

MATHEMATICAL FORMULATION OF TABU SEARCH IN

COMBINATORIAL OPTIMIZATION

ZUHAIMY BIN ISMAIL

RESEARCH VOTE NO :

78146

JABATAN MATEMATIK

FAKULTI SAINS

UNIVERSITI TEKNOLOGI MALAYSIA

2009

VOT 78146.

Lampiran 20
UTM/RMC/F/0024(1998)

UNIVERSITI TEKNOLOGI MALAYSIA

BORANG PENGESAHAN

LAPORAN AKHIR PENYELIDIKAN

TAJUK PROJEK : Mathematical Formulation of Tabu Search in Combinatorial Optimization

Saya ZUHAIMY ISMAIL
 (HURUF BESAR)

Mengaku membenarkan Laporan Akhir Penyelidikan ini disimpan di Perpustakaan Universiti
Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut :

1. Laporan Akhir Penyelidikan ini adalah hakmilik Universiti Teknologi Malaysia.

2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk

 tujuan rujukan sahaja.

3. Perpustakaan dibenarkan membuat penjualan salinan Laporan Akhir Penyelidikan
 ini bagi kategori TIDAK TERHAD.

4. * Sila tandakan (/)

 (Mengandungi maklumat yang berdarjah keselamatan atau
 SULIT Kepentingan Malaysia seperti yang termaktub di dalam
 AKTA RAHSIA RASMI 1972).

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh Organisasi/badan di mana penyelidikan dijalankan).

 TIDAK
 TERHAD

 TANDATANGANKETUAPENYELIDIK

 PROF.DR. ZUHAIMY ISMAIL
 Nama & Cop Ketua Penyelidik

 Tarikh : _________________

/

CATATAN : * Jika Laporan Akhir Penyelidikan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan
TERHAD.

MATHEMATICAL FORMULATION OF TABU SEARCH IN

COMBINATORIAL OPTIMIZATION

ZUHAIMY BIN ISMAIL

RESEARCH VOTE NO :

78146

JABATAN MATEMATIK

FAKULTI SAINS

UNIVERSITI TEKNOLOGI MALAYSIA

2009

VOT 78146.

i

PREFACE

This research report entitled Mathematical Formulation of Tabu Search in Combinatorial

Optimization as been prepared by Professor Dr. Zuhaimy Hj. Ismail during the period

January 2007 to February 2009 at the Department of Mathematic, University

Technology Malaysia, Skudai Johor.

This report is submitted as the requirement for the completion of e-science research

project which is fully supported by The Ministry of Science, Technology and Innovation

(MOSTI). The subject of this report is to study the mathematical formulation of Tabu

Search in combinatorial optimization. Model used are the CARP for solid waste

collection problem. I would like to express my gratitude to MOSTI for their trust in our

expertise and interest in this project.

Next, I would like to thank The Research Management Centre, Universiti Teknologi

Malaysia for all the support and services provided in making this research a success. I

would like to thank The Department of Mathematics and Faculty of Science for making

this research a success.

I would like to thank Mr. Ahmad Kamel Ismail from the SWM Environment Sdn Bhd

(formerly known as Southern Waste Management Sdn Bhd) and the management of

Perniagaan Zawiyah Sdn Bhd for our collaboration on the data collection and for

providing the guidelines on the processes in solid waste collection and distribution

practices.

I also wish to thank my students and colleagues Irhamah, Khairil Asmani, Dr. Zaitul

Marlizawati for their contribution and devotion in this work. Also. The Staff-the

academic as well as the administrative-at the Department of Mathematic, Faculty of

Science, UTM.

Prof. Dr. Zuhaimy Ismail

ISDAG and ISORG, Fakulti Sains

ii

ABSTRACT

 The Capacitated Arc Routing Problem (CARP) is a fundamental and well-known

routing problem. This is a special form of arc routing problem which involves

determining a fleet of homogeneous size vehicles and designing the routes to minimize

the total cost. It is considered as CARP when the demands are located along the edges.

One such problem is in the designing a tour for waste collection vehicle where each

vehicle is limited in its capacity. CARP is known to be Non-deterministic Polynomial-

time hard (NP-hard) where solutions are obtained through heuristic methods. Tabu

Search (TS) is a heuristic method based on the use of prohibition-based techniques and

basic heuristics algorithms like local search. The main advantage of TS with respect to

other conventional search is in the intelligent use of past history of the search to

influence its future search procedures. This study is to develop Reactive Tabu Search

(RTS) heuristics for solving CARP. Our RTS algorithm allows for dynamic tabu list

rather than static tabu list as being practiced in TS algorithm. The test instances involve

five to 50 nodes systematically generated similar to the real world CARP. The newly

modified RTS algorithm gives a better performance than TS and (Look-Ahead Strategy)

LAS method.

iii

ABSTRAK

Masalah Perjalanan Lengkok Berkapasiti (MPLB) adalah satu masalah

perjalanan yang asas dan terkenal. Ia merupakan satu masalah khas daripada masalah

perjalanan lengkok yang melibatkan penentuan kenderaan bersaiz homogen dalam

membina laluan-laluan yang dapat mengurangkan jumlah kos. Masalah ini dianggap

sebagai MPLB sekiranya permintaan diletakkan di sepanjang lengkok. Salah satu

masalah seumpama ini adalah dalam merekabentuk perjalanan bagi kenderaan pemungut

sampah dengan setiap satu kenderaan mempunyai kapasiti yang terhad. MPLB diketahui

menjadi Bukan berketentuan Polinomial-masa yang sukar (BP sukar), di mana

kebanyakan masalah diselesaikan menggunakan kaedah heuristik. Carian Tabu (CT)

merupakan kaedah heuristik berasaskan kepada penggunaan teknik-teknik larangan dan

penggunaan algoritma heuristik yang asas seperti pencarian setempat. Kelebihan utama

CT terhadap kebiasaan carian lain adalah penggunaan kepintarannya di dalam pencarian

yang lepas untuk proses pencarian seterusnya. Kajian ini adalah untuk membangunkan

kaedah heuristik Carian Tabu Reaktif (CTR) bagi menyelesaikan MPLB. Algoritma

CTR membenarkan panggunaan senarai tabu yang dinamik berbanding hanya senarai

tabu yang statik seperti yang dipraktikkan di dalam algoritma CT. Pengujian dilakukan

ke atas lima hingga 50 titik pertemuan yang dijana secara sistematik dan menyerupai

kepada MPLB sebenar. Pengubahsuaian algoritma yang baru memberikan pencapaian

yang baik berbanding kaedah CT dan Strategi Pandang Depan (SPD).

iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE

PREFACE i

ABSTRACT ii

ABSTRAK iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

LIST OF SYMBOLS xii

LIST OF APPENDICES xiii

1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Problem Background 2

 1.3 Problem Statement 3

 1.4 Objective of the Study 4

 1.5 Scope of the Study 5

 1.6 Significant of the Study 5

 1.7 Thesis Layout 6

2 LITERATURE REVIEW 8

 2.1 Introduction 8

 2.2 Capacitated Arc Routing Problem 9

 2.2.1 Real World application 12

 2.3 Metaheuristics 13

 2.4 Tabu Search 15

 2.4.1 Reactive Tabu Search 19

 2.4.2 Comparison: Tabu Search and Reactive Tabu Search 20

 2.5 Recent Works on the Capacitated Arc Routing Problem 22

 2.6 Review Solution Method on Waste Collection Management 28

v

 2.7 Recent Works on Reactive Tabu Search 29

 2.8 Summary 32

3 RESEARCH METHODOLOGY 33

 3.1 Introduction 33

 3.2 Research Methodology 34

 3.3 Data Source 35

 3.4 Terminologies in Tabu Search 36

 3.5 A Basic Tabu Search Procedure 38

 3.5.1 The Initialization 39

 3.5.2 The Forbidding Strategy 40

 3.5.3 The Freeing Strategy 41

 3.5.4 The Stopping Criterion 41

 3.5.5 The Diversification Strategy 42

 3.6 The Reactive Tabu Scheme 42

 3.7 Tabu Search Implementation 43

 3.7.1 The Initial Solution 43

 3.7.2 Element of Tabu Search 46

 3.7.3 Element of Reactive Tabu Search 48

 3.8 The General Reactive Tabu Search Algorithm 49

 3.9 Summary 50

4 LOOK-AHEAD STRATEGY AND TABU SEARCH FOR

 SOLVING CAPACITATED ARC ROUTING PROBLEM 51

 4.1 Introduction 51

 4.2 Look-Ahead Strategy for Capacitated Arc Routing Problem 52

 4.2.1 Basic Idea 52

 4.2.2 Look-Ahead Strategy Algorithm 53

 4.3 Tabu Search for Capacitated Arc Routing Problem 55

 4.3.1 Initial Solution 55

 4.3.2 Tabu List Size 57

 4.3.3 Tabu Moves 60

 4.3.4 Aspiration Criterion 61

 4.3.5 Stopping Criterion 62

 4.3.6 Tabu Search Algorithm 63

 4.4 Computational Results 67

 4.4.1 Look-Ahead Strategy Computational Results 68

 4.4.2 Tabu Search Computational Results 69

 4.4.3 Look-Ahead Strategy versus Tabu Search 71

vi

 4.5 Summary 73

5 SOLUTION APPROACH BASED ON

 REACIVE TABU SEARCH 74

 5.1 Introduction 74

5.2 Reactive Tabu Search Implementation 75

5.2.1 Tabu List Size 76

5.2.2 Diversification Strategy 84

5.2.3 Stopping Criterion 88

5.3 Reactive Tabu Search Algorithm 90

5.4 Computational Results 93

5.5 Summary 96

6 SYSTEM DEVELOPMENT FOR

CAPACITATED ARC ROUTING PROBLEM 97

6.1 Introduction 97

6.2 Programming with Microsoft Visual Studio 98

6.2.1 The Visual Studio Application 98

6.3 Waste Collection Management Computational Module 100

6.4 Program Visualization; Graphical User Interface 101

6.5 Managing the Capacitated Arc Routing Problem Program 105

6.6 Summary 109

7 ANALYSIS OF RESULTS, CONCLUSION

AND RECOMMENDATION 110

7.1 Introduction 110

7.2 Analysis of Results 111

7.3 Conclusion 113

7.4 Recommendation 114

7.5 Future Problems: The Extension of This Problem 115

REFERENCES 116

Appendices A - E 121

vii

LIST OF TABLES

TABLE NO. TITLE PAGE

 2.1 TS Applications 18

2.2 Comparison between TS and RTS 21

2.3 Recent Work on CARP 23

2.4 Other Solution Method for Waste Collection Problem 28

3.1 Terminologies in TS 37

4.1 Investigation on Tabu List Size 58

4.2 Stopping Criterion 62

4.3 Type of Problem 67

4.4 LAS Computational Results 68

4.5 TS Computational Results 69

4.6 Comparison between LAS and TS 72

5.1 The Differences between TS and RTS 75

5.2(a) Investigation on Tabu List Size and Repetition 77

5.2(b) Investigation on Tabu List Size and Repetition 78

5.3 Tabu List Size 82

5.4 Investigation on Dynamic Tabu List Size 83

5.5 Repetition 84

5.6 Investigation on Diversification Strategy 86

5.7 Summary on Diversification Strategy 88

5.8 Investigation on Maximum Iteration 89

5.9 RTS Computational Results 94

5.10 Average Percentage of Improvement 95

7.1 Comparison between TS and RTS 111

7.2 Advantages and Disadvantages of TS and RTS 113

viii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 2.1 Graphical Network 10

3.1 Research Methodology 35

3.2 Network Model 44

3.3 2-opt Move 47

3.4 Flow Chart of the Entire Procedure in Developing RTS 50

4.1 Flowchart of LAS 54

4.2 Investigation on Tabu List Size 59

4.3 2-opt Move 60

4.4 The TS Algorithm 65

4.5 Comparison between IS and TS 70

4.6 Percentage of Improvement for TS Computational Results 71

4.7 Comparison between LAS and TS 72

5.1 Comparison on Tabu List Size and Repetition for 80

5.2 Comparison on Tabu List Size and Repetition for 81

5.3 Illustration on Diversification Strategy 85

5.4 Comparison on a Result between Diversify and Not Diversify 87

5.5 Comparison on Percentage of Improvement between Diversify

and Not Diversify 87

5.6 The RTS Algorithm 91

5.7 Comparison between IS and RTS 94

5.8 Percentage of Improvement for RTS Computational Result 95

6.1 Basic IDE 99

6.2 Welcome GUI 102

6.3 GUI of the Program 103

6.4 Features in Menu Bar 104

6.5 Information Menu 105

ix

6.6 About Menu 105

6.7 Form for Insert Demand and Cost 106

6.8 Example of Complete Network in Drawing Region 107

6.9 Form for Maximum Capacity of the Vehicle 107

6.10 Example of the Initial Solution Produced by the Program 108

6.11 Message Box of Computational Time 108

6.12 Example of the Result Produced by the Program 108

7.1 Comparison between TS and RTS 112

x

LIST OF ABBREVIATIONS

ACO - Ant Colony Optimization

AI - Arbitrary Insertion

ANN - Artificial Neural Network

CARP - Capacitated Arc Routing Problem

CARPB - Capacitated Arc Routing Problem with Backhauls

CARPRP - Capacitated Arc Routing Problem with Refill Point

CARPSD - Capacitated Arc Routing Problem with Stochastic Demand

CARPTW - Capacitated Arc Routing Problem with Time Window

CEM - Cheapest Edge Method

CI - Cheapest Insertion

CVRP - Capacitated Vehicle Routing Problem

DM - Descent Method

ESO - Evolutionary Simulation Optimization

FI - Farthest Insertion

GA - Genetic Algorithm

GI - General Insertion

GP - Grey Programming

IDE - Integrated Development Environment

IFLP - Interval parameter Fuzzy Linear Programming

IS - Initial Solution

LAS - Look-Ahead Strategy

LS - Local Search

MDCARP - Multiple Depot Capacitated Arc Routing Problem

MDVRP - Multiple Depot Vehicle Routing Problem

MINLP - Mixed Integer Non-Linear Programming

MRF - Markov Random Field

NI - Nearest Insertion

NN - Nearest Neighbour

xi

NP-hard - Non-deterministic Polynomial-time hard

PCARP - Periodic Capacitated Arc Routing Problem

PVRP - Periodic Vehicle Routing Problem

RTS - Reactive Tabu Search

SA - Simulated Annealing

SDVRP - Split Delivery Vehicle Routing Problem

SWM - Southern Waste Management

TS - Tabu Search

TSP - Travelling Salesman Problem

UAV - Unmanned Aerial Vehicle

VRP - Vehicle Routing Problem

VRPB - Vehicle Routing Problem with Backhauls

VRPPD - Vehicle Routing Problem with Pick-up and Delivery

VRPSD - Vehicle Routing Problem with Stochastic Demand

VRPTW - Vehicle Routing Problem with Time Window

WCM - Waste Collection Management

xii

LIST OF SYMBOLS

ijµ - Customer’s demand (Quantity of garbage)

Ω - Maximum capacity of the vehicle

ijc - Service cost

C - Total cost

ijx - Edge traverse

sT - Tabu List Size

ijδ - demand/cost ratio

n - Number of nodes

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Some Coding for Initial Solution (Cheapest Edge Method) 121

B Some Coding for Tabu Search Implementation 126

C Some Coding for Reactive Tabu Search Implementation 130

D The Installer of Waste Collection Management Computational

 Module 137

E List of Publications 138

CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, many service suppliers and distributors have recognized the

importance of designing efficient transportation strategies in order to improve the level

of customer’s service and reduce transportation costs. In a typical distribution system,

vehicle such as trucks or school buses, provide delivery or customer pick-up, where a

common objective is to find a set of routes for the vehicles which satisfies a set of

constraints and so as to minimize the total fleet operating costs.

One of the most difficult operation problem faced by local authorities in any

large city is the collection of household garbage or industrial waste. This problem is

also known as a waste management problem. It is especially crucial for cities in

developing countries. From our literature review, many researchers have modelled solid

waste collection and distribution problem as Capacitated Arc Routing Problem (CARP)

since the garbage had to be carried by vehicle with fixed capacity along the route. Some

 2

of the researchers in this area are Lacomme et al. (2001), Amponsah and Salhi (2004),

Mourao and Amado (2005), Chu et al. (2005) and Bautista et al. (2008). This waste

collection problem can also be modelled as the Vehicle Routing Problem (VRP), but

since the VRP is a node routing problem, it needs a transformation from the CARP into

the VRP, which is to transform from an arc routing problem to a node routing problem

to make the CARP as a special case of the VRP. Therefore CARP can be considered as

a special case of the VRP (Wohlk, 2005).

