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ABSTRACT 

 

 

 

 

 The Capacitated Arc Routing Problem (CARP) is a fundamental and well-known 

routing problem.  This is a special form of arc routing problem which involves 

determining a fleet of homogeneous size vehicles and designing the routes to minimize 

the total cost.  It is considered as CARP when the demands are located along the edges.  

One such problem is in the designing a tour for waste collection vehicle where each 

vehicle is limited in its capacity.  CARP is known to be Non-deterministic Polynomial-

time hard (NP-hard) where solutions are obtained through heuristic methods.  Tabu 

Search (TS) is a heuristic method based on the use of prohibition-based techniques and 

basic heuristics algorithms like local search.  The main advantage of TS with respect to 

other conventional search is in the intelligent use of past history of the search to 

influence its future search procedures.  This study is to develop Reactive Tabu Search 

(RTS) heuristics for solving CARP.  Our RTS algorithm allows for dynamic tabu list 

rather than static tabu list as being practiced in TS algorithm.  The test instances involve 

five to 50 nodes systematically generated similar to the real world CARP.  The newly 

modified RTS algorithm gives a better performance than TS and (Look-Ahead Strategy) 

LAS method. 
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ABSTRAK 

 

 

 

 

Masalah Perjalanan Lengkok Berkapasiti (MPLB) adalah satu masalah 

perjalanan yang asas dan terkenal. Ia merupakan satu masalah khas daripada masalah 

perjalanan lengkok yang melibatkan penentuan kenderaan bersaiz homogen dalam 

membina laluan-laluan yang dapat mengurangkan jumlah kos. Masalah ini dianggap 

sebagai MPLB sekiranya permintaan diletakkan di sepanjang lengkok. Salah satu 

masalah seumpama ini adalah dalam merekabentuk perjalanan bagi kenderaan pemungut 

sampah dengan setiap satu kenderaan mempunyai kapasiti yang terhad. MPLB diketahui 

menjadi Bukan berketentuan Polinomial-masa yang sukar (BP sukar), di mana 

kebanyakan masalah diselesaikan menggunakan kaedah heuristik. Carian Tabu (CT) 

merupakan kaedah heuristik berasaskan kepada penggunaan teknik-teknik larangan dan 

penggunaan algoritma heuristik yang asas seperti pencarian setempat. Kelebihan utama 

CT terhadap kebiasaan carian lain adalah penggunaan kepintarannya di dalam pencarian 

yang lepas untuk proses pencarian seterusnya. Kajian ini adalah untuk membangunkan 

kaedah heuristik Carian Tabu Reaktif (CTR) bagi menyelesaikan MPLB. Algoritma 

CTR membenarkan panggunaan senarai tabu yang dinamik berbanding hanya senarai 

tabu yang statik seperti yang dipraktikkan di dalam algoritma CT. Pengujian dilakukan 

ke atas lima hingga 50 titik pertemuan yang dijana secara sistematik dan menyerupai 

kepada MPLB sebenar. Pengubahsuaian algoritma yang baru memberikan pencapaian 

yang baik berbanding kaedah CT dan Strategi Pandang Depan (SPD). 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

In recent years, many service suppliers and distributors have recognized the 

importance of designing efficient transportation strategies in order to improve the level 

of customer’s service and reduce transportation costs.  In a typical distribution system, 

vehicle such as trucks or school buses, provide delivery or customer pick-up, where a 

common objective is to find a set of routes for the vehicles which satisfies a set of 

constraints and so as to minimize the total fleet operating costs. 

 

 

One of the most difficult operation problem faced by local authorities in any 

large city is the collection of household garbage or industrial waste.  This problem is 

also known as a waste management problem.  It is especially crucial for cities in 

developing countries.  From our literature review, many researchers have modelled solid 

waste collection and distribution problem as Capacitated Arc Routing Problem (CARP) 

since the garbage had to be carried by vehicle with fixed capacity along the route.  Some 
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of the researchers in this area are Lacomme et al. (2001), Amponsah and Salhi (2004), 

Mourao and Amado (2005), Chu et al. (2005) and Bautista et al. (2008).  This waste 

collection problem can also be modelled as the Vehicle Routing Problem (VRP), but 

since the VRP is a node routing problem, it needs a transformation from the CARP into 

the VRP, which is to transform from an arc routing problem to a node routing problem 

to make the CARP as a special case of the VRP.  Therefore CARP can be considered as 

a special case of the VRP (Wohlk, 2005). 

 

 

This CARP will be solved using the proposed methodology which is Tabu 

Search (TS) and Reactive Tabu Search (RTS).  The discussion of the methodology will 

be discussed in Chapter 3.  This chapter provides problem background, problem 

statement, objective, scopes and significant of the study and ended with a thesis layout. 

 

 

 

 

1.2 Problem Background 

 

 

Operations research involves “research on operations”.  Thus, operations 

research is applied to problems that concern how to conduct and coordinate the 

operations (so that everything will be optimize, e.g. cost, time, space, usage etc)  within 

organization in variety of areas such as manufacturing, transportation, construction, 

telecommunications, financial planning, health care, the military and so on (Hillier & 

Lieberman, 2005). 

