforces the constraint that the 

mixture weights must stay positive. The additional constraint that the mixture weights 

must sum to one can be maintained simply by normalizing the weights after each 

iteration of MCE. Adaptation of the transformed inverse covariance term dis ,,σ results in 

greater numerical accuracy than adaptation of dis ,,σ itself. Finally, in the interest of 

numerical stability, a division by 2
,, disσ term has been dropped from the true derivative 

for the mean [McDermott et al 2007]. 
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CHAPTER 3 

EXPERIMENTAL EVALUATION 

3.1 Task and Database 

The MCE/GPD framework is evaluated on speaker-independent Malay isolated 

digit recognition. The continuous density HMM (CDHMM) is used for discriminant 

function. The recognition vocabulary consists of 9 Malay digit (‘SATU’, ‘DUA’, 

‘TIGA’, ‘EMPAT’, ‘LIMA’, ‘ENAM’, ‘TUJUH’, ‘ LAPAN’, ‘SEMBILAN’). The 

database consists of 100 speaker each recorded 5 tokens for each digit. The training set 

consists of 20 speaker and the remaining 80 speakers as test set which consists of 3600 

digit tokens. 

3.2 Experimental Setup 

The speech is sampled at 16KHz. The speech signal is represented by a sequence 

of 12 dimensional vector of Mel-Frequency Cepstral Co-efficients (MFCCs). Each 

Malay digit is modeled by a 5-state CDHMM with 4 Gaussian components. The models 

are trained based on conventional maximum likelihood estimation (MLE) using 8 

iterations of segmental K-mean algorithm [Rabiner 1989]. These trained models are 

used for the initialization of the online MCE/GPD training. The α is empically set as 

0.005 and the learning rate as 0.05. For preliminary study, only 1 iteration of MCE 

update is run through the whole training set. The Viterbi decoding is used for 
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recognition. [Rabiner 1989].  Comparison in term of recognition performance is made 

between the MLE and MCE based training. 

3.3 Experimental Results 

Table 1 shows the number of misclassified tokens of each digit for the MLE and 

MCE based training.  The MCE training increases the classification accuracy of 96.1% 

when using MLE, to 96.4% with small improvement rate of 0.31%. The small 

vocabulary is unable to reflect the performance comparison of the two methods, the 

MLE training given sufficient training data is sufficient to provide optimal classification 

accuracy. Future work will extend the evaluation on difficult classification task such as 

phoneme classification, to better access the discriminative ability of the both methods. 

Table 1. Number of misclassified tokens of each digit for MLE and MCE 

training on test set evaluation. 

 MLE MCE 

SATU 6 6 

DUA 40 34 

TIGA 21 20 

EMPAT 4 2 

LIMA 17 18 

ENAM 8 8 

TUJUH 26 24 

LAPAN 6 9 

SEMBILAN 12 7 

Total 140 128 
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CHAPTER 4 

CONCLUSIONS & FUTURE WORKS 

The MCE based training of HMM has been described and evaluated on speaker-

independent Malay isolated digit recognition. The MCE training achieves the better 

classification accuracy of 96.4% compared to 96.1% of using MLE with small 

improvement rate of 0.31%. The number of token misclassification using MCE is lower 

than using MLE, which shows that MCE provide better discriminative ability. However, 

the small vocabulary is unable to reflect the performance comparison of the two methods, 

the MLE training given sufficient training data is sufficient to provide optimal 

classification accuracy. Future work will extend the evaluation on difficult classification 

task such as phoneme classification, to better access the discriminative ability of the 

both methods. 

Other gradient based optimization methods such as second order Quick-prop can 

be used for MCE training framework [McDermott 1997]. Besides, the MCE 

discriminative training can be extended to the large vocabulary continuous speech 

applications[McDermott et al 2007]. Future work will investigate the effect of learning 

rate, number of training iterations, and alpha value of the MCE loss to the recognition 

performance.  
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