This CARP will be solved using the proposed methodology which is Tabu

Search (TS) and Reactive Tabu Search (RTS). The discussion of the methodology will

be discussed in Chapter 3. This chapter provides problem background, problem

statement, objective, scopes and significant of the study and ended with a thesis layout.

1.2 Problem Background

Operations research involves “research on operations”. Thus, operations

research is applied to problems that concern how to conduct and coordinate the

operations (so that everything will be optimize, e.g. cost, time, space, usage etc) within

organization in variety of areas such as manufacturing, transportation, construction,

telecommunications, financial planning, health care, the military and so on (Hillier &

Lieberman, 2005).

Combinatorial optimization is one of optimization problem in applied

mathematics and computer science. It is close to operations research, algorithm theory

and computational complexity theory that sit at the intersection of several fields,

 3

including artificial intelligence, mathematics and software engineering. Combinatorial

optimization algorithms solve instances of problems that are believed to be hard in

general by exploring the large solution space of these instances. Most of the real world

optimization problems belong to a class of “difficult to solve” problems which are

known as Non-deterministic Polynomial-time hard problem, called NP-hard problem.

Because of that, the problem cannot be guaranteed to be solved in reasonable time by

any known polynomial-time method (Loh, 2007).

Various new optimization techniques had been discovered to solve NP-hard

problems more effectively such as Artificial Neural Networks (ANN), Tabu Search

(TS), Simulated Annealing (SA), Genetic Algorithm (GA), Ant Colony Optimization

(ACO) and some others. This study will explore the use of TS in solving CARP and

extend the traditional method of TS into Reactive Tabu Search (RTS). We explore the

method of TS and compare the differences between TS and RTS. In this exploration, we

use solid waste management as the CARP. The model above will be developing into

computer program which is Microsoft Visual Studio 2005 Team Suit (Trial) Edition and

it is written in C# language.

1.3 Problem Statement

As the number of household area increases, the solid wastes generated are also

increasing. In order to maintain the quality of environment, the waste generated should

be properly collected and disposed. For example in Southern Waste Management in the

City of Johor Bahru, currently they have a fleet of over 150 collection vehicles operating

daily. A well schedule collection of these wastes is essential so that the entire vehicle

 4

will give their optimal service in order to minimize the cost,
(), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑ (our

proposed model). But some kind of problem arise when to collect these generated

wastes. This is due to the limited arc that vehicle have to revisit it again in order to

serve all the required edge while we have to minimize revisiting the edge so that the cost

of traversal are also minimize. The vehicle capacity, Q also one of the problem arise

because the demand for certain area are not always static. It is possible that the vehicle

need to go back to the depot when the services are still on-going because the capacity

has reached its limit, where
(),

, 1, , ,ij ijk
i j R

q y Q k K
∈

≤ =∑ K . Therefore, to collect these

generated wastes, an appropriate method should be used in order to choose the best route

traverse by vehicle so that the costs of collecting are optimal. Hence, this research tries

to further the previous study on it by proposing a new metaheuristics algorithm based on

RTS. The main issue in RTS is the way tabu list and tabu moves are constructed. The

implementation of this algorithm will be done to solve real problem in optimizing solid

waste collection.

1.4 Objectives of the Study

The objectives of this study can be summarized as follows:

i. To develop a new mathematical formulation or RTS algorithm for solving

CARP.

ii. To develop computational module for solving solid waste management problem.

 5

1.5 Scope of the Study

The study is confined to solve solid waste collection problem for the city of

Johor Bahru. Waste collection is divided into two types which are household waste and

industrial waste. The case study will only focus on the household solid waste collection.

The scope of the study can be summarized as follows:

• Service provided by a single vehicle with a limited capacity.

• The vehicle starts and ends at a single depot node.

• Customers are represented by arc where the entire arcs form a complete graph.

• Customer’s demand, ijq , is considered as a non-negative integer.

• The proposed algorithm will be implemented and written using programming

language to solve the problem in solid waste collection.

1.6 Significance of the Study

The significant of this study may be divided into two main areas. Firstly, the

developments of new RTS formulation for solving CARP. Secondly, is the

development of CARP for solving solid waste collection problem.

This proposed development contributes to the arc routing problem. This is

because, the cost of vehicle routing plays an important role when the vehicle servicing

an arc. Without planning a tour for the vehicle in order to give their services, the cost

may form a maximum travelling cost. Due to this reason, this study is conducted. As

 6

indicated earlier, our focus would be to work on the problem related to CARP for solid

waste collection in Johor Bahru.

1.7 Thesis Layout

The thesis is divided into seven chapters. The first chapter is the introduction.

This chapter gives an introduction to the background of the problem, the statement of the

problem, objectives and scope of the study and significance of the study.

Chapter two is the Literature Review. This chapter presents a literature review

about the CARP and solution techniques for solving CARP. The literature about recent

works on CARP, RTS and other solution method for solving waste collection problem

are also provided in this chapter.

Chapter three is the Research Methodology which is discussed about the

terminologies used in the solution technique. This chapter also discussed the

development model of the initial solution and also TS and RTS procedure.

Chapter four and five in this thesis consist the discussion of the results. Chapter

four is to illustrate the development of other model which is Look-Ahead Strategy

(LAS) to be compared with our algorithm. Also provided in chapter four is our TS

procedure that also to be used to compare the computational result with our RTS

algorithm. Chapter five is our solution technique in order to solve CARP model. This

chapter presenting the implementation of RTS and provide a computational results.

 7

Next which is chapter six will be a chapter to write about developing a system.

This chapter provides the information on the languages used and how to manage and use

the system.

Lastly, this thesis ends up with chapter seven. At the beginning of this chapter, it

discusses the comparison results produces by TS and RTS. Then a conclusion and

recommendation will close up the whole thesis at the end of this chapter.

CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

This chapter presents a literature review about the Capacitated Arc Routing

Problem (CARP), solution techniques appeared in literature and also techniques which

may be applied for solving CARP. The first section discusses the description and the

mathematical model of CARP. The second section contains the introduction and a basic

idea of Tabu Search (TS) and Reactive Tabu Search (RTS). The following section

will discuss about the recent works on the CARP and review of solution method on solid

waste collection management in other country. Finally, RTS are discussed overall in the

last section.

9

2.2 Capacitated Arc Routing Problem

The CARP was introduced by Golden and Wong (1981), but a variant which is

the quantity of demand, ijq are strictly positive was investigated earlier by Christofides

in 1973 (Dror, 2000). It is define on an undirected network in which a fleet of identical

vehicles with limited capacity is based at a depot node. The CARP consists of

determining a set of feasible vehicle trips that minimizes the total cost of traversed

edges. Each trip starts and ends at the depot, each edge is serviced by one single vehicle

and the total demand serviced by any trip must not exceed vehicle capacity.

The CARP belongs to the class of problem known as Non-deterministic

Polynomial-time hard (NP-hard) as proven by Golden and Wong (1981). NP-hard in

computational complexity theory is the complexity class of decision problems that are

intrinsically harder than those that can be solved by a nondeterministic Turing machine

in polynomial time (Black, 2007). CARP is a problem that has all the characteristics of

NP-hard problem as defined by Black (2007). The problem included solving a complex

interaction of demands and constraints that requires non-deterministic time to solve.

Various solution procedure can be use to solve CARP such as exact algorithm,

approximation algorithm, heuristics and meta-heuristics. However, when a single

vehicle is able to service all the required edges, the exact methods have only been able to

solve relatively small examples to optimality. While for approximation algorithm, it is

designed specifically for one problem type. Therefore meta-heuristics have been

proposed. In order to solve this problem, the defining of the mathematical formulation

is needed. As a result, CARP formulation is used as appropriate mathematical model for

solving the waste collection problem.

10

In the case of the CARP, the mathematical structure is a graph where each

junction is denoted by a point (node) and lines (streets) are drawn connecting two nodes,

called arcs or edges. Associated with every line connecting two nodes are quantity of

garbage, ijq and service cost, ijc . When the vehicle can service every street which has

some amount of garbage from a junction to another junction continually (starting and

ending at the same designated node, which is the depot), then the graph is said to be

complete. The total demand serviced on the route must not exceed the capacity of the

vehicle, Q . When the vehicle travels over an edge without servicing it, this is referred

to as deadheading (refer to Figure 2.1). In CARP, each edge in the graph can be

travelled in either direction and each vertex corresponds to a road junction.

Mathematical formulations

Different mathematical formulations have been proposed for the CARP, all of

them are undirected case. However, for this problem, we formulated it as follows:

Figure 2.1: Graphical Network

()12 12,q c

1V

2V

3V

()23 23,q c

()13 13,q c

(),G V E A= ∪

deadheading

4V ()14 14,q c
()34 34,q c

11

Given a connected graph (,)G V E A= ∪ , with V as the set of nodes (vertices), E set of

edges ()E V V⊆ × and A is a set of arcs ()A V V⊆ × . CARP has an additional

traversal cost for each edge and arc with edge (arc) demand 0ijq ≥ for each edge (),i j

which must be serviced by one of a fleet of vehicles of capacity, Q (Amponsah & Salhi,

2004). The objective of the CARP is to find a minimum cost set of vehicle routes where

each required edge is serviced on one of the routes.

 We denote ijc as the serviced cost of an edge (arc) () (),i j E A∈ and ijkx as the

number of times edge (arc) (),i j E A∈ ∪ is traversed in trip k ,

1 if the edge (arc) (,) is covered in trip ,
0 otherwiseijk

i j R k
y

∈⎧
= ⎨
⎩

 The CARP formulated by Dror and Langevin (Amponsah & Salhi, 2004) is as

follows:

 Min
(), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑ (2.1)

Subject to:

 0 , 1, 2, , ,pik ipk
p V p V

x x i V k K
∈ ∈

− = ∀ ∈ =∑ ∑ K (2.2)

 ()
1

1 , ,
K

ijk
k

y i j R
=

= ∀ ∈∑ (2.3)

 (), , 1, , ,ijk ijkx y i j R k K≥ ∀ ∈ = K (2.4)

(),

, 1, , ,ij ijk
i j R

q y Q k K
∈

≤ =∑ K (2.5)

{ } ()

()
0,1 , , 1,2, , ,

, , 1, 2, , .
ijk

ijk

y i j R k K

x Q i j E k K+

∈ ∀ ∈ =

∈ ∀ ∈ =

K

K
 (2.6)

12

Where the variables used in the CARP formulation can be described as follows:

C = total cost.

ijc = service cost of an edge (),i j E A∈ ∪ .

ijkx = number of times edge (),i j E A∈ ∪ is traversed in trip k .
1 () (,) cov ,
0ijk

if the edge arc i j R is ered in trip k
y

otherwise
∈⎧

= ⎨
⎩

ijq = edge demand.
Q = vehicle capacity.

 The objective function is given in equation (2.1) seeks to minimize the total cost.

While equation (2.2) is to ensure route continuity, and equation (2.3) states that each

edge with positive demand is serviced exactly once. To guarantee that the traversal

circuit k covers the edge (),i j R∈ if it delivers its demand is represent by equation

(2.4), while to ensure the vehicle capacity is not violated on account is represented in

equation (2.5) and integrality restrictions are given in equation (2.6).

2.2.1 Real World Application

CARP has a long and rich history. It can be found in many real world situations

where the demand needs to be serving in every single arc with required capacity. Other

than waste collection management, road network maintenance can also be modelled as

the CARP, where the road markings have to be painted or repainted every year. There

are special operational conditions that force the tank truck to return to the depot each

time it meets the marking vehicle (Brandao & Eglese, 2008).

13

Other than that, some well-known examples are postal mail deliveries where the

postman needs to deliver the mail in every single arc until no more mail need to be

delivered and school bus routing where the bus need to serve the student and send them

to school. Same goes to snow clearance, where a snow must be sweep in each road to

prevent something bad happen. The truck must pass through the entire arc in order to

clean it. Furthermore, this application is not limited to the routing of creatures or goods

only. Interesting variants may also be found in industrial manufacturing, e.g. the routing

of automatic machines that put conducting layers or component on to a printed circuit

board (Greistorfer, 2003).

2.3 Metaheuristics

The term metaheuristic is firstly introduced by Fred Glover, derives from the

composition of two Greek words. Heuristic derives from the verb heuriskein which

means “to find”, while the suffix meta means “beyond, in an upper level”. Before this

term was widely adopted, metaheuristics were often called modern heuristics (Reeves,

1993).

A metaheuristics is a general solution method that provides both a general

structure and strategy guidelines for developing a specific heuristic method to fit a

particular kind of problem (Hillier & Lieberman, 2005). The most commonly used

metaheuristics are Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithms

(GA) and Ant Colony Optimization (ACO). Nowadays, metaheuristics are widely used

to solve important practical combinatorial optimization problems.

14

The nature of metaheuristics; it is a general kind of solution method that

orchestrates the interaction between local improvement procedures and higher level

strategies to create a process that is capable of escaping from local optima and

performing a robust search of a feasible region. Thus, one key feature of a

metaheuristics is its ability to escape from a local optimum (Hillier & Lieberman, 2005).

The evolution of metaheuristics during the past half dozen years has been widely

researched. Metaheuristics in their modern forms are based on a variety of

interpretations of what constitutes “intelligent” search. These interpretations lead to

design choices which can be used for classification purposes. However, a strict

classification of different metaheuristics is difficult, because the leading recommended

of alternative methods often differ among themselves. This may be illustrated by

considering the classification of metaheuristics in terms of their features with respect to

three basic design choices: (1) the use of adaptive memory, (2) the kind of

neighbourhood exploration used, and (3) the number of current solutions carried from

one iteration to the next (Glover & Laguna, 1997).

Although metaheuristic seems like a very powerful one, but it still have their pro

and con. The advantage of metaheuristic of course it provides a very efficient way of

dealing with a large complicated problems due to the quickly move toward good

solutions. While the disadvantage of using metaheuristic method is that there is no

guarantee that the best solution found will be an optimal solution or even a nearly

optimal solution.

15

2.4 Tabu Search

The basic form of TS is founded on ideas proposed by Fred Glover (Glover &

Laguna, 1997) in 1986 (Salhi, 2002), (Scheuever, 2006). The word tabu (or taboo)

comes from Tongan, a language of Polynesia, where it was used by the aborigines of

Tonga Island to indicate things that cannot be touched because they are sacred. Based

on Webster’s Dictionary, the word tabu also means “a prohibition imposed by social

custom as a protective measure or of something “banned as constituting a risk”. These

current more pragmatic senses of the word accord well with the theme of tabu search.

The risk to be avoided in this case is that of following a counter-productive course,

including one which may lead to entrapment without hope of escape (Wan Ibrahim,

2007).

TS can be applied directly to verbal or symbolic statements to various kinds of

decision problems, without the need to transform them into mathematical formulations.

Nevertheless, it is useful to introduce mathematical notation to express a broad class of

these problems, as a basis for describing certain features of TS. A class of problems of

TS can be characterizing as that of optimizing (minimizing or maximizing) a function

()f x subject to x∈X, where ()f x may be a linear or nonlinear, and the set X

summarizes constraint on the vector of the decision variables x . As we know, the

combinatorial optimization problem may not be easily formulated as an objective

function subject to a set of constraints, so the requirement x∈X may specify logical

conditions or interconnections that would be cumbersome to formulate mathematically,

but may be better be left as verbal stipulations that can be then coded as rules (Glover &

Laguna, 1997).

Mathematical formulations

TS is a mathematical optimization method, belonging to the class of local search

technique. TS operate just like a local improvement procedure except that it may not

16

required that each new trial solution must be better than the preceding trial solution. The

process begins by using this procedure as a local improvement procedure in the usual

way, which only accepting an improved solution at each iteration to find a local

optimum. This search method is extended from the Descent Method (DM) scheme

which also known as hill-climbing heuristic or greedy heuristics in various ways. An

obvious alternative to a DM is to accept a non-improving move and an employment of

strategic memory-based evaluation criterion to escape from a local minimum (Hanafi,

2000). The general procedure of DM can be described as follows:

[Step 1]

• Select an initial solution, say (where is the set

of feasible solutions).