 

 

Combinatorial optimization is one of optimization problem in applied 

mathematics and computer science.  It is close to operations research, algorithm theory 

and computational complexity theory that sit at the intersection of several fields, 
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including artificial intelligence, mathematics and software engineering.  Combinatorial 

optimization algorithms solve instances of problems that are believed to be hard in 

general by exploring the large solution space of these instances.  Most of the real world 

optimization problems belong to a class of “difficult to solve” problems which are 

known as Non-deterministic Polynomial-time hard problem, called NP-hard problem.  

Because of that, the problem cannot be guaranteed to be solved in reasonable time by 

any known polynomial-time method (Loh, 2007). 

 

 

Various new optimization techniques had been discovered to solve NP-hard 

problems more effectively such as Artificial Neural Networks (ANN), Tabu Search 

(TS), Simulated Annealing (SA), Genetic Algorithm (GA), Ant Colony Optimization 

(ACO) and some others.  This study will explore the use of TS in solving CARP and 

extend the traditional method of TS into Reactive Tabu Search (RTS).  We explore the 

method of TS and compare the differences between TS and RTS.  In this exploration, we 

use solid waste management as the CARP.  The model above will be developing into 

computer program which is Microsoft Visual Studio 2005 Team Suit (Trial) Edition and 

it is written in C# language. 

 

 

 

 

1.3 Problem Statement 

 

 

As the number of household area increases, the solid wastes generated are also 

increasing.  In order to maintain the quality of environment, the waste generated should 

be properly collected and disposed.  For example in Southern Waste Management in the 

City of Johor Bahru, currently they have a fleet of over 150 collection vehicles operating 

daily.  A well schedule collection of these wastes is essential so that the entire vehicle 
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will give their optimal service in order to minimize the cost, 
( ), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑ (our 

proposed model).  But some kind of problem arise when to collect these generated 

wastes.  This is due to the limited arc that vehicle have to revisit it again in order to 

serve all the required edge while we have to minimize revisiting the edge so that the cost 

of traversal are also minimize.  The vehicle capacity, Q also one of the problem arise 

because the demand for certain area are not always static.  It is possible that the vehicle 

need to go back to the depot when the services are still on-going because the capacity 

has reached its limit, where 
( ),

, 1, , ,ij ijk
i j R

q y Q k K
∈

≤ =∑ K .  Therefore, to collect these 

generated wastes, an appropriate method should be used in order to choose the best route 

traverse by vehicle so that the costs of collecting are optimal.  Hence, this research tries 

to further the previous study on it by proposing a new metaheuristics algorithm based on 

RTS.  The main issue in RTS is the way tabu list and tabu moves are constructed.  The 

implementation of this algorithm will be done to solve real problem in optimizing solid 

waste collection. 

 

 

 

 

1.4 Objectives of the Study 

 

 

The objectives of this study can be summarized as follows: 

i. To develop a new mathematical formulation or RTS algorithm for solving 

CARP. 

ii. To develop computational module for solving solid waste management problem. 
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1.5 Scope of the Study 

 

 

The study is confined to solve solid waste collection problem for the city of 

Johor Bahru.  Waste collection is divided into two types which are household waste and 

industrial waste.  The case study will only focus on the household solid waste collection.  

The scope of the study can be summarized as follows: 

• Service provided by a single vehicle with a limited capacity. 

• The vehicle starts and ends at a single depot node. 

• Customers are represented by arc where the entire arcs form a complete graph. 

• Customer’s demand, ijq , is considered as a non-negative integer. 

• The proposed algorithm will be implemented and written using programming 

language to solve the problem in solid waste collection. 

 

 

 

 

1.6 Significance of the Study 

 

 

The significant of this study may be divided into two main areas.  Firstly, the 

developments of new RTS formulation for solving CARP.  Secondly, is the 

development of CARP for solving solid waste collection problem. 

 

 

This proposed development contributes to the arc routing problem.  This is 

because, the cost of vehicle routing plays an important role when the vehicle servicing 

an arc.  Without planning a tour for the vehicle in order to give their services, the cost 

may form a maximum travelling cost.  Due to this reason, this study is conducted.  As 
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indicated earlier, our focus would be to work on the problem related to CARP for solid 

waste collection in Johor Bahru. 

 

 

1.7 Thesis Layout 

 

 

The thesis is divided into seven chapters.  The first chapter is the introduction.  

This chapter gives an introduction to the background of the problem, the statement of the 

problem, objectives and scope of the study and significance of the study. 

 

 

Chapter two is the Literature Review.  This chapter presents a literature review 

about the CARP and solution techniques for solving CARP.  The literature about recent 

works on CARP, RTS and other solution method for solving waste collection problem 

are also provided in this chapter. 

 

 

Chapter three is the Research Methodology which is discussed about the 

terminologies used in the solution technique.  This chapter also discussed the 

development model of the initial solution and also TS and RTS procedure. 

 

 

Chapter four and five in this thesis consist the discussion of the results.  Chapter 

four is to illustrate the development of other model which is Look-Ahead Strategy 

(LAS) to be compared with our algorithm.  Also provided in chapter four is our TS 

procedure that also to be used to compare the computational result with our RTS 

algorithm.  Chapter five is our solution technique in order to solve CARP model.  This 

chapter presenting the implementation of RTS and provide a computational results. 
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Next which is chapter six will be a chapter to write about developing a system.  

This chapter provides the information on the languages used and how to manage and use 

the system. 

 

 

Lastly, this thesis ends up with chapter seven.  At the beginning of this chapter, it 

discusses the comparison results produces by TS and RTS.  Then a conclusion and 

recommendation will close up the whole thesis at the end of this chapter. 