[Step 2]

• Choose a solution such that (where

 is the neighbourhood of).

• If there is no such , is considered as a local

optimum and the method stops.

• Else set and repeat step 2.

The basic procedure in TS does follow the basic concept of DM. A key strategy

of TS is that it then continues the search by allowing non-improving moves to the best

solutions that can be found in the neighbourhood of the current trial solution, the local

improvement procedure is reapplied to find a new local optimum (Hillier & Lieberman,

2005). In other words, the search growth by iteratively moving from one solution to the

next solution for improves the solution with the used of its memory.

For more clearly, TS is a search memory method systematically which is TS will

not only remember the current and best solution. It also keep memory on the tour

through the last solutions visited and such memory will be used with the purpose of

17

guiding the move from the current to the next solution (Castellani et al., 2007). TS

qualify as an intelligent heuristics due to the use of memory together with responsive

exploration beyond the solution space. Responsive exploration means that it search

aggressively in high quality solutions regions and then breaking away from local optima

in order to explore new regions (Lim, 2007).

With this kind of method, the probability of the process to cycle right back to the

same local optimum is quite high. So, to avoid this, a TS temporary forbids moves that

would return to a solution recently visited. This cycling back to previously visited

solutions is prevented by the use of memories, called tabu lists, which record the recent

history of the search, a key idea that can be linked to Artificial Intelligence concepts

(Gendreau, 2002).

TS also can incorporate some more advanced concept in order to explore another

best solution, which are intensification and diversification. Intensification involves

exploring a portion of the feasible region more thoroughly than usual after it has been

identified as a particularly promising portion for containing very good solutions. While

diversification involves forcing the search into previously unexplored areas of the

feasible region to make sure that the search trajectory has not been confined to regions

containing only mediocre solutions.

Variety field of problems can be solved by using the application of TS. Even

sometimes the solutions provided are not close to optimality (due to NP-hard

combinatorial optimization problems or problems with complex constraints), but at least

the difficulties of the problem can be tackled. The application of TS in variety field of

problem can be summarized as shown in Table 2.1 (Glover & Laguna, 1998).

18

Table 2.1: TS Applications

Field Problems

Scheduling Flow-Time Cell Manufacturing, Heterogeneous Processor

Scheduling, Workforce Planning, Classroom Scheduling,

Machine Scheduling, Flow Shop Scheduling, Job Shop

Scheduling, Sequencing and Batching.

Telecommunications Call Routing, Bandwidth Packing, Hub Facility Location,

Path Assignment, Network Design for Services, Customer

Discount Planning, Failure Immune Architecture,

Synchronous Optical Networks.

Design Computer-Added Design, Fault Tolerant Networks, Transport

Network Design, Architectural Space Planning, Diagram

Coherency, Fixed Charge Network Design, Irregular Cutting

Problems.

Production,

Inventory and

Investment

Flexible Manufacturing, Just-in-Time Production, Capacitated

MRP, Past Selection, Multi-item Inventory Planning, Volume

Discount Acquisition, Fixed Mix Investment.

Location and

Allocation

Multicommodity Location/Allocation, Quadratic Assignment,

Quadratic Semi-Assignment, Multilevel Generalized

Assignment, Lay-Out Planning, Off-Shore Oil Exploration.

Routing Vehicle Routing, Capacitated Routing, Time Window

Routing, Multi-Mode Routing, Mixed Fleet Routing,

Travelling Salesman, Travelling Purchaser.

Logic and Artificial

Intelligence

Maximum Satisfiability, Probabilistic Logic, Clustering,

Pattern Recognition/Classification, Data Integrity, Neural

Network | Training and Design.

Graph Optimization Graph Partitioning, Graph Colouring, Clique Partitioning,

Maximum Clique Problems, Maximum Planner Graphs, P-

Median Problems.

Technology Seismic Inversion, Electrical Power Distribution, Engineering

19

Structural Design, Minimum Volume Ellipsoids, Space

Station Construction, Circuit Cell Placement.

General

Combination

Optimization

Zero-One Programming, Fixed Charge Optimization,

Nonconvex Nonlinear Programming, All-or-None Networks,

Bi-level Programming, General Mixed Integer Optimization.

2.4.1 Reactive Tabu Search

TS is a meta-strategy that employs computer memory structures to avoid

phenomena like local minima and limit cycle. The chosen move is put in the tabu list at

each iteration in order to prevent the algorithm going back to recently visited solutions.

Therefore, parameter tuning is one of the main drawbacks that need to solve when

dealing with TS algorithm. Tuning is often needed to obtain competitive results and

requires either a deep knowledge of the problem structure or a time consuming and not

always reproducible tinkering process. The most critical parameter usually is the tabu

list size, which compromises between intensification and diversification strategies

(Castellani et al., 2007).

A fixed size of the tabu list might drive to be trapped in a cycle of length greater

than the size list. But if the tabu list size is set at a high value, then the search may be

restricted to certain regions, and if it is set to a low value then the search may cycle

itself. Therefore, a balanced tabu list size is needed to control and run the process

smoothly. Battiti and Tecchiolli developed an approach that dynamically determines the

tabu list size during the search process. Their version of TS known as Reactive Tabu

Search (RTS) employs two mechanisms which are feedback schemes and escape

strategy (Wassan, 2006).

20

The first mechanism, feedback scheme, builds an automated tabu tenure that is

maintained throughout the search process by the dynamic reaction to the repetitions

(Wassan, 2006). This mean that after one move is executed, the RTS algorithm will

check whether the current searching point has already been found. Tabu list size will

increases if a searching point is repeated and it will decreases if no repetitions occur

during a sufficient long period (Fukuyama, 2000). Since the basic TS cannot avoid long

search cycles, therefore the second mechanism which called escape diversification

strategy is also introduces. The escape strategy takes the search process out from its

current position if it appears to be repeating itself excessively (Wassan, 2006).

Generally, RTS maintain the basic concept and also terminologies of TS except

the tabu list size which are not static as TS. As mention before, this modification were

introduced by Battiti and Tecchiolli in order to produce the best solution.

2.4.2 Comparison: Tabu Search and Reactive Tabu Search

There must be a much confusing on what differentiate TS and RTS. This is

because the concept and procedure for both of them are actually same. Hence, Table 2.2

describes more detail about the differences between TS and RTS.

21

Table 2.2: Comparison between TS and RTS

 Tabu Search Reactive Tabu Search

Move Basic move: swap, combine, shift,

perturb, idle and insert.

Same as TS.

Tabu List

Size

Static changes:

• Can be any value such as 7, 9 or

constant value such as

p
NBTs = ; where

p
NB is

designed rules.

Dynamic changes:

• Periodically changing: kept

fixed for a certain number of

iteration and the process is

repeated for k times.

• Continuously changing: depend

on the change in the cost

function for that selected move

(change when needed).

Aspiration

Criterion

i. Aspiration by objective: a tabu

move is allowed to be accepted

if it leads to a solution that is

better than any solution found

so far.

ii. Aspiration by default (in case

all move are tabu):

a. Free the “least tabu” move:

look at sT , freeing the min

sT .

b. Free the “least cost” move:

check the objective function.

c. Free the “least order” move:

combine a & b.

iii. Soft aspiration criteria: used

even though there is still non

tabu moves. The idea is, the

Same as TS.

22

nearly non tabu move which

has produced a solution nearly

as good as the best solution may

be worth relaxing rather than

the first non tabu move with a

solution that is far from the best

solution.

Stopping

Criterion

• After a fixed number of

iteration (a fixed amount of

computational time).

• After some number of iteration

without an improvement in the

objective function value.

• When the objective reaches a

pre-specified threshold value.

• Same as TS.

2.5 Recent Works on the Capacitated Arc Routing Problem

Generally, there are quite a lot of literatures on the CARP. From the literature,

there are various kind of methods have been used for solving CARP. Hence, the

summary of main contributions to solve CARP and similar problems is given in Table

2.3.

23

Table 2.3: Recent Work on CARP

Authors Methods;
Problems Description

Philippe

Lacomme,

Christian Prins &

Wahiba

Ramdane-Cherif

(2001)

Genetic

Algorithm

[CARP]; for

Municipal

Waste

Collection

• Chromosomes and fitness:

 Evaluate chromosomes by built an

auxiliary graph which each arc denotes a

subsequence of T that can be done by one

trip.

 The fitness is simply the total cost of the

underlying CARP solution.

• Reproduction step:

 Choose parents by binary tournament

selection.

 Reproduction step ends by randomly

keeping only one child, C and discarding

the other.

• Local search and mutation operator:

 Mutate with a fixed rate pm the child C

produced by the crossover; pm = rate for

mutation

 The mutation operator is a local search LS,

giving a hybrid GA.

• Stopping criteria:

 Stops after a maximum number of

iterations, or

 After a maximal number of unproductive

iterations, or

 When it reaches a lower bound known for

some instances.

Peter Greistorfer

(2003)

Tabu Scatter

Search

• Used compound neighbourhood to perform a

transition from an old solution to a new one.

24

[CARP]; for

Special

Logistical

Problem

• Used intensification and diversification search

phases (long-term TS memory).

• The admissibility is monitored by the short-

term TS memory.

Patrick Beullens,

Luc

Muyldermans,

Dirk Cattrysse &

Dirk Van

Oudheusden

(2003)

Guided Local

Search

Heuristic

[CARP]; for

general CARP

• Neighbourhood moves (based on two types of

neighbourhood move):

 Single vehicle moves (flip, reverse and dir-

opt).

 Moves between two routes (relocate,

exchange and cross).

• Generates the CARP local search algorithm as

indicates by the Boolean variable changed.

Sanne Wohlk

(2003)

Simulated

Annealing

[CARP]; for

General CARP

• Defining neighbourhood as:

 Define iμ and jμ as being neighbours if

iμ equals jμ except for two element in

iμ which are swapped; where iμ and jμ as

a label for it neighbours.

 Pick at random iteratively a neighbour

solution, which is immediately accepted if

the cost is lower than the current cost.

 If the cost is larger, the possibility of

acceptance depends on a value of

temperature, such that higher temperature

means higher acceptance probability.

Jose M.

Belenguer &

Enrique

Benavent (2003)

Cutting Plane

Algorithm

[CARP]; for

General CARP

• Use aggregated variables to formulate the

CARP and introduce new classes of valid

constraints.

• Implement several procedures to identify

constraints which are violated by the current

LP solution.

25

• Also develop a cutting plane algorithm to

compute a lower bound for the CARP.

Amponsah, S.K.

& Salhi, S.

(2004)

Look-ahead

Strategy

[CARP]; for

Solving the

Collection of

Garbage

• The idea is to examine the total demand/cost

ratio on all possible temporary edges with

respect to their likelihood to yield future

advantage to prune away unpromising edges

in the collection process and to choose edges

that are most promising.

• The algorithm proceeds from one junction

(node) to one of its adjacent nodes at each

stage.

• If the quantity of garbage in a particular trip is

more than or equal to a critical value Q , then

the look-ahead strategy will shift to the least

insertion cost rule.

Maria Candida

Mourao & Ligia

Amado (2005)

Heuristics

[mixed

CARP]; for a

Refuse

Collection

Application

• Based on the Eularian and directed network.

 Starts by identifying the minimum demand

circuit incident to each node and from this

circuit, the biggest one is chosen.

 Generating a trips multigraph in second

phase where it is possible to easily identify

the best aggregation.

 In each iteration, choose the pairs of trips

to be joined together according to a

matching solution in the trips multigraph,

where one seeks to maximize the total

savings.

• This heuristic method produces a feasible

solution on a directed graph.

Feng Chu, Heuristics • Based on two insertion methods and two

26

Nacima Labadi

& Christian Prins

(2005)

[periodic

CARP]; for

Waste

Collection

phase algorithm.

• Two insertion methods:

 Decreasing frequencies.

 Nearest insertion heuristics.

• Two phase algorithm:

 Lower Bound Heuristic (LBH). The first

phase is guided by a lower bound to

prepare a cluster of tasks for each day.

 The actual trips are built in the second

phase that consists of solving the single-

period CARP defined by each cluster using

the hybrid algorithm.

Humberto

Longo, Marcus

Poggi de Aragao

& Eduardo

Uchoa (2006)

Transformation

to the CVRP

[CARP]; for

General CARP

• Transform CARP to the CVRP and solve

using CVRP formulation.

Alberto Amaya,

Andre Langevin

& Martin

Trepanier (2007)

Integer Linear

Programming

[CARP];

Application for

Road Network

Maintenance

• Based on the formulation of a classical cutting

plane approach by Lacomme.

• Implement two phases of strategy:

 Phase 1: Finding connectivity constraints.

Finding lower bound if iteration finished

before visiting the 5000 nodes.

 Phase 2: Finding an upper bound. Only

added the components that include the

depot.

• If the solution found is equal to a known

lower bound, the solution is optimal.

Jose Brandao &

Richard Eglese

Tabu Search

[CARP]; for

• Neighbourhood moves (based on three types

of neighbourhood move):

27

(2008) General CARP Single insertion.

 Double insertion.

 Swap.

• Admissibility of moves:

 Tabu list is fixed.

 Set to 2
N in Phase 1 and 6

N in Phase 2

after some experimentation in TSA;

N =number of required edges.

• Aspiration Criterion:

 Tabu restriction maybe overridden if the

move will produce a solution that is better

than what has been found in the past

(aspiration criteria).

Joaquin Bautista,

Elena Fernandez

& Jordi Pereira

(2008)

Ant Heuristics

[CARP]; for

Solving an

Urban Waste

Collection

• Use two different constructive greedy

heuristics:

 Nearest neighbour method.

 Nearest insertion heuristic.

• Consider several neighbourhood for a local

search:

 Substitution neighbourhood.

 Reinsertion neighbourhood.

 3-exchange neighbourhood.

• Designed two ant heuristics that fit within the

paradigm:

 Solution building by means of randomized

constructive procedure followed by a local

search.

 Pheromone updating to report back

information for building of new solutions.

Norhazwani Reactive Tabu • Dynamic tabu list size.

28

Yunos &

Zuhaimy Ismail

(2009)

Search

[CARP]; for

solving Solid

Waste

Management

Problem

• Considering repetition to diversify the search

process and explore the solutions.

2.6 Review Solution Method on Waste Collection Problem

In previous section we have seen from a literature, various solution methods used

to solve CARP. Most of the problem are applied to waste collection problem which they

formulated a waste collection problem into CARP. So this section provides a literature

review in different solution method from the previous section that was used to solve

waste collection problem itself. Table 2.4 shows summarization of solution method

used to solve waste collection problem itself in last three years.

Table 2.4: Other Solution Method for Waste Collection Problem

Authors Solution Method Case Study Objective

X. Y. Wu, G. H.
Huang, L. Liu & J.

B.Li
(2006)

Solve using interval
nonlinear

programming

Application to the
planning of waste

management
activities in the

Hamilton-
Wentworth Region,

Ontario, Canada

Focus to minimize
the cost

Julian Scott
Yeomans

(2007)

Solve using
combination of Grey
Programming (GP)
and Evolutionary

Case study for the
municipality of

Hamilton-
Wentworth in the

Focus to minimize
operating cost

29

Simulation-
Optimization (ESO)

Province of
Ontario, Canada

Jing-Quan Li, Denis
Borenstein & Pitu B.

Mirchandani
(2008)

Solve using
minimum cost flow

problem

Application to
waste collection

problem in City of
Porto Alegre.

Brazil

Focus to minimize
the total operating

cost and fixed
vehicle costs

Y. P. Li, G. H.
Huang, Z. F. Yang

and X. Chen
(2009)

Solve using inexact
fuzzy stochastic,

Interval parameter
Fuzzy Linear

Programming (IFLP)

Application to the
long-term planning
of Municipal Solid

Waste
Management in the

City of Regina,
Canada

Focus on reducing
waste flows to the

landfill with a
minimizes system

cost

2.7 Recent Works on Reactive Tabu Search

As we already know, there are a lot of literatures on the CARP. So as RTS, there

are also a lot of area of research was applied to solve using this advanced heuristic

method. A part of it will discuss in this section.

 From the literature, the first approach using RTS was proposed by Xu et al.

(1998) to recover epipolar geometry from a pair of uncalibrated images. By minimizing

a proposed cost function with the RTS approach, the experiments on real images show

that this approach is effective and fast.