 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEWS 

 

 

 

 

2.1 Introduction 

 

 

This chapter presents a literature review about the Capacitated Arc Routing 

Problem (CARP), solution techniques appeared in literature and also techniques which 

may be applied for solving CARP.  The first section discusses the description and the 

mathematical model of CARP.  The second section contains the introduction and a basic 

idea of Tabu Search (TS) and Reactive Tabu Search (RTS).  The following section 

will discuss about the recent works on the CARP and review of solution method on solid 

waste collection management in other country.  Finally, RTS are discussed overall in the 

last section. 
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2.2 Capacitated Arc Routing Problem 

 

 

The CARP was introduced by Golden and Wong (1981), but a variant which is 

the quantity of demand, ijq  are strictly positive was investigated earlier by Christofides 

in 1973 (Dror, 2000).  It is define on an undirected network in which a fleet of identical 

vehicles with limited capacity is based at a depot node.  The CARP consists of 

determining a set of feasible vehicle trips that minimizes the total cost of traversed 

edges. Each trip starts and ends at the depot, each edge is serviced by one single vehicle 

and the total demand serviced by any trip must not exceed vehicle capacity.   

 

 

The CARP belongs to the class of problem known as Non-deterministic 

Polynomial-time hard (NP-hard) as proven by Golden and Wong (1981).  NP-hard in 

computational complexity theory is the complexity class of decision problems that are 

intrinsically harder than those that can be solved by a nondeterministic Turing machine 

in polynomial time (Black, 2007).  CARP is a problem that has all the characteristics of 

NP-hard problem as defined by Black (2007).  The problem included solving a complex 

interaction of demands and constraints that requires non-deterministic time to solve. 

 

 

Various solution procedure can be use to solve CARP such as exact algorithm, 

approximation algorithm, heuristics and meta-heuristics. However, when a single 

vehicle is able to service all the required edges, the exact methods have only been able to 

solve relatively small examples to optimality.  While for approximation algorithm, it is 

designed specifically for one problem type.  Therefore meta-heuristics have been 

proposed.  In order to solve this problem, the defining of the mathematical formulation 

is needed.  As a result, CARP formulation is used as appropriate mathematical model for 

solving the waste collection problem. 
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In the case of the CARP, the mathematical structure is a graph where each 

junction is denoted by a point (node) and lines (streets) are drawn connecting two nodes, 

called arcs or edges.  Associated with every line connecting two nodes are quantity of 

garbage, ijq  and service cost, ijc .  When the vehicle can service every street which has 

some amount of garbage from a junction to another junction continually (starting and 

ending at the same designated node, which is the depot), then the graph is said to be 

complete.  The total demand serviced on the route must not exceed the capacity of the 

vehicle, Q .  When the vehicle travels over an edge without servicing it, this is referred 

to as deadheading (refer to Figure 2.1).  In CARP, each edge in the graph can be 

travelled in either direction and each vertex corresponds to a road junction. 

 

Mathematical formulations 

 

Different mathematical formulations have been proposed for the CARP, all of 

them are undirected case.  However, for this problem, we formulated it as follows: 

 

 
Figure 2.1: Graphical Network 

 

 

( )12 12,q c

1V

2V  

3V  

( )23 23,q c

( )13 13,q c

( ),G V E A= ∪  

deadheading 

4V  ( )14 14,q c
( )34 34,q c
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Given a connected graph ( , )G V E A= ∪ , with V  as the set of nodes (vertices), E  set of 

edges ( )E V V⊆ ×  and A  is a set of arcs ( )A V V⊆ × .  CARP has an additional 

traversal cost for each edge and arc with edge (arc) demand 0ijq ≥  for each edge ( ),i j  

which must be serviced by one of a fleet of vehicles of capacity, Q  (Amponsah & Salhi, 

2004).  The objective of the CARP is to find a minimum cost set of vehicle routes where 

each required edge is serviced on one of the routes. 

 

 

 We denote ijc  as the serviced cost of an edge (arc) ( ) ( ),i j E A∈  and ijkx  as the 

number of times edge (arc) ( ),i j E A∈ ∪  is traversed in trip k , 

 
1 if the edge (arc) ( , ) is covered in trip ,
0 otherwiseijk

i j R k
y

∈⎧
= ⎨
⎩

 

 

 

 The CARP formulated by Dror and Langevin (Amponsah & Salhi, 2004) is as 

follows: 

 Min 
( ), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑        (2.1) 

Subject to: 

 0 , 1, 2, , ,pik ipk
p V p V

x x i V k K
∈ ∈

− = ∀ ∈ =∑ ∑ K      (2.2) 

 ( )
1

1 , ,
K

ijk
k

y i j R
=

= ∀ ∈∑        (2.3) 

 ( ), , 1, , ,ijk ijkx y i j R k K≥ ∀ ∈ = K       (2.4) 

 
( ),

, 1, , ,ij ijk
i j R

q y Q k K
∈

≤ =∑ K        (2.5) 

 
{ } ( )

( )
0,1 , , 1,2, , ,

, , 1, 2, , .
ijk

ijk

y i j R k K

x Q i j E k K+

∈ ∀ ∈ =

∈ ∀ ∈ =

K

K
     (2.6) 
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Where the variables used in the CARP formulation can be described as follows: 

 

C = total cost. 

ijc = service cost of an edge ( ),i j E A∈ ∪ . 

ijkx = number of times edge ( ),i j E A∈ ∪  is traversed in trip k . 
1 ( ) ( , ) cov ,
0ijk

if the edge arc i j R is ered in trip k
y

otherwise
∈⎧

= ⎨
⎩

 

ijq = edge demand. 
Q = vehicle capacity. 
 