O’Rourke applied the RTS for the Unmanned Aerial Vehicle (UAV) routing

problem in 1999. O’Rourke used the adjustment of the tabu list size as well as a penalty

coefficient. The penalties for missed time windows, exceeding vehicle capacity and

exceeding vehicle range was set to the objective function. By controlling the penalty

30

coefficient, it forced the search process in and out of feasible regions of the solution

space and acted as an additional diversification strategy. Harder (2000) and Kinney

(2000) also used the same problem and method with O’Rourke. But in Harder and

Kinney case, they are not only adjusted the tabu list size, they also determined how

much iteration to spend in order to improve a solution in their search process (Brown,

2001).

In 2000, Fukuyama was proposed RTS for load transfer operation in distribution

systems. The developed RTS algorithm showed that it can generate the most highly

qualified results and realize the fastest computation for loss minimization and service

restoration. As for comparison, the algorithm was compared it performance with the

modern heuristic methods such as SA and GA, and he observed that RTS is the best

method for load transfer operation.

 The RTS also was applied to solve a pick-up and delivery problem which was

proved by Nanry and Barnes (2000). Other than RTS, they also developed a hierarchical

search methodology based on the average duration of a tour from the current solution

and the average length of the time windows for the customers. This search methodology

stated which types of moves that need to consider and when to consider them. In this

research, Nanry and Barnes state that a large number of feasible solutions exist when the

average time window length is large relative to the average duration of a tour.

Therefore, this search methodology encourages more improvement moves in

comparison to moves that add or remove tours.

In 2006, Wassan successfully implemented the RTS to solve the classical VRP.

He developed a new escape mechanism strategy which manipulates different

neighbourhood schemes in a very sophisticated way in order to obtain a balanced

diversification and intensification continuously during the search process. In addition,

31

he compared his algorithm with the best methods in the literature using different sets of

data.

Castellani et al. develop their own RTS algorithm to solve automatic selection of

Markov Random Field (MRF) control parameters in the year of 2007. The core

ingredient in their algorithm is the application of fitness function to measures the

performance of particular parameters set and used escape mechanism if the fitness

function has not increased by carrying out a random restart.

The novel approach for an integrated placement and replacement of control and

protective devices in distribution network feeders was discussed in 2008 by Silva et al.

They proposed the RTS to solve the problem which the problem was modelled through

mixed integer non-linear programming (MINLP) with real and binary variables. By

using RTS, the results work in the excellent performance of the algorithm.

Also in 2008, Blochliger and Zufferey introduced one more problem that can be

solving using RTS. They presented a local search approach to the graph colouring

problem and shown that their algorithm obtains competitive results on a large sample of

benchmark graphs which are generally agreed to be difficult to colour. The scheme

based on adjusting their tabu tenure itself depends not only on the graph but also on the

state of the search. The algorithm was design to be easy to implement and does not need

to perform an explicit check for the repetition of configurations. The determination of

the tabu tenure only requires the variation of the objective function.

32

2.8 Summary

This chapter contains the important information gathered. It includes the CARP

formulation, some related works from the researchers and heuristics methods which can

be use to solve the CARP regarding from previous work and also previous research on

RTS.

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

Nowadays, more and more municipalities, regional authorities, post office

administrations, school buses operators, electricity and gas companies are applying such

an arc routing system. This phenomenon is driven to be more competitive and cost-

efficient. This growth has been paralleled by the development of a number of powerful

optimization techniques. The two most important are probably branch-and-cut for exact

optimization and mathematical formulation of Tabu Search (TS) in the area of heuristics

(Dror, 2000). Thus, the data in this research will be analyzed by using one of a meta-

heuristic method which is Reactive Tabu Search (RTS). The need to expand to RTS

instead of TS is due to ability of the method to quickly explore an unknown domain

without the need of parameter tweaking (Castellani et al., 2007).

This chapter presents an overview of the methods used and the characteristic that

we use to develop our newly formulated RTS algorithm. It begins with our research

34

framework, data source followed by explaining the terminologies in TS, a basic

procedure for TS, a reactive tabu scheme, our TS implementation and the element of

RTS. We also provide the general algorithm in developing our RTS algorithm and this

chapter end with summary of the research methodology.

3.2 Research Methodology

The research starts with a literature review on routing problem to understand the

scenario of the problem. Then we gathered a set of data and simulated it into a routing

problem. The data then will be analysing to model it into Travelling Salesman Problem

(TSP), Capacitated Arc Routing Problem (CARP) or Vehicle Routing Problem (VRP).

After modelling it, then we find out that our problem is most suitable and close to

CARP. This is because, our problem is arc routing problem which need to collect the

demand in every single arc but in the same time we have to minimize the total cost

operation. TSP is another model for routing problem and it is only can be applied if all

nodes are connected to each other. Since it can be a problem to implement our problem

into TSP because some formula or rearrangement need to be made, so we decide not to

choose TSP as our model.

VRP is another most popular routing problem. This model is almost similar to

CARP in term of its graphical network. But for VRP, the demand is located at each of

the nodes while in our problem, the demand is located along the arc. If we used VRP as

our model we need to transform from an arc routing problem to a node routing problem.

So to make it easy, since CARP fulfil all the criteria of our problem, then we chose

CARP as our model. The entire research methodology can be summarized in Figure 3.1

35

Figure 3.1: Research Methodology

3.3 Data Source

There are two types of data that will be used to assess the performance of the

proposed algorithm:

36

a. Simulation Data

Several sets of instances will be generated based on original data to simulate real life

instance of CARP in solid waste collection. The variables involve in the data collection

and the data generations are the demand (the quantity of waste to be collected) and the

cost for each arc.

b. Primary Data

The primary data is a real life instance of CARP originating from the municipal solid

waste collection. The original data was collected from Southern Waste Management

Sdn. Bhd. (SWM) – Johor Bahru branch office, a provider of a diverse range of waste

management services for municipal authorities, commercial and industrial sectors for the

Southern Region of Malaysia. We confine our study on residential area in Johor Bahru

under municipal authorities of Majlis Perbandaran Johor Bahru. The problem is to

design a set of solid waste collection routes, each to be served by a truck such that the

waste at each customer is fully collected and the total expected cost is minimized.

3.4 Terminologies in Tabu Search

Some terminologies in TS must be defined first in order to understand how TS

works by using memory structures. Then from TS, some changes can be made in order

to make it RTS. The change to make TS become RTS is on its tabu list size, instead of

using static tabu list size in TS, the dynamic tabu list size was applied in RTS.

Diversification strategy is also one of a characteristic that not consider in TS but will be

used to develop RTS. Table 3.1 shows the terminologies of TS.

37

Table 3.1: Terminologies in TS

TERMINOLOGY DEFINITION

A move A transition from a current solution to its neighbouring (or

another) solution.

An attribute The elements that constitute the move.

Tabu list A list of moves that are currently tabu (a list of forbidden

exchanges to avoid cycling between the same solutions

endlessly).

Tabu list size The number of iterations for which a recently accepted move

is not allowed to be reserved, sT .

Tabu tenure An integer number telling for how long a given move will

remain tabu.

Aspiration level A threshold (usually the best current objective function value)

for which the tabu status of a move can be relaxed / override

the tabu restriction.

Admissible move A move that is nontabu or a move that is tabu active but that

can produce a solution well above the aspiration level.

Forbidding strategy The tabu condition that forbid a move from being reversed.

Freeing strategy The conditions that allow a move to become nontabu, because

either its tabu status has become not tabu or such a move

satisfies an aspiration criterion.

Aspiration criterion Criterion used to identify tabu restrictions that may be

overridden.

Data structure The way to record full or partial past information, which helps

avoid wasting computing time in recomputing already

computed information in future iterations.

Neighbour solution One move from the current solution.

Neighbourhood The set of all possible neighbour solution that can be reached

with one move.

38

3.5 A Basic Tabu Search Procedure

There is a procedure to be considered in order to make computational using TS.

A general outline of a TS procedure as state in Zainuddin, 2004 is as follows:

Given a feasible initial solution *x with fitness function value *z , let *xx = and
*)(zxz = . While stopping criterion is not fulfilled do the following steps.

[Step 1]

• Select best admissible move that transform x into *x

with fitness function value)(xz ′ and add its attributes

to the running list.

[Step 2]

• Perform tabu list management: compute moves (or

attributes) to be set as tabu, i.e update the tabu list.

[Step 3]

• Perform exchanges: xx ′= ,)()(xzxz ′= ;

if *)(zxz < then)(* xzz = and xx =* .

Result: *x is the best of all determined solution, with fitness function value *z .

The main features to be considered in TS implementation are as follows:

• An initialization phase

• A forbidding strategy

• A freeing strategy

• A stopping criterion

• A diversification strategy (optional)

39

3.5.1 The Initialization

TS procedure requires a starting solution and it is the most important part to start

a computational. At the initialization strategy, the initial solution, the tabu list size and

the moves need to be define on a few attribute. The descriptions of each of them are as

follows:

Initial Solution

 The computational of TS algorithm has to be start with an initial solution to

assign the value to the decision variables and to assess the fitness function. This initial

solution can be feasible or otherwise. It can be generated randomly or via a suitable

heuristic by an optimal method. Usually there are advantages to start from high quality

of initial solution. However, if the initial solution is already very good, it could make

out TS quite restrictive (Zainuddin, 2004).

Tabu List Size

 As previously mentioned in the literature, TS is a memory search method. Thus

the important parameter in TS is tabu list size (ST) which is the size of the record list of

a previous moves. This size varies from iteration to iteration. The size of the tabu list

represents its memory ability and it is hard to set. If ST is set to a small value it may be

too flexible and the probability of cycling may be high. But if ST is set to a large value

it may be too strict and a good solution may be missed due to the move leading to them

remained tabu take so long time. This can be avoided by using dynamic tabu list size.

40

Dynamic tabu list size can be periodically changes over time or also can be continuously

change. If the tabu list size change periodically over times, this mean that the tabu list

size will kept fixed for certain number of iteration and the process is repeated for k

times. While for continuously changes, the changes of tabu list size will depend on the

cost function for the selected moves, or in other word it will change when needed.

Moves

 In each iteration, a modification to the current solutions is necessary to produce a

neighbourhood solution which is known as move. This neighbourhood is constructed in

order to identify the adjacent solutions that can be reached from any current solution.

The size for the search neighbourhood is not limited but it must have significant

influence on the result. The larger tabu list size, the better the quality of the solution but

it requires more execution time.

3.5.2 The Forbidding Strategy

The forbidding strategy is designed to avoid cycling problem by forbidding the

moves that already been investigated. The main mechanism for using memory in TS is

to classify a subset of the moves in a neighbourhood as forbidden or tabu. But it will not

remain tabu forever; it only for a certain number of iterations and tabu tenure will define

for how long it remains tabu.

41

3.5.3 The Freeing Strategy

Tabu conditions may become too restrictive. Therefore it should not be

inviolable under all circumstances. And so of that, aspiration criteria are introduced in

the basic TS algorithm. The aspiration criterion is the rule that overrides tabu

restrictions. Aspiration criterion can make a certain forbidden moves become allowable

when it is satisfies the rule. It works by deleting the tabu restrictions of the solutions to

reconsider in further steps of the search. The goal of the aspiration function is to avoid

cycling in order to provide the ability to find an improved solution and it is organized to

be compatible.

3.5.4 The Stopping Criterion

Since the algorithm is open-ended, so the stopping criterion is always needed. It

may run forever as the optimum is unknown. The simplest form of stopping criterion is

a fixed number of iterations, such as after 1000 iterations or by using computational

time, such as after 10 minutes computations. It always a trade-off to consider because

maybe the computational need just two to three minutes computation, but we set it to

stop after 10 minutes computation, so there is no sense of running the programme after

that amount of time. Nonetheless, if the algorithm stops too early, the optimum solution

may not be found yet and conversely the computation time can be wasted if the

algorithm stops too late. Thus, the dynamic stopping criterion that is taking advantage

of the solution changes is more suitable in most cases.

42

3.5.5 The Diversification Strategy

Diversification provides a wider exploration of the search space and it drives the

search into a new region. When there is no improvement after performing some number

of iteration, it shows that either the optimum solution has already been found or the

neighbourhood of the solution space being searched is not good. If it is happen, this

mean that the algorithm need to terminate the search process or the algorithm need to

diversify it search process. The most common diversification strategy is a random

restart, solutions found by other greedy heuristics or solutions obtained using an

intelligent search that take into account past information. This can help to improve the

algorithm by escaping from a local optimum.

3.6 The Reactive Tabu Scheme

The tabu search is one of meta-strategy and it has been shown to be an effective

and efficient scheme for combinatorial optimization. It works by combining a hill-

climbing search strategy based on a set of elementary moves and a heuristics which is to

avoid the stops at suboptimal points and the occurrence of cycles. The fact that we

already know in TS implementation is that cycle are avoided if the repetition of previous

visited configuration is prohibited. But it is actually not sufficient for an effective and

efficient search technique. The chaotic like attractor should be discouraged (Battiti &

Tecchiolli, 1994). And so of that, Reactive Tabu Search is applying to discover of a new

high quality solution.

43

As we already known, the reactive tabu scheme totally maintains the basic

concept and also the terminologies of TS. What we try to do is to adapt the size to the

problem to the current evolution of the search, also escape strategy for diversifying the

search process.

3.7 Tabu Search Implementation

In this section, we present our tabu search implementation. It contains the way

we generate the initial solution, the element of our TS and RTS. In the element of TS

we provides the way we choose the move to produces the neighbourhood and which

criteria that we choose for aspiration and stopping. While in the element of RTS we

state our tabu list size and how do we counter the repetition problem.

3.7.1 The Initial Solution

The RTS starts from an initial configuration where a good-quality of the initial

configuration is used as a starting solution to obtain a good algorithm performance (da

Silva et al., 2008). The initial solutions are generated by using Cheapest Edge Method

(CEM). CEM was chosen as the initial solution as it is rather a simple heuristic

approach and it is similar with Nearest Neighbour (NN) method. They are different just

on the move criterion, but the algorithm is almost the same. The NN used least distance

to move from one node to another while cheapest edge method used least cost. NN

typically does not find very high quality solutions, but it is often and successfully used

44

6

2

9
8

1

7

5

4

3

()0.2,30
()0.3,30

()0.2,30

()0.3, 40

()0.2, 20

()0.1,10

()0.3,30

()0.1,10

()0.2,10

()0.4, 40

()0.3, 40

()0.1, 20
()0.3, 20

()0.2, 20

(),q c = (Quantity of Garbage, Service Cost)

in combination with pertubative search method and it is relatively fast and easy to use

compare with other tour construction such as General Insertion (GI), Nearest Insertion

(NI), Cheapest Insertion (CI), Farthest Insertion (FI) and Arbitrary Insertion (AI). This

is because all of them used a formula to choose the insertion of the move (Hoos &

Stutzle, 2004).

By using CEM, the vehicle starts by travelling from the depot. The vehicle will

move from one node to another with the required edge not yet served in a route that has

the minimum cost. If there is more than one required edge not yet served with the

minimum cost, then ties are broken arbitrarily. It will continue until all edge has been

served. When no remaining required edges can be feasibly added to the route, the route

is completed by the vehicle returning to the depot through the minimum cost of

deadheading path.

A network model can be represented as shown in Figure 3.2:

Figure 3.2: Network Model

45

While the algorithm for generating initial solution is as follows and symbols used are

listed as follows;

ijx = edge (),i j E A∈ ∪ traverse.

ijkx = number of times edge (),i j E A∈ ∪ is traversed in trip k .
1 () (,) cov ,
0ijk

if the edge arc i j R is ered in trip k
y

otherwise
∈⎧

= ⎨
⎩

ijq = edge demand.
Q = vehicle capacity.

ijc = service cost of an edge (),i j E A∈ ∪ .
C = total cost.

[Step 1]

• Find ijx , such that minij ijx c⎡ ⎤= ⎣ ⎦ unvisited arc.

• If no more min ijc⎡ ⎤⎣ ⎦ unvisited arc and ijk ijkx y< , find ijx

such that minij ijx c⎡ ⎤= ⎣ ⎦ visited arc that link to the

unvisited arc.

[Step 2]

• Check the demand;

• If
(),

ij ijk
i j R

q y Q
∈

>∑ , do not move, go to step 5 following with

step 1.

• Otherwise, move and proceed to step 3.

[Step 3]

• Update cost,
(), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑ .

[Step 4]

• If ijk ijkx y≥ , then proceed to step 5.

• Otherwise, repeat step 1.