 

 The objective function is given in equation (2.1) seeks to minimize the total cost.  

While equation (2.2) is to ensure route continuity, and equation (2.3) states that each 

edge with positive demand is serviced exactly once.  To guarantee that the traversal 

circuit k  covers the edge ( ),i j R∈  if it delivers its demand is represent by equation 

(2.4), while to ensure the vehicle capacity is not violated on account is represented in 

equation (2.5) and integrality restrictions are given in equation (2.6). 

 

 

 

 

2.2.1 Real World Application 

 

 

CARP has a long and rich history.  It can be found in many real world situations 

where the demand needs to be serving in every single arc with required capacity.  Other 

than waste collection management, road network maintenance can also be modelled as 

the CARP, where the road markings have to be painted or repainted every year.  There 

are special operational conditions that force the tank truck to return to the depot each 

time it meets the marking vehicle (Brandao & Eglese, 2008). 
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Other than that, some well-known examples are postal mail deliveries where the 

postman needs to deliver the mail in every single arc until no more mail need to be 

delivered and school bus routing where the bus need to serve the student and send them 

to school.  Same goes to snow clearance, where a snow must be sweep in each road to 

prevent something bad happen.  The truck must pass through the entire arc in order to 

clean it.  Furthermore, this application is not limited to the routing of creatures or goods 

only.  Interesting variants may also be found in industrial manufacturing, e.g. the routing 

of automatic machines that put conducting layers or component on to a printed circuit 

board (Greistorfer, 2003). 

 

 

 

 

2.3 Metaheuristics 

 

 

The term metaheuristic is firstly introduced by Fred Glover, derives from the 

composition of two Greek words.  Heuristic derives from the verb heuriskein which 

means “to find”, while the suffix meta means “beyond, in an upper level”.  Before this 

term was widely adopted, metaheuristics were often called modern heuristics (Reeves, 

1993). 

 

 

A metaheuristics is a general solution method that provides both a general 

structure and strategy guidelines for developing a specific heuristic method to fit a 

particular kind of problem (Hillier & Lieberman, 2005).  The most commonly used 

metaheuristics are Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithms 

(GA) and Ant Colony Optimization (ACO).  Nowadays, metaheuristics are widely used 

to solve important practical combinatorial optimization problems. 
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The nature of metaheuristics; it is a general kind of solution method that 

orchestrates the interaction between local improvement procedures and higher level 

strategies to create a process that is capable of escaping from local optima and 

performing a robust search of a feasible region.  Thus, one key feature of a 

metaheuristics is its ability to escape from a local optimum (Hillier & Lieberman, 2005). 

 

 

The evolution of metaheuristics during the past half dozen years has been widely 

researched.  Metaheuristics in their modern forms are based on a variety of 

interpretations of what constitutes “intelligent” search.  These interpretations lead to 

design choices which can be used for classification purposes.  However, a strict 

classification of different metaheuristics is difficult, because the leading recommended 

of alternative methods often differ among themselves.  This may be illustrated by 

considering the classification of metaheuristics in terms of their features with respect to 

three basic design choices: (1) the use of adaptive memory, (2) the kind of 

neighbourhood exploration used, and (3) the number of current solutions carried from 

one iteration to the next (Glover & Laguna, 1997). 

 

 

Although metaheuristic seems like a very powerful one, but it still have their pro 

and con.  The advantage of metaheuristic of course it provides a very efficient way of 

dealing with a large complicated problems due to the quickly move toward good 

solutions.  While the disadvantage of using metaheuristic method is that there is no 

guarantee that the best solution found will be an optimal solution or even a nearly 

optimal solution. 
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2.4 Tabu Search 

 

 

The basic form of TS is founded on ideas proposed by Fred Glover (Glover & 

Laguna, 1997) in 1986 (Salhi, 2002), (Scheuever, 2006).  The word tabu (or taboo) 

comes from Tongan, a language of Polynesia, where it was used by the aborigines of 

Tonga Island to indicate things that cannot be touched because they are sacred.  Based 

on Webster’s Dictionary, the word tabu also means “a prohibition imposed by social 

custom as a protective measure or of something “banned as constituting a risk”.  These 

current more pragmatic senses of the word accord well with the theme of tabu search.  

The risk to be avoided in this case is that of following a counter-productive course, 

including one which may lead to entrapment without hope of escape (Wan Ibrahim, 

2007). 

 

 

TS can be applied directly to verbal or symbolic statements to various kinds of 

decision problems, without the need to transform them into mathematical formulations.  

Nevertheless, it is useful to introduce mathematical notation to express a broad class of 

these problems, as a basis for describing certain features of TS.  A class of problems of 

TS can be characterizing as that of optimizing (minimizing or maximizing) a function 

( )f x  subject to x∈X, where ( )f x  may be a linear or nonlinear, and the set X 

summarizes constraint on the vector of the decision variables x .  As we know, the 

combinatorial optimization problem may not be easily formulated as an objective 

function subject to a set of constraints, so the requirement x∈X may specify logical 

conditions or interconnections that would be cumbersome to formulate mathematically, 

but may be better be left as verbal stipulations that can be then coded as rules (Glover & 

Laguna, 1997). 