46

[Step 5]

• Return to node 1 through minij ijx c⎡ ⎤= ⎣ ⎦ , then stop.

* Always assign node 1 as a depot.

* Ties are broken arbitrarily.

3.7.2 Elements of Tabu Search

There are several important elements used in the TS algorithm that need to define

in order to develop our own algorithm. There are a move neighbourhood structure,

aspiration criteria and stopping criteria. The descriptions of those elements are as

follows:

A Move Neighbourhood Structure:

As other local search algorithms, the RTS algorithm starts with generating an

initial solution follows by explores its neighbourhood in order to select the best move

neighbour solution as the current solution. For this research, we use three types of

moves in order to define their neighbourhood. There are 2-opt, insertion and deletion.

For 2-opt, we only examine one combination in every iteration. Then insertion and

deletion are applied if it is necessary. Its mean that, a necessary edge needs to be

inserted and unnecessary edge or repeated arc need to be deleted in a new generated

route to reach at a feasible route. Then the best improvement is selected with the best

fitness value in the neighbour solutions.

47

The basic step of 2-opt is to delete two edges from a tour and reconnect the

remaining fragments of the tour by adding two new edges. Figure 3.3 shows more

clearly how 2-opt were operated.

Figure 3.3: 2-opt move

Figure 3.3 shows the initial tour is),(),,(wvyx while after doing the 2-opt modification,

it becomes),(),,(wyvx . This 2-opt of move we use in our main neighbourhood

structure to generate their neighbourhood and we also include the insertion and deletion

to ensure the continuity of the route.

Aspiration Criterion:

 As mentioned above, aspiration criterion is the rules that overrides tabu

restrictions. If the aspiration criterion is satisfied, a tabu moves becomes allowed. In

other words, if a move leads to a better solution, then it is chosen even if it is tabu

(Castellani, 2007). There are three types of aspiration criterion as shown in Table 2.2

above. There are; aspiration by objective, aspiration by default and soft aspiration

criteria. Details description as discussed in Section 2.4.2 in Table 2.2. In this research,

we only consider the aspiration by default which is freeing the least cost move and its

only work when all moves are tabu. This means that if there is no more move are

x x y y

v v w w

48

allowed then check to the fitness function and freed the move which have the minimum

fitness function regardless of its tabu tenure.

Stopping Criterion:

 To terminate the computational, the algorithm will stop searching right after it

complete diversify on the repetition and we also confining the maximum iteration to

prevent from wasting time. This is because, in case if there are too many repetitions, the

algorithm may run forever until it completed diversify but in the same time the solution

are not improve after such number of iteration. Since the optimum is unknown, so the

maximum number of iteration is needed.

3.7.3 Elements of Reactive Tabu Search

Tabu List Size:

 The larger it size the stronger the memory. However, with a fixed list size, it is

possible that the searching trajectory may form a limit cycle (if the list size is small) and

it also may cause low efficiency (if the list size is too large) (Xu et al., 1998). In this

study, firstly we defined the tabu list size to be static changes. In the same time, we

need to record the repetition of the objective function, its mean that record un-

improvement of objective function in every iterations. Then if the repetition occurs for n

periods of times, then apply the diversification strategies. But if new best solution

found, the tabu list size need to be increase to make sure it will not cycle itself.

49

However, if all the movement already in tabu list, then we need to decrease the tabu list

size to loose it and preventing from being too strict. Otherwise it might missed a good

solution due to the move leading to them remained tabu take so long time.

A Diversification Strategy

 A diversification is needed to provide a wider exploration of the search space. In

this scheme, the diversification is applied when there are too many repetitions occur. It

work by undo the iteration to the first detect repeated iteration. Then search for the

neighbourhood that has the same objective function value with different route and apply

the move and start the search process again.

3.8 The General Reactive Tabu Search Algorithm

Figure 3.4 shows the general entire procedures in developing RTS. Without

performing RTS procedure in Step 3 in a flow chart as shown in Figure 3.4, the

development will be just a TS procedure.

50

Figure 3.4: Flow Chart of the Entire Procedure in Developing RTS

3.9 Summary

In general, this chapter contains our research methodology. In this research

methodology, the procedure, terms and terminologies in TS and RTS were discussed

successfully. At the end of this chapter provide the general flow chart for developing

RTS algorithm. Next chapter will discuss about other method that we used for

comparing purposes which is Look Ahead Strategy (LAS) and the development of our

TS algorithm.

CHAPTER 4

LOOK-AHEAD STRATEGY AND TABU SEARCH

FOR SOLVING CAPACITATED ARC ROUTING PROBLEM

4.1 Introduction

This chapter presents a Look-Ahead Strategy (LAS) and Tabu Search (TS)

implementation for solving Capacitated Arc Routing Problem (CARP). Based on the

initial worked by Ismail et al. (2007), a LAS computational module was developed for

solving CARP. The solution generated used as a benchmark to our propose solution

approaches which is the TS and Reactive Tabu Search (RTS). These two methods are

used to make a comparison with our RTS algorithm. The LAS method was refer in a

paper, entitled “Look Ahead Heuristics for Modelling Solid Waste Collection Problems”

by Ismail et al. (2007). While for TS algorithm, the algorithm used to compare with

RTS is RTS algorithm itself before applying it with element of RTS. Then we used the

same simulated data for comparing purposes.

52

4.2 Look-Ahead Strategy for Capacitated Arc Routing Problem

Ismail et al., (2007) used Look-Ahead Strategy method proposed by Amponsah

in solving the arc routing problem of the collection of garbage especially for developing

country. This approach conducted a case study on solid waste collection problem in the

area of Johor Bahru under municipal authorities of Majlis Perbandaran Johor Bahru

which is same as our area of the problem. Initially, the problem is modelled as CARP.

This method work to minimize the total cost of the operation which is set to be their

fitness function. It can be achieved by considering the minimum deadheading cycles

through all the required edges. A deadheading in CARP cases is stand for an empty

movement which means that the traversal of the vehicle without give their servicing. In

other word, the vehicle just only passes an arc without collecting the garbage. More

about the development of LAS algorithm will be discuss in a next section.

4.2.1 Basic Idea

The most important point in this problem is the revisiting an empty arc again

because it might increase their service cost. In other words, empty movement need to be

minimized as possible so that a service cost would be minimized. They also assume that

the estimation of the quantity of garbage in a particular arc is proportional to the arc

distance. Therefore, the algorithm was developed by considering the quantity along

the arc and the cost of servicing the arc. Hence, they used to combine both elements

into the formulation, such as;

 (4.1)

53

Equation (4.1) in the fitness function used to minimize the total cost. However,

this equation seems not performs well in terms of the demand/cost ratio in the entire

solution. Consequently, LAS was introduced to improve this greedy method by taking

into account present as well later choices in the algorithm. LAS works by inspecting the

total demand/cost ratio on all possible temporary edges with respect to their likelihood to

produce future advantage. It chooses the most promising edges and removes away

unpromising edges in the collection process. By doing so, they can cut revisiting an

empty arc again and at the same time the service cost will be reduce.

4.2.2 Look-Ahead Strategy Algorithm

Basically, the algorithm will proceeds from one junction to another which is

adjacent to the related nodes in each stage. For more details, Figure 4.1 shows clearly

every single step in performing the algorithm.

54

Figure 4.1: Flowchart of LAS

55

4.3 Tabu Search for Capacitated Arc Routing Problem

In the context of TS related to the CARP, the most appropriate solution

procedure need to be made so that it is suitable for our CARP model. The initial

solution, the tabu list size, the tabu moves, the aspiration criterion and the stopping

criterion is the main element to be defined in order to develop our own TS algorithm. It

can be consider as a body of solution procedure which is quite challenging to be define.

The problem is to design a route such that the demand of each customer is fully

collected. In completing the task, there are some requirements that need to be consider

which is the demand must not exceeding the maximum capacity of the vehicle while in

the same time all arc must be served in a minimum cost. So, the algorithm was built

based on these requirements.

4.3.1 Initial Solution

Initial solution is very important in TS procedure to initialize the main search

process. It is because TS will start work from one solution and explore its

neighbourhoods in order to get new regions of solutions. Not just an initial solution

itself is very important, the choice on defining the initial solution is also important. To

generate the initial solution, we use Cheapest Edge Method (CEM). As discussed in

Section 3.6.1, CEM was used for generating the initial solution because it is rather a

simple heuristics approach and this will obtain a good-quality of the initial

configuration. Besides, it is fast and easy to use compare with other tour construction.

56

The details of the algorithm for generating an initial solution can be describe as

follows:

ijx = edge (),i j E A∈ ∪ traverse.

ijkx = number of times edge (),i j E A∈ ∪ is traversed in trip k .
1 () (,) cov ,
0ijk

if the edge arc i j R is ered in trip k
y

otherwise
∈⎧

= ⎨
⎩

ijq = edge demand.
Q = vehicle capacity.

ijc = service cost of an edge (),i j E A∈ ∪ .
C = total cost.

[Step 1]

• Find ijx , such that minij ijx c⎡ ⎤= ⎣ ⎦ unvisited arc.

• If no more min ijc⎡ ⎤⎣ ⎦ unvisited arc and ijk ijkx y< , find ijx

such that minij ijx c⎡ ⎤= ⎣ ⎦ visited arc that link to the

unvisited arc.

[Step 2]

• Check the demand;

• If
(),

ij ijk
i j R

q y Q
∈

>∑ , do not move, go to step 5 following with

step 1.

• Otherwise, move and proceed to step 3.

[Step 3]

• Update cost,
(), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑ .

[Step 4]

• If ijk ijkx y≥ , then proceed to step 5.

57

• Otherwise, repeat step 1.

[Step 5]

• Return to node 1 through minij ijx c⎡ ⎤= ⎣ ⎦ , then stop.

* Always assign node 1 as a depot.

* Ties are broken arbitrarily.

4.3.2 Tabu List Size

For TS, a static tabu list size is used. However, a static number such as 3,

10 or 31 or even any other numbers could not be assigned as tabu list size because the

size of the problem may not always be the same. Let’s say if we set it to 9, then for

large size of problem, let say 30, the algorithm might cycle itself due to the small size of

the tabu list and it is not efficient to use. So to make the algorithm suitable for any

numbers of nodes, we set tabu list size depend to the size of the problem which is equal

to the number of nodes, n.

In order to choose the best value for tabu list size, a variety size in multiplication

of n were investigate. In the investigation, we consider the multiplication of n because it

varies from small to the large value so that the possible range will be check. Hence,

Table 4.1 presents the result of the investigation of the size of tabu list.

58

Table 4.1: Investigation on Tabu List Size

n IS
TS

TS1 TS2 TS3 TS4 TS5 TS6 TS7
5 380 380 380 380 380 380 380 380
6 330 330 330 330 330 330 330 330
7 490 430 430 430 490 490 490 430
8 680 600 620 620 680 680 600 620
9 820 760 760 760 760 760 760 770
10 750 750 750 750 750 750 750 750
11 890 890 890 890 890 890 890 890
12 1070 1070 1070 1070 1070 1070 1070 1070
13 1170 1140 1060 1060 1050 1060 1140 1090
14 1260 1220 1260 1260 1220 1220 1220 1220
15 1370 1370 1370 1370 1370 1370 1370 1370
20 1490 1390 1490 1410 1410 1450 1470 1490
25 2330 2330 2330 2330 2330 2330 2330 2330
30 2680 2680 2680 2680 2680 2680 2680 2680
50 1103 1103 1103 1103 1103 1103 1103 1103

TS1 :

TS2 :

TS3 :

TS4 :

TS5 :

TS6 :

TS7 :

Where

 Table 4.1 shows the experimental results generated using different sizes of tabu

list for up to 50 numbers of nodes. Numbers in bold in the table shows the best results

generated by the algorithm and we can see only TS1 gives the majority best fitness

function among them. Hence TS1 is chosen to be the tabu list size for CARP cases in

our TS algorithm. Figure 4.2 shows a specific comparison based on investigation on

59

tabu list size and it shows that TS1 always give the minimum answer compared with

others.

Figure 4.2: Investigation on Tabu List Size

60

4.3.3 Tabu Moves

The moves attribute will base on three type of move which are 2-opt, insertion

and deletion. For our first step to search a neighbourhood, we explore one combination

of 2-opt move. The 2-opt move can be describe as shown in Figure 4.3.

Figure 4.3: 2-opt Move

Figure 4.3 clearly shows the 2-opt moves. Before doing 2-opt move, there exists a

connection between and and after 2-opt was applied in the tour, a

connection between and has been deleted and a connection between

and have been reconnected. The outcome of 2-opt move will be stored in the

tabu list where it will stay there till some number of iteration which is based on the tabu

list size.

1. Delete two edges from tour
2. Reconnect the remaining fragments of the tour by adding

two new edges.

 x xy y

v v w w

61

 After 2-opt move is completed, some nodes may not be connected. This is

because in CARP cases, not all nodes are connected to each other. If we try to connect

two nodes without considering the existing link between them, we might get infeasible

answer. So to prevent from getting infeasible, then we need to insert an arc through

another node to connect the remaining edge of the tour. This is called insertion which is

our second step in exploring the neighbourhood.

Same concept goes to our third step of moves which is deletion. After doing 2-

opt and insertion, some edge might be repeated continuously. This attribute possibly

will affect our last result. Therefore to avoid the repetition of the edge, the repeated arc

must be delete so that the total cost of travelling can be minimized. In a conclusion, our

algorithm need three type of move which are 2-opt, insertion and deletion to explore

new region of solution space.

4.3.4 Aspiration Criterion

An aspiration criterion is needed if all moves become tabu. For our TS

algorithm, aspiration by default was chosen to free the tabu move so that the algorithm

may escape from being trap. The move with the minimum fitness function will be freed

from the tabu list. In other words, the tabu status of the move with the minimum fitness

function will be overridden.

62

4.3.5 Stopping Criterion

Since the algorithm is open-ended and may run forever as an optimal solution is

unknown, so the stopping criterion is needed. The TS algorithm will stop searching

after some number of iteration which is determine by the experimentation that shown in

Table 4.2.

Table 4.2: Stopping Criterion

 As we can see in Table 4.2, even the algorithm is set to stop after 1000 iteration

nevertheless it does not guarantees that it has reached a steady state. This is because it

depends on the move. If from the beginning of the search process it has drive to an

optimal solution, then a small number of iteration is sufficient enough to reach an

n IS Maximum Iteration
Max1=500 Max2=750 Max3=1000

5 380 380 380 380
6 330 330 330 330
7 490 430 430 430
8 680 620 620 620
9 820 760 760 770
10 660 750 570 610
11 890 890 890 890
12 1070 1070 1060 1070
13 1170 1140 1140 1160
14 1260 1220 1260 1220
15 1370 1370 1370 1370
20 1490 1390 1470 1330
25 2330 2330 2330 2330
30 2680 2680 2680 2680
50 1103 1103 1103 1103

63

optimal solution. Hence, to ensure that the algorithm performs well and reach an

optimal solution, then the stopping criterion is set to be maximum to 1000 iteration.

4.3.6 Tabu Search Algorithm

 The algorithm is needed in order to guide the process of the computational. In

mathematics, an algorithm is an effective method for solving a problem using a finite

sequence of instructions. Each algorithm is a list of well-defined instructions for

completing a task. Starting from an initial state, the instructions describe a computation

that proceeds through a well-defined series of successive states, eventually terminating

in a final ending state.

 For TS algorithm, the algorithm is starts with generating an initial solution. This

initial solution generating by using CEM as described in Section 3.6.1 and the cost is

calculate using CARP formulation. This phase is known as initial solution phase. The

implementation of TS will starts in the second step. In the second step which is TS

phase, the iteration number will be set and aspiration level, will be initialise.

 The third step is for searching the neighbourhood. In this step, the

neighbourhood will be generate by performing a single combination of 2-opt move.

Then an insertion and deletion procedure will be applied in order to get at a feasible

route. The move will be evaluated to find the minimum cost, in a next step. This

cost is then will be check whether it is better than . If is better than , then set

. Otherwise, this step will jump to Step 6.

64

 After performing the fourth step and it satisfy the rule, then the process will

continue with updating the tabu list size and checking for stopping criterion. If the

stopping criterion is satisfied, then the iteration will go to the next iteration and the

process in Step 3 will be followed again, or else, the best solution has been outputted.