 

Mathematical formulations 

TS is a mathematical optimization method, belonging to the class of local search 

technique.  TS operate just like a local improvement procedure except that it may not 
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required that each new trial solution must be better than the preceding trial solution.  The 

process begins by using this procedure as a local improvement procedure in the usual 

way, which only accepting an improved solution at each iteration to find a local 

optimum.  This search method is extended from the Descent Method (DM) scheme 

which also known as hill-climbing heuristic or greedy heuristics in various ways.  An 

obvious alternative to a DM is to accept a non-improving move and an employment of 

strategic memory-based evaluation criterion to escape from a local minimum (Hanafi, 

2000).  The general procedure of DM can be described as follows: 

 

 
[Step 1] 

• Select an initial solution, say  (where  is the set 

of feasible solutions). 

[Step 2] 

• Choose a solution  such that  (where 

 is the neighbourhood of ). 

• If there is no such ,  is considered as a local 

optimum and the method stops. 

• Else set  and repeat step 2. 

 

 

The basic procedure in TS does follow the basic concept of DM.  A key strategy 

of TS is that it then continues the search by allowing non-improving moves to the best 

solutions that can be found in the neighbourhood of the current trial solution, the local 

improvement procedure is reapplied to find a new local optimum (Hillier & Lieberman, 

2005).  In other words, the search growth by iteratively moving from one solution to the 

next solution for improves the solution with the used of its memory. 

 

 

For more clearly, TS is a search memory method systematically which is TS will 

not only remember the current and best solution. It also keep memory on the tour 

through the last solutions visited and such memory will be used with the purpose of 
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guiding the move from the current to the next solution (Castellani et al., 2007). TS 

qualify as an intelligent heuristics due to the use of memory together with responsive 

exploration beyond the solution space. Responsive exploration means that it search 

aggressively in high quality solutions regions and then breaking away from local optima 

in order to explore new regions (Lim, 2007).  

 

 

With this kind of method, the probability of the process to cycle right back to the 

same local optimum is quite high.  So, to avoid this, a TS temporary forbids moves that 

would return to a solution recently visited.  This cycling back to previously visited 

solutions is prevented by the use of memories, called tabu lists, which record the recent 

history of the search, a key idea that can be linked to Artificial Intelligence concepts 

(Gendreau, 2002). 

 

 

TS also can incorporate some more advanced concept in order to explore another 

best solution, which are intensification and diversification.  Intensification involves 

exploring a portion of the feasible region more thoroughly than usual after it has been 

identified as a particularly promising portion for containing very good solutions.  While 

diversification involves forcing the search into previously unexplored areas of the 

feasible region to make sure that the search trajectory has not been confined to regions 

containing only mediocre solutions. 

 

 

Variety field of problems can be solved by using the application of TS.  Even 

sometimes the solutions provided are not close to optimality (due to NP-hard 

combinatorial optimization problems or problems with complex constraints), but at least 

the difficulties of the problem can be tackled.  The application of TS in variety field of 

problem can be summarized as shown in Table 2.1 (Glover & Laguna, 1998). 
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Table 2.1: TS Applications 

Field Problems 

Scheduling Flow-Time Cell Manufacturing, Heterogeneous Processor 

Scheduling, Workforce Planning, Classroom Scheduling, 

Machine Scheduling, Flow Shop Scheduling, Job Shop 

Scheduling, Sequencing and Batching. 

Telecommunications Call Routing, Bandwidth Packing, Hub Facility Location, 

Path Assignment, Network Design for Services, Customer 

Discount Planning, Failure Immune Architecture, 

Synchronous Optical Networks. 

Design Computer-Added Design, Fault Tolerant Networks, Transport 

Network Design, Architectural Space Planning, Diagram 

Coherency, Fixed Charge Network Design, Irregular Cutting 

Problems. 

Production, 

Inventory and 

Investment 

Flexible Manufacturing, Just-in-Time Production, Capacitated 

MRP, Past Selection, Multi-item Inventory Planning, Volume 

Discount Acquisition, Fixed Mix Investment. 

Location and 

Allocation 

Multicommodity Location/Allocation, Quadratic Assignment, 

Quadratic Semi-Assignment, Multilevel Generalized 

Assignment, Lay-Out Planning, Off-Shore Oil Exploration. 

Routing Vehicle Routing, Capacitated Routing, Time Window 

Routing, Multi-Mode Routing, Mixed Fleet Routing, 

Travelling Salesman, Travelling Purchaser. 

Logic and Artificial 

Intelligence 

Maximum Satisfiability, Probabilistic Logic, Clustering, 

Pattern Recognition/Classification, Data Integrity, Neural 

Network | Training and Design. 

Graph Optimization Graph Partitioning, Graph Colouring, Clique Partitioning, 

Maximum Clique Problems, Maximum Planner Graphs, P-

Median Problems. 

Technology Seismic Inversion, Electrical Power Distribution, Engineering 
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Structural Design, Minimum Volume Ellipsoids, Space 

Station Construction, Circuit Cell Placement. 

General 

Combination 

Optimization 

Zero-One Programming, Fixed Charge Optimization, 

Nonconvex Nonlinear Programming, All-or-None Networks, 

Bi-level Programming, General Mixed Integer Optimization. 

 

 

 

 

2.4.1 Reactive Tabu Search 

 

 

TS is a meta-strategy that employs computer memory structures to avoid 

phenomena like local minima and limit cycle.  The chosen move is put in the tabu list at 

each iteration in order to prevent the algorithm going back to recently visited solutions.  

Therefore, parameter tuning is one of the main drawbacks that need to solve when 

dealing with TS algorithm.  Tuning is often needed to obtain competitive results and 

requires either a deep knowledge of the problem structure or a time consuming and not 

always reproducible tinkering process.  The most critical parameter usually is the tabu 

list size, which compromises between intensification and diversification strategies 

(Castellani et al., 2007). 

 

 

A fixed size of the tabu list might drive to be trapped in a cycle of length greater 

than the size list.  But if the tabu list size is set at a high value, then the search may be 

restricted to certain regions, and if it is set to a low value then the search may cycle 

itself.  Therefore, a balanced tabu list size is needed to control and run the process 

smoothly.  Battiti and Tecchiolli developed an approach that dynamically determines the 

tabu list size during the search process.  Their version of TS known as Reactive Tabu 

Search (RTS) employs two mechanisms which are feedback schemes and escape 

strategy (Wassan, 2006). 
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The first mechanism, feedback scheme, builds an automated tabu tenure that is 

maintained throughout the search process by the dynamic reaction to the repetitions 

(Wassan, 2006).  This mean that after one move is executed, the RTS algorithm will 

check whether the current searching point has already been found.  Tabu list size will 

increases if a searching point is repeated and it will decreases if no repetitions occur 

during a sufficient long period (Fukuyama, 2000).  Since the basic TS cannot avoid long 

search cycles, therefore the second mechanism which called escape diversification 

strategy is also introduces.  The escape strategy takes the search process out from its 

current position if it appears to be repeating itself excessively (Wassan, 2006). 

 

 

Generally, RTS maintain the basic concept and also terminologies of TS except 

the tabu list size which are not static as TS.  As mention before, this modification were 

introduced by Battiti and Tecchiolli in order to produce the best solution. 

 

 

 

 

2.4.2 Comparison: Tabu Search and Reactive Tabu Search 

 

 

There must be a much confusing on what differentiate TS and RTS.  This is 

because the concept and procedure for both of them are actually same.  Hence, Table 2.2 

describes more detail about the differences between TS and RTS.  
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Table 2.2: Comparison between TS and RTS 

 Tabu Search Reactive Tabu Search 

Move Basic move: swap, combine, shift, 

perturb, idle and insert. 

Same as TS. 

Tabu List 

Size 

Static changes: 

• Can be any value such as 7, 9 or 

constant value such as 

p
NBTs = ; where 

p
NB  is 

designed rules. 

Dynamic changes: 

• Periodically changing: kept 

fixed for a certain number of 

iteration and the process is 

repeated for k  times. 

• Continuously changing: depend 

on the change in the cost 

function for that selected move 

(change when needed). 

Aspiration 

Criterion 

i. Aspiration by objective: a tabu 

move is allowed to be accepted 

if it leads to a solution that is 

better than any solution found 

so far. 

ii. Aspiration by default (in case 

all move are tabu): 

a. Free the “least tabu” move: 

look at sT , freeing the min 

sT . 

b. Free the “least cost” move: 

check the objective function. 

c. Free the “least order” move: 

combine a & b. 

iii. Soft aspiration criteria: used 

even though there is still non 

tabu moves. The idea is, the 

Same as TS. 
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nearly non tabu move which 

has produced a solution nearly 

as good as the best solution may 

be worth relaxing rather than 

the first non tabu move with a 

solution that is far from the best 

solution. 

Stopping 

Criterion 

• After a fixed number of 

iteration (a fixed amount of 

computational time). 

• After some number of iteration 

without an improvement in the 

objective function value. 

• When the objective reaches a 

pre-specified threshold value. 

• Same as TS. 

 

 

 

 

2.5 Recent Works on the Capacitated Arc Routing Problem 

 

 

Generally, there are quite a lot of literatures on the CARP.  From the literature, 

there are various kind of methods have been used for solving CARP.  Hence, the 

summary of main contributions to solve CARP and similar problems is given in Table 

2.3. 
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Table 2.3: Recent Work on CARP 

Authors Methods; 
Problems Description 

Philippe 

Lacomme, 

Christian Prins & 

Wahiba 

Ramdane-Cherif 

(2001) 

Genetic 

Algorithm 

[CARP]; for 

Municipal 

Waste 

Collection 

• Chromosomes and fitness: 

 Evaluate chromosomes by built an 

auxiliary graph which each arc denotes a 

subsequence of T  that can be done by one 

trip. 

 The fitness is simply the total cost of the 

underlying CARP solution. 

• Reproduction step: 

 Choose parents by binary tournament 

selection. 

 Reproduction step ends by randomly 

keeping only one child, C and discarding 

the other. 

• Local search and mutation operator: 

 Mutate with a fixed rate pm the child C 

produced by the crossover; pm = rate for 

mutation 

 The mutation operator is a local search LS, 

giving a hybrid GA. 

• Stopping criteria: 

 Stops after a maximum number of 

iterations, or 

 After a maximal number of unproductive 

iterations, or 

 When it reaches a lower bound known for 

some instances. 

Peter Greistorfer 

(2003) 

Tabu Scatter 

Search 

• Used compound neighbourhood to perform a 

transition from an old solution to a new one. 
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[CARP]; for 

Special 

Logistical 

Problem 

• Used intensification and diversification search 

phases (long-term TS memory). 