 Step 6 in TS algorithm is provided in order to check the move. If the move is not

tabu, the process will go to Step 5 but if the move is tabu, then the process will search

for another untabu move. If no more untabu move exist in the solution space, then the

freeing strategy will be applied, but if untabu are still exist, the search process will back

to Step 3. The process will repeatedly until the stopping criterion have been satisfied.

 The algorithm will be described more clearly in a figure form which the whole

process of TS algorithm can be summarized in Figure 4.4.

65

Figure 4.4: The TS Algorithm

The algorithm is given as follows:

66

[Step 1] Initial solution phase

• Generating the initial solution using Cheapest Edge

Method

• Calculating the cost, aC , using CARP formulation

[Step 2] TS phase

• Set iteration, i= 1

• Set aspiration level = aC

[Step 3] Neighbourhood search

• Perform a single combination of 2-opt move

• Apply insertion and deletion procedures to reach at a

feasible route

• Evaluate move by finding the minimum cost, bC

[Step 4] Checking the result

• Check whether bC is better than aC

• If bC is better than aC then,

• Set a bC C=

• Else go to [Step 6]

[Step 5] Updating tabu list

• Update the tabu list

• Check for stopping rule

• If continue, set 1i i= + , and go to [Step 3]

• Else best solution outputted

[Step 6] Checking the move

• If the move is tabu, then

• Search the other untabu move

• Else go to [Step 5]

• If no more untabu move, then

• Apply freeing strategy, accept the move and go to [Step

5]

• Else go to [Step 3]

67

4.4 Computational Results

Both LAS and TS techniques have been tested on a set of instances generated from

simulated data. A total of 45 instances within the range of five to 50 nodes have been

used to test the algorithm and divided into three groups which is based on the maximum

capacity of the vehicle. Table 4.3 shows all the instances used and the labelled for each

of the problem according to their size of node and the maximum capacity of the vehicle

capacity.

Table 4.3: Type of Problem

Size of Node 5 tonne 9 tonne 15 tonne
5 A1 B1 C1
6 A2 B2 C2
7 A3 B3 C3
8 A4 B4 C4
9 A5 B5 C5
10 A6 B6 C6
11 A7 B7 C7
12 A8 B8 C8
13 A9 B9 C9
14 A10 B10 C10
15 A11 B11 C11
20 A12 B12 C12
25 A13 B13 C13
30 A14 B14 C14
50 A15 B15 C15

68

4.4.1 Look-Ahead Strategy Computational Results

Using the LAS approach proposed by Ismail et al, (2007), the same problems

have been used to generate the result. Table 4.4 shows the computational results given

from LAS algorithm.

Table 4.4: LAS Computational Results

Problem LAS
A1 400
A2 470
A3 460
A4 -
A5 -
A6 -

As we can see in Table 4.4, only 6 type of problem which only 5 tonne of vehicle

capacity with the number of node less than 10 can be solved by LAS proposed by Ismail,

et al. But unfortunately for our data, LAS failed to give the answer for problem A4, A5

and A6. This is because there exist an empty movement edge with length two or above

and LAS failed to compute since its only allow an empty movement edge with length

one, means the vehicle can only passes through an arc without servicing it once. A lot of

an empty movement may occur in some problem due to its network. The routing for

some of them may be too complicated means that the vehicle needs to pass through the

same arc three to four or even five times in order to reach the unvisited arc or to

complete the tour. It might because that was the only way to get the unvisited arc or it

might also be in term of the cost.

69

4.4.2 Tabu Search Computational Results

A variety number in range five to 50 number of nodes with three size of the

vehicle limit that describe earlier have been used to test the performance of TS

algorithm. The results generated by TS and also percentage of improvement from initial

solution are shown in Table 4.5.

Table 4.5: TS Computational Results

Problem
A : 5 tonne B : 9 tonne C : 15 tonne

IS TS % IS TS % IS TS %

1 380 380 0 380 380 0 380 380 0

2 330 330 0 330 330 0 330 330 0

3 490 430 12.24 490 430 12.24 490 430 12.24
4 680 620 8.82 680 600 11.76 680 600 11.76
5 820 740 9.76 820 730 10.98 820 730 10.98
6 800 800 0 750 750 0 750 750 0
7 1010 1010 0 890 870 2.25 890 830 6.74
8 1100 1100 0 1150 1150 0 1150 960 16.52
9 1050 1050 0 1060 980 7.55 1060 980 7.55
10 1330 1330 0 1150 1150 0 1150 1050 8.70
11 1330 1330 0 1190 1190 0 1190 1060 10.92
12 1330 1330 0 1290 1290 0 1290 1210 6.20
13 2290 2290 0 2400 2400 0 1990 1990 0
14 2630 2630 0 2370 2370 0 2290 2290 0

15 1100 1100 0 1100 1100 0 1100 1100 0

70

From the table, we can see the percentage of improvement using TS. It clearly shows

that not all run will generate an improvement in the search. This is due to the already

good initial solution generated using CEM method. But there are still have an

improvement on the others because CEM is not the perfect method to give the optimal

solution. Hence, we need to test with TS, perhaps it might have other better solution

than CEM. For clearly observation, refer to Figure 4.5 and Figure 4.6. Figure 4.5 shows

a comparison results between IS and TS in graph while Figure 4.6 shows a percentage of

the improvement for TS computational results.

Figure 4.5: Comparison between IS and TS

71

Figure 4.6: Percentage of Improvement for TS Computational Results

4.4.3 Look-Ahead Strategy versus Tabu Search

As mention before, these two methods (LAS and TS) are used for comparing

purposes. As a result, Table 4.6 shows the comparison result between LAS and TS,

while Figure 4.7 illustrates the results in graph.

72

Table 4.6: Comparison between LAS and TS

Problem LAS TS
A1 400 380
A2 470 330
A3 460 430
A4

620
A5

740
A6

800
A7 - 1010
A8 - 1100
A9 - 1050
A10 - 1330
A11 - 1330
A12 - 1330
A13 - 2290
A14 - 2630
A15 - 1100

Figure 4.7: Comparison between LAS and TS

73

These results clearly show the weaknesses of LAS method that it cannot compute a large

number of nodes. The maximum number we can use in LAS only 10 nodes. Other than

that, it also shows that results given by LAS are not the perfect one because the results

produce by TS is much better. One more weaknesses on LAS is that it cannot compute

the servicing cost if the vehicle need to pass through an empty edge again and again

without servicing it in order to complete the route or to reach an edge that not been

served. In order words, LAS can only perform well for simple network.

4.5 Summary

This chapter described a little bit about the LAS method and described clearly

about the development of TS model. At the end of this chapter, we can see a

computational results and a comparison between these two methods. Next, we will

discuss about the development of RTS algorithm which is develop by modification from

TS algorithm which describe in this chapter in certain term.

CHAPTER 5

SOLUTIONS BASED ON REACTIVE TABU SEARCH

5.1 Introduction

 Chapter five presents a Reactive Tabu Search (RTS) algorithm developed to

solve a Capacitated Arc Routing Problem (CARP). RTS scheme was based on theory of

dynamical systems which was introduced by Battiti and Tecchiolli (1994). This

approach maintains the basic ideas of Tabu Search (TS) with changes in the features of

selecting tabu size. It dynamically controls the size of tabu list. The search mechanism

in TS is not sufficient to arrive at the global optimum and so of that an escape strategy

for diversifying the search process was introduced. According to Wassan et al., 2008,

RTS is robust enough to overcome tabu list problem and has little effect of parameter

changes. This chapter begins with the discussion on the implementation of RTS,

followed by the discussion on the algorithm and finally a discussion on computational

results.

 75

5.2 Reactive Tabu Search Implementation

Generally RTS maintain the basic concept of TS algorithm. RTS modified the

tabu list size and allow repetition to diversify the exploration of searching the

neighbourhood in order to widen the solution space. Table 5.1 explains more clearly the

differences between TS and RTS algorithm.

Table 5.1: The Differences between TS and RTS

Parameter TS RTS

Initial Solution Generated using Cheapest Edge
Method (CEM) Same as TS

Neighbourhood
Structure
(Moves)

A single combination of 2-opt
move
Then insertion and deletion to
reach at feasible route

Same as TS

Tabu List Size

Set to be static, which is equal to
the number of the nodes,

Set to be dynamic
Initially,
• for then is set to

• for then is set to

Then,

• if solution improve; increase
 up to 20% of the current

• if all moves become tabu;
decrease 20% of the current

 76

Aspiration
Criterion

Aspiration by default that is
freeing the least cost move
(check at the fitness function and
free the minimum one)

Same as TS

Diversification
Strategy Not apply

Diversification is apply on the
repeated solution
Diversify if there is no
improvement;
• for times (if)
• for times (if)

Stopping
Criterion

Confine maximum iteration up to
1000

Two criterion for stopping:
1. After algorithm complete

diversify the neighbourhood
2. Maximum iteration is set to be

500
The search stops whichever
criterion is met first

 The differences between TS and RTS have been described clearly in Table 5.1.

From the table, the differences between both methods are tabu list size, diversification

strategy and stopping criterion. These three elements will be described separately in the

next sub-section.

5.2.1 Tabu List Size

 77

RTS employed the dynamic tabu list size . In this study, only the number

of nodes between five up to 50 nodes had been considered. A different tabu list size was

assign to two different groups of nodes, namely group with less than 10 nodes and group

with nodes more and equal to 10. For , tabu list size is set to be while for

 tabu list size will be set to . An investigation on the effect of tabu list

size was simultaneously done with the effect of the repetition for 15 different size

problems. Table 5.2(a) and Table 5.2(b) show the results generated by using RTS

algorithm with different size of tabu list size and number of repetition.

Table 5.2(a): Investigation on Tabu List Size and Repetition

n IS
RTS

RTS1 RTS2 RTS3 RTS4 RTS5 RTS6 RTS7 RTS8
5 380 380 380 380 380 380 380 380 380
6 330 330 330 330 330 330 330 330 330
7 490 430 430 430 430 430 430 430 490
8 680 620 620 670 600 600 600 600 600
9 820 710 710 710 780 710 730 770 710
10 660 660 600 560 600 560 570 660 660
11 890 890 830 830 890 890 890 890 830
12 1070 1070 1000 1070 1070 1070 1070 1060 1070
13 1170 1080 1030 1170 1110 990 1170 1170 1170
14 1260 1260 1110 1130 1220 1210 1110 1260 1260
15 1370 1370 1260 1370 1370 1370 1370 1370 1370
20 1490 1450 1380 1310 1490 1410 1410 1470 1330
25 2330 2330 2330 2330 2330 2330 2330 2330 2330
30 2680 2680 2680 2680 2680 2680 2680 2680 2680
50 1103 1103 1103 1103 1103 1103 1103 1103 1103

 78

Table 5.2(b): Investigation on Tabu List Size and Repetition

n IS
RTS

RTS9 RTS10 RTS11 RTS12 RTS13 RTS14 RTS15
5 380 380 380 380 380 380 380 380
6 330 330 330 330 330 330 330 330
7 490 430 490 490 490 430 490 490
8 680 600 670 600 600 620 600 670
9 820 760 770 710 820 820 710 730
10 660 570 660 660 660 660 530 530
11 890 890 830 830 870 870 890 830
12 1070 1060 1070 1060 1070 1070 1060 1000
13 1170 1170 1170 1170 990 1110 1170 940
14 1260 1050 1260 1090 1200 1170 1220 1050
15 1370 1370 1370 1370 1370 1370 1370 1260
20 1490 1390 1490 1410 1320 1490 1450 1270
25 2330 2330 2330 2330 2330 2330 2330 2330
30 2680 2680 2680 2680 2680 2680 2680 2680
50 1103 1103 1103 1103 1103 1103 1103 1103

RTS1 : , Repetition =

RTS2 : , Repetition =

RTS3 : , Repetition =

RTS4 : , Repetition =

RTS5 : , Repetition =

RTS6 : , Repetition =

RTS7 : , Repetition =

RTS8 : , Repetition =

RTS9 : , Repetition =

RTS10 : , Repetition =

RTS11 : , Repetition =

RTS12 : , Repetition =

RTS13 : , Repetition =

RTS14 : , Repetition =

RTS15 : , Repetition =

Where n = 5, 6, 7, ..., 50

 79

 From Table 5.2(a) and Table 5.2(b), numbers in bold shows the minimum

solution that can be reached by RTS algorithm. The result shows that RTS15 gives a

bigger number of solutions with the best fitness values. There are 46.67 percent

instances give an improvement from an initial solution, while for other tabu list of size,

the improvement is rather limited between two or four instances only. Although RTS15

give majority best solution among others, but there are only for instances with the

number of node more than and equal to 10. For instances with the node less than 10,

RTS15 are not be up to much in finding other solution that less than the initial solution

while in other tabu list size, an improvement occurred. By considering instances with

the number of node less than 10, RTS5 give majority best solution with three out of five

instances give an improvement from the initial solution.

 Figure 5.1 shows the specific comparison based on investigation on tabu list size

for nodes less than 10. While Figure 5.2 shows the specific comparison based on

investigation on tabu list size for 10 number of nodes and above. These graph show that

RTS5 and RTS15 always reach at minimum solution compared to other which only

some problem manage to give an improvement.

 80

Figure 5.1: Comparison on Tabu List Size and Repetition for

 81

Figure 5.2: Comparison on Tabu List Size and Repetition for

 82

Based on this investigation, RTS5, (=), was selected to be as tabu list size

for the number of nodes less than 10 and RTS15, (), to be as tabu list

size for the rest of it. The selections of tabu list size are given in Table 5.3.

Table 5.3: Tabu List Size

Range of Nodes Tabu List Size,

10
10

 Due to the dynamic value of the tabu list size, it changes during the search

process. This list is known as a dynamic tabu list size. From this study, it shows that 20

percent of the current tabu list size will increase if there is an improvement on the

solution but the list size reduces by 20 percent if all the movement becomes tabu. The

values of this attribute were assigned based on the investigation tested for dynamically

of tabu list size as shown in Table 5.4.

 83

Table 5.4: Investigation on Dynamic Tabu List Size

n IS d1 d2 d3 d4 d5 d6 d7 d8 d9
5 380 380 380 380 380 380 380 380 380 380
6 330 330 330 330 330 330 330 330 330 330
7 490 430 430 430 430 490 430 430 490 430
8 680 600 600 600 620 600 600 600 600 600
9 820 710 710 710 710 710 710 710 820 820
10 660 530 600 530 660 660 660 660 570 600
11 890 830 830 890 830 830 830 890 830 830
12 1070 1000 1070 1070 1070 1070 1060 1070 1070 1070
13 1170 940 1000 1000 1170 1170 1170 1170 1170 1170
14 1260 1050 1210 1130 1200 1050 1050 1130 1050 1260
15 1370 1260 1370 1370 1370 1370 1370 1370 1370 1370
20 1490 1270 1410 1390 1370 1450 1410 1390 1320 1390
25 2330 2330 2330 2330 2330 2330 2330 2330 2330 2330
30 2680 2680 2680 2680 2680 2680 2680 2680 2680 2680
50 1103 1103 1103 1103 1103 1103 1103 1103 1103 1103

d1 : increase 20%, decrease 20%

d2 : increase 20%, decrease 50%

d3 : increase 20%, decrease 70%

d4 : increase 50%, decrease 20%

d5 : increase 50%, decrease 50%

d6 : increase 50%, decrease 70%

d7 : increase 70%, decrease 20%

d8 : increase 70%, decrease 50%

d9 : increase 70%, decrease 70%

 Table 5.4 shows the results from an investigation conducted on dynamic tabu list

size. The percentage of increasing and decreasing the tabu list size is based on

experimentation and results produced by the RTS algorithm. As shown in Table 5.4, d1

give the best performance among others. The results produced by d1 improved up to

66.67 percent. On contrary, the results produced by others improved between 20 to

33.33 percent only. Therefore, d1 was chosen to be a size for dynamic tabu list. By

selecting d1, tabu list size will increase 20 percent when a better solution found and

decrease 20 percent when all the movement become tabu.

 84

5.2.2 Diversification Strategy

In RTS algorithm, the diversification strategy is applied to allow for repetition to

occur. The idea comes when the number of repetition occurs too many times in the

solution space. A searching trajectory seeks to jump out from current solution to another

solution after certain number of none improving iteration. The experimentation was

carried out simultaneously with the experimentation of tabu list size which the results

are provided in Table 5.2(a) and Table 5.2(b). A different number of repetition was

assigned to two different groups of nodes, namely group with nodes less than 10 and

group with nodes more than or equal to 10. For , the best time to diversify the

search process is when there is no improvement for 2n times. Mean while for ,

the search process will diversify when there is no improvement for 3n times. The best

time to diversify is given in Table 5.5.

Table 5.5: Repetition

Range of Nodes Repetition

10

10

The diversification are done by undo the iteration to the first detected of non-

improving moves and choose the other route that have the same fitness function for

searching another trajectory to get the best possible solution. Figure 5.3 shows an

illustration on how the repetition is made.

 85

Figure 5.3: Illustration on Diversification Strategy

 The algorithm needs to diversify if there is no improvement in the fitness

function after some number of iteration. As illustrate in Figure 5.3, let say if there is no

improvement on the current fitness function from the first iteration, then after 2n

iteration (example on number of nodes less than 10), the algorithm will undo and back to

first iteration and seek for another solution that have a same value with the current

fitness function and start exploring their moves. This diversification will continue until

all the possible solution that have same fitness function had been explored.

i = 1 i = 2 i = 2n

i = 2n+1 i = 2n+2 i = 2n

= have a same value with the current fitness function
= other value that worse than current fitness function

 86

 Table 5.6 shows a comparing result between without the application of

diversification and with the application of diversification. For addition, these results

have been illustrated in Figure 5.4 and Figure 5.5.

Table 5.6: Investigation on Diversification Strategy

n
Without Diversify With Diversify

IS RTS
% of

improvement
IS RTS

% of
improvement

5 380 380 0 380 380 0
6 330 330 0 330 330 0
7 490 430 12.24 490 430 12.24
8 680 620 8.82 680 600 11.76
9 820 820 0 820 710 13.41
10 660 600 9.09 660 530 19.70
11 890 890 0 890 830 6.74
12 1070 1070 0 1070 1000 6.54
13 1170 1140 2.56 1170 940 19.66
14 1260 1220 3.17 1260 1050 16.67
15 1370 1320 3.65 1370 1260 8.03
20 1490 1390 6.71 1490 1270 14.77
25 2330 2330 0 2330 2330 0
30 2680 2680 0 2680 2680 0
50 1103 1103 0 1103 1103 0

 87

Figure 5.4: Comparison on a Result between Diversify and Not Diversify

Figure 5.5: Comparison on Percentage of Improvement between Diversify and Not

Diversify

 88

Regarding the results provided in Table 5.6 and as clearly shown in Figure 5.4,

results produce by the application of diversification always give the better performance

compared without the application of diversification. While Figure 5.5 shows that,

without the application of diversification, RTS still can present an improvement on

initial solution but results with the application of diversification is much more improved.

Summarization for percentage of improvement as reported in Table 5.7 shows that with

the application of diversification, each node improve in average up to 8.63 percent while

without the application, the improvement only at 3.08 percent. This shows that, the

application of diversification is useful in exploring and searching the best solution for

RTS algorithm.

Table 5.7: Summary on Diversification Strategy

 Without Diversify With Diversify
Total % of improvement 46.24 129.52

Average % of improvement 3.08 8.63

5.2.3 Stopping Criterion

Since RTS is one of an iterative method to compute successive approximation to

the solution, then a stopping criterion is needed to prevent the algorithm from running

forever. Because of that, choosing the good stopping criterion is very important. In

RTS, two ways to stop the algorithm had been used. First, the algorithm needs to

explore the repetition in the iteration before it could stop. Mean that the algorithm has to

diversify by exploring all the repetition in solution space before the stopping criterion

can be applied. However, sometimes in several situations, the algorithm may running

 89

seems like there are no ending solution. In preventing the algorithm from running

forever, second criterion is used. This second criterion will ask the algorithm to stop

searching if it reaches at maximum iteration which is to be 500.

Table 5.8 shows the experimental results on the number of maximum iteration.

Its shows that the algorithm gives the same fitness function for different size of

maximum iteration, which are 500, 750 and 1000. This means that, 500 iterations is

enough for the algorithm to reach at the best fitness function.

Table 5.8: Investigation on Maximum Iteration

n IS
Maximum Iteration

500 750 1000
5 380 380 380 380
6 330 330 330 330
7 490 430 430 430
8 680 600 600 600
9 820 710 710 710
10 660 530 530 530
11 890 830 830 830
12 1070 1000 1000 1000
13 1170 940 940 940
14 1260 1050 1050 1050
15 1370 1260 1260 1260
20 1490 1270 1270 1270
25 2330 2330 2330 2330
30 2680 2680 2680 2680
50 1103 1103 1103 1103

 90

5.3 Reactive Tabu Search Algorithm

As earlier state, RTS development is made by modification from TS algorithm.

So the implementation of the algorithm is almost similar with TS. The difference is only

in a part of repetition (in Step 7) where the implementation of diversification strategy is

applied. The repetition is done by undo the iteration and randomly selects the different

route that have the same fitness function. Then the process will turn back to Step 3 and

start searching the neighbourhood again and so on.

Since the tabu list size in RTS implementation is set to dynamically change

during the search process, so the additional on when to increase and decrease the tabu

list size is added in Step 4 and Step 6, respectively. The complete RTS algorithm is

shown in Figure 5.6.

 91

Figure 5.6: The RTS Algorithm

The details descriptions of the algorithm are as follows:

 92

[Step 1] Initial solution phase

• Generating the initial solution using CEM

• Calculating the cost, aC , using CARP formulation

[Step 2] TS phase

• Set iteration, i= 1

• Set aspiration level = aC

[Step 3] Neighbourhood search

• Perform a single combination of 2-opt move

• Apply insertion and deletion procedures to reach at a

feasible route

• Evaluate move by finding the minimum cost, bC

[Step 4] Checking the result

• Check whether bC is better than aC

• If bC is better than aC then,

• Set a bC C=

• Increase the tabu list size

• Else go to [Step 6]

[Step 5] Updating tabu list

• Update the tabu list and repetition

• If repetition occur, go to [Step 7]

• Check for stopping rule

• If continue, set 1i i= + , and go to [Step 3]

• Else best solution outputted

[Step 6] Checking the move

• If the move is tabu, then

• Search the other untabu move

• Else go to [Step 5]

• If no more untabu move, then

• Apply freeing strategy, accept the move

• Decrease the tabu list size and go to [Step 5]

 93

• Else go to [Step 3]

[Step 7] Repetition

• Undo the iteration and randomly select different route

with the same fitness function

• Then go to [Step 3]

5.4 Computational Results

The performance of RTS algorithm have been tested and evaluated. Same

instances used to test the performance of TS algorithm have been tested to RTS

algorithm. The performances of the RTS algorithm are shown in Table 5.9 and have

been illustrated in Figure 5.7 and Figure 5.8. Generally, some problems show no

improvement on the initial solution and some of them can improve more than 25

percent. In detail, more than half of the total problem shows an improvement. As

clearly shown in Figure 5.7, results produced by RTS can still reach at a better solution

than IS even some of them are not really improve to a better one.

 94

Table 5.9: RTS Computational Results

Problem
A : 5 tonne B : 9 tonne C : 15 tonne

IS RTS % IS RTS % IS RTS %
1 380 380 0 380 380 0 380 380 0
2 330 330 0 330 330 0 330 330 0
3 490 430 12.24 490 430 12.24 490 430 12.24
4 680 620 8.82 680 600 11.76 680 600 11.76
5 820 710 13.41 820 710 13.41 820 710 13.41
6 800 750 6.52 750 750 0 750 750 0
7 1010 830 17.82 890 790 11.24 890 790 11.24
8 1100 1100 0 1150 1100 4.35 1150 860 25.22
9 1050 1050 0 1060 970 8.49 1060 970 8.49
10 1330 1230 7.52 1150 1050 8.70 1150 1050 8.70
11 1330 1330 0 1190 1140 4.20 1190 1060 10.92
12 1330 1330 0 1290 1290 0 1290 1170 9.30
13 2290 2290 0 2400 2400 0 1990 1990 0
14 2630 2630 0 2370 2370 0 2290 2290 0
15 1100 1100 0 1100 1080 1.82 1100 1078 2.00

Figure 5.7: Comparison between IS and RTS

 95

Figure 5.8: Percentage of Improvement for RTS Computational Results

 The percentage of the improvement on the initial solution is given in Figure 5.8.

It is shown that some instances give no improvement and some of them can give the

improvement up to 25 percent. The summarization of this improvement is given in

Table 5.10.

Table 5.10: Average Percentage of Improvement

 A B C
Number of improve 6 9 10

% number of improve 40 60 66.67
Total % of improvement 66.33 76.21 113.28

Average % of improvement 4.42 5.08 7.55

 96

 Table 5.10 shows the summary of improvement in number of problem that

categorized in different size of maximum limit of vehicle. For problem categorized in

group A (5 tonnes), only six instances out of 15, which is just 40 percent that give an

improvement compare to group C (15 tonnes), which is 66.67 percent from the number

of instances give an improvement. This means that, the larger it size the more

improvement RTS could give. This is strengthen by the total average of percentage of

improvement that group A only improve 4.49 percent instead group C improve up to

7.55 percent.

5.5 Summary

The development of RTS has been discussed clearly in this chapter. Also

included in this chapter are the RTS algorithm and computational result on percentage of

improvement which is how much RTS improve from initial solution. More analysing on

TS and RTS will be discuss in a next chapter.

CHAPTER 6

SYSTEM DEVELOPMENT FOR

CAPACITATED ARC ROUTING PROBLEM MODEL

6.1 Introduction

This chapter presents the implementation of the algorithm and methodology

developed in previous chapters. In this implementation, the problem of Capacitated Arc

Routing Problem (CARP) will be simulated using simple computer programming. It

begins with the detail explanation of CARP’s program operation developed using

Microsoft Visual Studio followed by the program visualisation and end with how to

manage and use the CARP solution systems.

98

6.2 Programming with Microsoft Visual Studio

In developing a solution to CARP, a programming was developed using

Microsoft Visual Studio 2005 Team Suite (Trial) Edition and it is written in Visual C#

language. Visual Studio is a complete set of development tools for building ASP.NET

Web applications, XML Web Services, desktop applications, and mobile applications.

C# (pronounced "C sharp") is a programming language that is designed for

building a variety of applications that run on the .NET Framework. C# is an object-

oriented programming language developed by Microsoft as part of the .NET initiative.

Anders Hejlsberg leads development of the C# language, which has a procedural, object-

oriented syntax based on C++ and includes influences from aspects of several other

programming languages (most notably Delphi and Java) with a particular emphasis on

simplification. C# is simple, powerful, type-safe and object oriented. Many innovations

in C# enable rapid application development while retaining the expressiveness and

elegance of C-style languages. The Visual Studio supports Visual C# with a full-

featured code editor, compiler, project templates, designers, code wizards, a powerful

and easy-to-use debugger, and other tools. The .NET class library provides access to

many operating system services, well-designed classes that speed up the development

cycle significant and other useful features.

6.2.1 The Visual Studio Application

One of the collections of development tools exposed through a common user

interface is the Visual C# integrated development environment (IDE). Some of the tools

99

are shared with other Visual Studio languages and some of them such as C# compiler are

unique to Visual C#. The most important tools and windows in Visual C# are as

follows:

• The Code Editor, for writing source code.

• The C# compiler, for converting C# source code into an executable program.

• The Visual Studio debugger, for testing the program.

• The Toolbox and Designer, for rapid development of user interfaces by using

the mouse.

• Solution Explorer, for viewing and managing project files and settings.

• Project Designer, for configuring compiler options, deployment paths,

resources and more.

• Class View, for navigating through source code according to types, not files.

• Properties Window, for configuring properties and events on controls in user

interface.

• Object Browser, for viewing the methods and classes available in dynamic

link libraries including .NET Framework assemblies and COM objects.

• Document Explorer, for browsing and searching product documentation on a

local computer and on the internet.

Figure 6.1: Basic IDE

100

 The windows for most of these tools can be opened from the View menu. Figure

6.1 represent the basic IDE. The large main window is used by the Code Editor, the

Windows Forms Designer or the Windows Presentation Foundation Designer which is

the space needed to write the source code. Upper-right of the main window is Solution

Explorer window which shows all the files in the project in a hierarchical tree view.

Lower-right of the main window is the Properties window that enable user to set

properties and hook up events for user interface controls such as buttons and text boxes.

The Toolbox window is located on a left-side of the main window. Window below the

Code Editor Window is named as Task List Window which functioning to list down the

build errors when we compile the designed project in the Code Editor Window.

 The C# Compiler has no window because it is not an interactive tool but we can

set the compiler options in the Project Designer, while the Project Designer property

pages can be accessed by right-clicking the Properties node in Solution Explorer and

then clicking open. All the windows in Visual C# actually can be made dock-able or

floating, hidden or visible or it can be moved to a new locations. Many other aspects of

the IDE can be customizing by clicking Options on the Tools menu.

6.3 Waste Collection Management Computational Module

 The main purpose in developing the Waste Collection Management (WCM)

computational module is to make the computational easier. The computational can be

done by a manual calculation, but it will take a very long time to complete the

calculation. This is because the way on how TS and RTS work. It works by iteratively

101

searching from one solution to another solution and this make the computational so hard

to be done manually by man-power. Therefore, a best way to compute this type of

problem is by using computer programming.

 For this WCM computational module, the system is excellent to be used by the

data with 50 numbers of nodes and less. For data with number of nodes more than 50,

this WCM computational module can also be used, but the space for a drawing region in

graphical user interface (GUI) need to be widen so that it can accommodate for a large

number of nodes. However, the limitation is set up to 100 numbers of nodes. This

WCM computational module cannot afford for a calculation more than 100 numbers of

nodes. The modification in a coding is needed if the data more than 100 numbers of

nodes have to be used in the calculation.

6.4 Program Visualization; Graphical User Interface

The GUI has been created with the purpose of making the program to be user

friendly. The user can key in the input and design the graph as they pleased. This GUI

start with a welcome message and it will display when opening the program as shown in

Figure 6.2. Just click an enter button to go through this welcome message.

102

Figure 6.2: Welcome GUI

Image display in Figure 6.3 is our computational GUI which contains a drawing

region to draw the network, a push buttons to control the behaviour of the computation

and an output layout to give the result produce by the program. It also contains a menu

bar and there are three pull down menus on it which are File, Edit and Help. Figure 6.4

shows all the features in menu bar.

103

Figure 6.3: GUI of the Program

There are five items in File as illustrated in Figure 6.4(a) which are New to open

a new file, Open to call the existing file, Save and Save As to save the network design on

drawing region in File.xml document type and Exit to close the program. For the Edit,

there are two items which are Undo and Copy To Clipboard as presents in Figure 6.4(b).

The Undo menu allowing user to undo some of the errors user may have made while

entering the data into a drawing region and Copy To Clipboard providing user to copy

the drawing network. Figure 6.4(c) illustrates the items in Help. There are two of them,

which are Information and About.

Drawing region

Output layout

Menu bar

Push button

104

(a)

(b)

(c)

Figure 6.4: Features in Menu Bar

Information provide in Information menu are as shown in Figure 6.5 while

information provide in About menu are as shown in Figure 6.6.

105

Figure 6.5: Information Menu

Figure 6.6: About Menu

6.5 Managing the Capacitated Arc Routing Problem Program

This program is created to be very user friendly and easy to manage. First page

is just an introduction page as shown in Figure 6.2. Just click the Enter button to open

106

the computation graphical interface. Then interface as shown in Figure 6.3 will appear

after clicking the enter button.

To start using this program, we need to design the input data on the drawing

region or call the existing file if the network is already created. In drawing a network,

use left-click mouse to create a nodes and right-click mouse to create an arc (connection)

between two nodes. In connecting two nodes, a form such as shown in Figure 6.7 will

appear to ask for a value of demand which is quantity of the garbage and a service cost.

Key-in the value and then click ok.

Figure 6.7: Form for Insert Demand and Cost

 After complete drawing the network such as shown in Figure 6.8, then we can go

to the computation. To start TS or RTS computation, we need to generate the initial

solution first. So, click Compute Initial button to compute the initial solution. A form

such as in Figure 6.9 will appear to ask for the maximum capacity of the vehicle; key-in

the maximum limit of the vehicle can load in a time and then click ok.

107

Figure 6.8: Example of Complete Network in Drawing Region

Figure 6.9: Form for Maximum Capacity of the Vehicle

 The initial solution will produce using Cheapest Edge Method (CEM) in output

layout once we click ok in maximum capacity form. Figure 6.10 shows the example of

the result generated by the program in output region.