• The admissibility is monitored by the short-

term TS memory. 

Patrick Beullens, 

Luc 

Muyldermans, 

Dirk Cattrysse & 

Dirk Van 

Oudheusden 

(2003) 

Guided Local 

Search 

Heuristic 

[CARP]; for 

general CARP 

• Neighbourhood moves (based on two types of 

neighbourhood move): 

 Single vehicle moves (flip, reverse and dir-

opt). 

 Moves between two routes (relocate, 

exchange and cross). 

• Generates the CARP local search algorithm as 

indicates by the Boolean variable changed. 

Sanne Wohlk 

(2003) 

Simulated 

Annealing 

[CARP]; for 

General CARP 

• Defining neighbourhood as: 

 Define iμ  and jμ  as being neighbours if 

iμ  equals jμ  except for two element in 

iμ which are swapped; where iμ  and jμ  as 

a label for it neighbours. 

 Pick at random iteratively a neighbour 

solution, which is immediately accepted if 

the cost is lower than the current cost. 

 If the cost is larger, the possibility of 

acceptance depends on a value of 

temperature, such that higher temperature 

means higher acceptance probability. 

Jose M. 

Belenguer & 

Enrique 

Benavent (2003) 

Cutting Plane 

Algorithm 

[CARP]; for 

General CARP 

• Use aggregated variables to formulate the 

CARP and introduce new classes of valid 

constraints. 

• Implement several procedures to identify 

constraints which are violated by the current 

LP solution. 
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• Also develop a cutting plane algorithm to 

compute a lower bound for the CARP. 

Amponsah, S.K. 

& Salhi, S. 

(2004) 

Look-ahead 

Strategy 

[CARP]; for 

Solving the 

Collection of 

Garbage 

• The idea is to examine the total demand/cost 

ratio on all possible temporary edges with 

respect to their likelihood to yield future 

advantage to prune away unpromising edges 

in the collection process and to choose edges 

that are most promising. 

• The algorithm proceeds from one junction 

(node) to one of its adjacent nodes at each 

stage. 

• If the quantity of garbage in a particular trip is 

more than or equal to a critical value Q , then 

the look-ahead strategy will shift to the least 

insertion cost rule. 

Maria Candida 

Mourao & Ligia 

Amado (2005) 

Heuristics 

[mixed 

CARP]; for a 

Refuse 

Collection 

Application 

• Based on the Eularian and directed network. 

 Starts by identifying the minimum demand 

circuit incident to each node and from this 

circuit, the biggest one is chosen. 

 Generating a trips multigraph in second 

phase where it is possible to easily identify 

the best aggregation. 

 In each iteration, choose the pairs of trips 

to be joined together according to a 

matching solution in the trips multigraph, 

where one seeks to maximize the total 

savings. 

• This heuristic method produces a feasible 

solution on a directed graph. 

Feng Chu, Heuristics • Based on two insertion methods and two 
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Nacima Labadi 

& Christian Prins 

(2005) 

[periodic 

CARP]; for 

Waste 

Collection 

phase algorithm. 

• Two insertion methods: 

 Decreasing frequencies. 

 Nearest insertion heuristics. 

• Two phase algorithm: 

 Lower Bound Heuristic (LBH). The first 

phase is guided by a lower bound to 

prepare a cluster of tasks for each day. 

 The actual trips are built in the second 

phase that consists of solving the single-

period CARP defined by each cluster using 

the hybrid algorithm. 

Humberto 

Longo, Marcus 

Poggi de Aragao 

& Eduardo 

Uchoa (2006) 

Transformation 

to the CVRP 

[CARP]; for 

General CARP 

• Transform CARP to the CVRP and solve 

using CVRP formulation. 

Alberto Amaya, 

Andre Langevin 

& Martin 

Trepanier (2007) 

Integer Linear 

Programming 

[CARP]; 

Application for 

Road Network 

Maintenance 

• Based on the formulation of a classical cutting 

plane approach by Lacomme. 

• Implement two phases of strategy: 

 Phase 1: Finding connectivity constraints. 

Finding lower bound if iteration finished 

before visiting the 5000 nodes. 

 Phase 2: Finding an upper bound. Only 

added the components that include the 

depot. 

• If the solution found is equal to a known 

lower bound, the solution is optimal. 

Jose Brandao & 

Richard Eglese 

Tabu Search 

[CARP]; for 

• Neighbourhood moves (based on three types 

of neighbourhood move): 
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(2008) General CARP  Single insertion. 

 Double insertion. 

 Swap. 

• Admissibility of moves: 

 Tabu list is fixed. 

 Set to 2
N  in Phase 1 and 6

N  in Phase 2 

after some experimentation in TSA; 

N =number of required edges. 

• Aspiration Criterion: 

 Tabu restriction maybe overridden if the 

move will produce a solution that is better 

than what has been found in the past 

(aspiration criteria). 

Joaquin Bautista, 

Elena Fernandez 

& Jordi Pereira 

(2008) 

Ant Heuristics 

[CARP]; for 

Solving an 

Urban Waste 

Collection 

• Use two different constructive greedy 

heuristics: 

 Nearest neighbour method. 

 Nearest insertion heuristic. 

• Consider several neighbourhood for a local 

search: 

 Substitution neighbourhood. 

 Reinsertion neighbourhood. 

 3-exchange neighbourhood. 