108

Figure 6.10: Example of the Initial Solution Produced By the Program

 Lastly click the Compute TS button to get the result by using TS algorithm or

click Compute RTS button to get the result by using RTS algorithm. After the program

stop computing, a message box such as shows in Figure 6.11 will appear to tell the

computational time of running the program. Click ok to finish it and we can see all the

result produced by the program in output region. Every single route that gives the

minimum cost will list out in this region. Figure 6.12 shows the example of the result

produce by the program.

Figure 6.11: Message Box of Computational Time

Figure 6.12: Example of the Result Produced By the Program

109

6.6 Summary

The system development on Visual C# has been discussed widely in this chapter.

Each functions in GUI have been clearly explain. We also provide in details the way to

run this program. Next chapter will be the comparison analysis of the computational

using TS and RTS approach.

CHAPTER 7

ANALYSIS OF RESULTS,

CONCLUSION AND RECOMMENDATION

7.1 Introduction

In this chapter, performances of Reactive Tabu Search (RTS) algorithm will be

investigated and evaluated by comparing with Tabu Search (TS) algorithm. The

instances used for conducting a test on RTS algorithm are always same as TS instances.

In this chapter, the conclusion and recommendation of the research is also provided.

This chapter begins with the analysis of the results by comparing the results between TS

and RTS. At the end of this chapter, the conclusions for the whole research and also the

recommendations are given.

111

7.2 Analysis of Results

After some findings as discussed in the earlier chapters (Chapter 4 and Chapter

5), the performance of the TS algorithm and RTS algorithm will be discussed and

compared in this section. Then the discussion will follows with the summarization on

the advantages and disadvantages of TS and RTS.

 Table 7.1 shows the details values of the fitness function produced by TS

algorithm and RTS algorithm.

Table 7.1: Comparison between TS and RTS

Problem
A B C

TS RTS TS RTS TS RTS

1 380 380 380 380 380 380
2 330 330 330 330 330 330
3 430 430 430 430 430 430
4 620 620 600 600 600 600
5 740 710 730 710 730 710
6 800 750 750 750 750 750
7 1010 830 870 790 830 790
8 1100 1100 1150 1100 960 860
9 1050 1050 980 970 980 970
10 1330 1230 1150 1050 1050 1050
11 1330 1330 1190 1140 1060 1060
12 1330 1330 1290 1290 1210 1170
13 2290 2290 2400 2400 1990 1990
14 2630 2630 2370 2370 2290 2290
15 1100 1100 1100 1080 1100 1078

112

Based on a computational result between Look-Ahead Strategy (LAS) and TS in

Chapter 4, LAS gave a result slightly worse than TS and only three instances can be

compared. Therefore, the comparisons are only between TS and RTS computational

results. Table 7.1 shows that RTS results give an equal or even better solution than TS.

For obviously evaluation, Figure 7.1 gives a clear illustration for this comparison.

Figure 7.1: Comparison between TS and RTS

Figure 7.1 shows that TS can reach the same minimum solution as RTS but never

reach the better solution than RTS. While in some instances, RTS can give much more

improvement and better solution compared to TS. This illustrates that RTS algorithm

producing high-quality solution. The main reason for its improvement is the ability to

dynamically change the tabu list size which allows it to escape from being trap in tabu

list. In additional, a consideration of the diversification in implementing the RTS

algorithm is also one of the reasons of the improvement in the initial solution. The

113

diversification was done by allowing a repetition in the search process in order to

explore their neighbourhood widely. The summarization of advantages and

disadvantages of TS and RTS are described in Table 7.2.

Table 7.2: Advantages and Disadvantages of TS and RTS

 Advantages Disadvantages

TS

The use of memory structures
allows the implementation of
procedures that are capable of
searching the solution space
economically and effectively.

The static and fixed size of tabu list
sometimes makes the exploration
getting trap. To fix this problem,
RTS with dynamically changing
the tabu list size have been
introduced.

RTS

Dynamically change the tabu list
size which allows escaping from
being trap in tabu list is the
strength in RTS algorithm.
The consideration of the repetition
in the exploration also one of the
advantages in RTS algorithm.

Not really suitable for the simple
problems, mean the problem that
not categorized in NP-hard.

7.3 Conclusion

As a result, several good works have been reported. In this investigation, a

newly modified RTS algorithm presents a high quality of solution for Capacitated Arc

Routing Problem (CARP). Even the development of this RTS algorithm is the simplest

and straightforward implementation on it reactive scheme (without any long-term

memory or any other procedure to encourage an intensification or a deep

diversification), but it manage to give a very best performance compare to TS. This

114

basic investigation definitely provided a better understanding on the powerful of RTS

that will be useful in its use to other related problem.

Subsequently for second objective, the development of a computational module

was very useful and very helpful in finding a various results. Without the use of this

computational module, the computational might became a big problem since

automatically computational by computer are not reachable by man-power.

7.4 Recommendation

Since this RTS algorithm is the simplest and apply only the basic procedure in

implementing it, so we recommend to explore a deep diversification and intensification

strategy in order to wider the search exploration process. Other than that, the reactive

part which is a dynamic tabu list size is also might be consider so that the future RTS

algorithm is more powerful than the existing one. Rather than increasing and decreasing

the tabu list size, the use of mathematical formulation can also be considered in order to

make it dynamic so that it become more powerful and can be applied to any range of set

of data.

115

7.5 Future Problems: The Extension of This Problem

 For extending this problem, there are some types of problems lies in the area of

CARP to be considered. There are Multiple Depot Capacitated Arc Routing Problem

(MDCARP), Capacitated Arc Routing Problem with Stochastic Demand (CARPSD),

Capacitated Arc Routing Problem with Time Window (CARPTW), Capacitated Arc

Routing Problem with Refill Point (CARPRP), Periodic Capacitated Arc Routing

Problem (PCARP) and Capacitated Arc Routing Problem with Backhauls (CARPB).

These are the variants of CARP itself that lies in the area of arc routing that can be

considered and reformulate the RTS algorithm to solve these problems.

 Another problem that can be considered to solve by this RTS algorithm is in the

area of node routing problem which are Travelling Salesman Problem (TSP) and

Vehicle Routing Problem (VRP). The VRP itself also have it variants as CARP that also

can be considered in future research work. There are Capacitated Vehicle Routing

Problem (CVRP), Multiple Depot Vehicle Routing Problem (MDVRP), Vehicle Routing

Problem with Stochastic Demand (VRPSD), Vehicle Routing Problem with Time

Window (VRPTW), Vehicle Routing Problem with Pick-up and Delivery (VRPPD),

Vehicle Routing Problem with Backhauls (VRPB), Periodic Vehicle Routing Problem

(PVRP) and Split Delivery Vehicle Routing Problem (SDVRP).

 To implement all these problem into this RTS algorithm, the formulation need to

be formulated so that it suits with the types and constraints of the problems. As well as

the RTS algorithm, if it does not satisfy the order or constraint, so the RTS algorithm

need to modified.

116

REFERENCES

Amaya, A., Langevin, A. and Trepanier, M. (2007). The Capacitated Arc Routing

Problem With Refill Points. Operations Research Letters. 35: 45-53.

Amponsah, S. K. and Salhi, S. (2004). The Investigation of A Class of Capacitated Arc

Routing Problems: the Collection of Garbage in Developing Countries. Waste

Management. 24: 711-721.

Battiti, R. and Tecchiolli, G. (1994). The Reactive Tabu Search. ORSA Journal on

Computing. 6: 126-140.

Bautista, J., Fernandez, E. and Pereira, J. (2008). Solving an Urban Waste Collection

Problem Using Ant Heuristics. Computer & Operations Research. 35: 3020-3033.

Belenguer, J.M. and Benavent, E. (2003). A Cutting Plane Algorithm for the

Capacitated Arc Routing Problem. Computers & Operations Research. 30: 705-728.

Beullens, P., Muyldermans, L., Cattrysse, D. and Oudheusden, D.V. (2003). A Guided

Local Search Heuristic for the Capacitated Arc Routing Problem. European Journal

of Operational Research. 147: 629-643.

Black, P.E. (2007, Dec 17). NP-Hard. Dictionary of Algorithms and Data Structure.

Retrieved August 13, 2009, from

http://www.itl.nist.gov/div897/sqg/dads/HTML/nphard.html.

Blochliger, I. and Zufferey, N. (2008). A Graph Coloring Heuristic Using Partial

Solutions and a Reactive Tabu Scheme. Computers & Operational Research. 35:

960-975.

Brandao, J. and Eglese, R. (2008). A Deterministic Tabu Search Algorithm For the

Capacitated Arc Routing Problem. Computers & Operations Research. 35: 1112-

1126.

Brown, D.T. (2001). Routing Unmanned Aerial Vehicles while Considering General

Restricted Operating Zones. Master Thesis, Air Force Institute of Technology,

United States Air Force.

 117

Castellani, U., Fusiello, A., Gherardi, R. and Murino, V. (2007). Automatic Selection of

MRF Control Parameters by Reactive Tabu Search. Image & Vision Computing. 25:

1824-1832.

Chu, F., Labadi, N. and Prins, C. (2005). Heuristics For the Periodic Capacitated Arc

Routing Problem. Journal of Intelligent Manufacturing. 16: 243-251.

Corne, D., Dorigo, M. and Glover, F. (1999). Introduction. In: Corne, D., Dorigo, M.

and Glover, F. (Eds.) New Ideas In Optimization (pp. 1-8). England: McGraw-Hill.

da Silva, L.G.W., Pereira, R.A.F., Abbad, J.R. and Mantovani, J.R.S. (2008). Optimised

Placement of Control and Protective Devices in Electric Distribution Systems

Through Reactive Tabu Search Algorithm. Electric Power Systems Research. 78:

372-381.

Dror, M. (2000). Arc Routing: Theory, Solutions and Applications. Boston MA: Kluwer

Academic.

Fukuyama, Y. (2000). Reactive Tabu Search for Distribution Load Transfer Operation.

Proc. IEEE Power Eng. Soc. Winter Meeting. January, 1301-1306.

Gendreau, M. (2002). An Introduction to Tabu Search. Departement d’informatique et

de recherché operationnalle, Universite de Montreal, Montreal, Canada: Working

Paper.

Glover, F. and Laguna, M. (1997). Tabu Search. Boston: Kluwer.

Glover, F. and Laguna, M. (1998). Article on Tabu Search. Boston: Kluwer.

Golden, B.L. and Wong, R.T. (1981). Capacitated Arc Routing Problem. Networks. 11:

305-315.

Greistorfer, P. (2003). A Tabu Scatter Search Metaheuristic for the Arc Routing

Problem. Computers & Industrial Engineering. 44: 249-266.

Hanafi, S. (2000). On the Convergence of Tabu Search. Journal of Heuristics. 7: 47-58.

 118

Harder, R. (2000). A Java Universal Vehicle Router in Support of Routing Unmanned

Aerial Vehicles. Air Force Institute of Technology, United States Air Force: Master

Thesis.

Hillier, F. S. and Lieberman, G. J. (2005). Introduction to Operations Research. 8th. ed.

New York: Mc Graw-Hill.

Hoos, H.H. and Stutzle, T. (2004). Stochastic Local Search: Foundations and

Applications. Morgan Kaufmann/Elsevier.

Ismail, Z., Irhamah and Loh,S.L. (2007), “Look Ahead Heuristics for Modelling Solid

Waste Collection Problems”, Abstract of Second International Conference on

Mathematical Sciences (IcoMS2007), May 28-29, 2007 pp 78. Ibnu Sina Institute,

UTM Skudai, Malaysia.

Kinney, G. (2000). A Hybrid Jump Search and Tabu Search Metaheuristic for the

Unmanned Aerial Vehicle (UAV) Routing Problem. Air Force Institute of

Technology, United States Air Force: Master Thesis.

Kumral, M. and Dimitrakopoulos, R. (2008). Selection of Waste Dump Sites using a

Tabu Search Algorithm. The Journal of The Southern African Institute of Mining

and Metallurgy. 108: 9-13.

Lacomme, P., Prins, C. and Ramdane-Cherif, W. (2001). A Genetic Algorithm For the

Capacitated Arc Routing Problem and Its Extensions. Laboratory for Industrial

Systems Optimization, University of Technology of Troyes. EvoWorkshop.

Li, J.Q., Borenstein, O. and Mirchandani, P.B. (2008). Truck Scheduling for Solid Waste

Collection in the City of Porto, Alegre, Brazil. Omega. 36: 1133-1149.

Li, Y.P., Huang, G.H. and Yang, Z.F. (2009). Inexact Fuzzy-Stochastic Constraint-

Softened Programming – A Case Study for Waste Management. Journal of Waste

Management. 29: 2165-2177.

Lim, Y.F. (2007). Reactive Tabu Search Method for Solving Travelling Saleman

Problem. Universiti Teknologi Malaysia, Malaysia: Master Thesis.

Loh, S. L. (2007). Vehicle Routing Problem with Stochastic Demands Using Ant Colony

System Algorithm. Universiti Teknologi Malaysia, Malaysia: Master Thesis.

 119

Loh, S.L. (2006). Modelling Capacitated Arc Routing Problem: A Case Study On Solid

Waste Collection. Universiti Teknologi Malaysia, Malaysia: Degree Final Year

Project.

Longo, H., de Aragao, M.P. and Uchoa, E. (2006). Solving Capacitated Arc Routing

Problems Using a Transformation to the CVRP. Computer & Operations Research.

33: 1823-1837.

Mourao, M.C. and Amado, L. (2005). Heuristics Method For a Mixed Capacitated Arc

Routing Problem: A Refuse Collection Application. European Journal of Operational

Research. 160: 139-153.

Nanry, W.P. and Barnes, J.W. (2000). Solving the Pickup and Delivery Problem with

Time Windows Using Reactive Tabu Search. Transportation Research, Part B. 34,

107-121.

O’Rourke, K.P. (1999). Dynamic Unmanned Aerial Vehicle (UAV) Routing With a Java-

Encoded Reactive Tabu Search Metaheuristics. Air Force Institute of Technology,

United States Air Force: Master Thesis.

Reeves, C. R. (1993). Modern Heuristic Techniques for Combinatorial Problems.

Oxford, England: Blackwell Scientific Publishing.

Salhi, S. (2002). Defining Tabu List Size and aspiration Criterion Within Tabu Search

Methods. Computer & Operations Research. 29: 67-86.

Scheuever, S. (2006). A Tabu Search Heuristic for the Truck and Trailer Routing

Problem. Computer & Operations Research. 33: 894-909.

Wan Ibrahim, W.R. (2007). Travelling Salesman Problem Approach for Petrol

Distribution Using Simulated Annealing and Tabu Search. Universiti Teknologi

Malaysia, Malaysia: Master Thesis.

Wassan, N.A. (2006). A Reactive Tabu Search for the Vehicle Routing Problem. Journal

of the Operational Research Society. 57: 111-116.

 120

Wassan, N.A., Nagy, G. and Ahmadi, S. (2008). A Heuristic Method for the Vehicle

Routing Problem with Mixed Deliveries and Pickups. Springer Science+Business

Media. 11: 149–161.

Wohlk, S. (2003). Simulated Annealing For the Capacitated Arc Routing Problem,

Using an Online Formulation. Department of Organization and Management,

University of Southern Denmark, Odense, Denmark: Working Paper.

Wohlk, S. (2005). Contribution to Arc Routing: State of the Art. University of Southern

Denmark: PhD Thesis.

Wu, X.Y., Huang, G.H., Liu, L. and Li, J.B. (2006). An Interval Nonlinear Program for

the Planning of Waste Management Systems with Economies-of-Scale Effects – A

Case Study for the Region of Hamilton, Ontario, Canada. European Journal of

Operational Research. 171: 349-372.

Xu, G., Ke, Q. and Ma, S.D. (1998). Recovering Epipolar Geometry by Reactive Tabu

Search. Computer Vision, 1998. Sixth International Conference on 4-7 January. 233-

244.

Yeomans, J.S. (2007). Solid Waste Planning Under Uncertainty Using Evolutionary

Simulation-Optimization. Socio-Economic Planning Science. 41: 38-60.

Zainuddin, Z.M. (2004). Constructive and Tabu Search Heuristics for Capacitated

Continuous Location-Allocation Problem. The University of Birmingham, England:

PhD Thesis.