• Designed two ant heuristics that fit within the 

paradigm: 

 Solution building by means of randomized 

constructive procedure followed by a local 

search. 

 Pheromone updating to report back 

information for building of new solutions. 

Norhazwani Reactive Tabu • Dynamic tabu list size. 
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Yunos & 

Zuhaimy Ismail 

(2009) 

Search 

[CARP]; for 

solving Solid 

Waste 

Management 

Problem 

• Considering repetition to diversify the search 

process and explore the solutions. 

 

 

 

 

2.6 Review Solution Method on Waste Collection Problem 

 

 

In previous section we have seen from a literature, various solution methods used 

to solve CARP.  Most of the problem are applied to waste collection problem which they 

formulated a waste collection problem into CARP.  So this section provides a literature 

review in different solution method from the previous section that was used to solve 

waste collection problem itself.  Table 2.4 shows summarization of solution method 

used to solve waste collection problem itself in last three years. 

 

 

Table 2.4: Other Solution Method for Waste Collection Problem 

Authors Solution Method Case Study Objective 

X. Y. Wu, G. H. 
Huang, L. Liu & J. 

B.Li 
(2006) 

Solve using interval 
nonlinear 

programming 

Application to the 
planning of waste 

management 
activities in the 

Hamilton-
Wentworth Region, 

Ontario, Canada 

Focus to minimize 
the cost 

Julian Scott 
Yeomans 

(2007) 

Solve using 
combination of Grey 
Programming (GP) 
and Evolutionary 

Case study for the 
municipality of 

Hamilton-
Wentworth in the 

Focus to minimize 
operating cost 



29 
 

Simulation-
Optimization (ESO) 

Province of 
Ontario, Canada 

Jing-Quan Li, Denis 
Borenstein & Pitu B. 

Mirchandani 
(2008) 

Solve using 
minimum cost flow 

problem 

Application to 
waste collection 

problem in City of 
Porto Alegre. 

Brazil 

Focus to minimize 
the total operating 

cost and fixed 
vehicle costs 

Y. P. Li, G. H. 
Huang, Z. F. Yang 

and X. Chen 
(2009) 

Solve using inexact 
fuzzy stochastic, 

Interval parameter 
Fuzzy Linear 

Programming (IFLP) 

Application to the 
long-term planning 
of Municipal Solid 

Waste 
Management in the 

City of Regina, 
Canada 

Focus on reducing 
waste flows to the 

landfill with a 
minimizes system 

cost 

 

 

 

 

2.7 Recent Works on Reactive Tabu Search 

 

 

As we already know, there are a lot of literatures on the CARP.  So as RTS, there 

are also a lot of area of research was applied to solve using this advanced heuristic 

method.  A part of it will discuss in this section. 

 

 

 From the literature, the first approach using RTS was proposed by Xu et al. 

(1998) to recover epipolar geometry from a pair of uncalibrated images.  By minimizing 

a proposed cost function with the RTS approach, the experiments on real images show 

that this approach is effective and fast. 

 

 

O’Rourke applied the RTS for the Unmanned Aerial Vehicle (UAV) routing 

problem in 1999.  O’Rourke used the adjustment of the tabu list size as well as a penalty 

coefficient.  The penalties for missed time windows, exceeding vehicle capacity and 

exceeding vehicle range was set to the objective function.  By controlling the penalty 
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coefficient, it forced the search process in and out of feasible regions of the solution 

space and acted as an additional diversification strategy.  Harder (2000) and Kinney 

(2000) also used the same problem and method with O’Rourke.  But in Harder and 

Kinney case, they are not only adjusted the tabu list size, they also determined how 

much iteration to spend in order to improve a solution in their search process (Brown, 

2001). 

 

 

In 2000, Fukuyama was proposed RTS for load transfer operation in distribution 

systems.  The developed RTS algorithm showed that it can generate the most highly 

qualified results and realize the fastest computation for loss minimization and service 

restoration.  As for comparison, the algorithm was compared it performance with the 

modern heuristic methods such as SA and GA, and he observed that RTS is the best 

method for load transfer operation. 

 

 

 The RTS also was applied to solve a pick-up and delivery problem which was 

proved by Nanry and Barnes (2000).  Other than RTS, they also developed a hierarchical 

search methodology based on the average duration of a tour from the current solution 

and the average length of the time windows for the customers.  This search methodology 

stated which types of moves that need to consider and when to consider them.  In this 

research, Nanry and Barnes state that a large number of feasible solutions exist when the 

average time window length is large relative to the average duration of a tour.  

Therefore, this search methodology encourages more improvement moves in 

comparison to moves that add or remove tours. 

 

 

In 2006, Wassan successfully implemented the RTS to solve the classical VRP.  

He developed a new escape mechanism strategy which manipulates different 

neighbourhood schemes in a very sophisticated way in order to obtain a balanced 

diversification and intensification continuously during the search process.  In addition, 
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he compared his algorithm with the best methods in the literature using different sets of 

data. 

 

 

Castellani et al. develop their own RTS algorithm to solve automatic selection of 

Markov Random Field (MRF) control parameters in the year of 2007.  The core 

ingredient in their algorithm is the application of fitness function to measures the 

performance of particular parameters set and used escape mechanism if the fitness 

function has not increased by carrying out a random restart. 

 

 

The novel approach for an integrated placement and replacement of control and 

protective devices in distribution network feeders was discussed in 2008 by Silva et al.  

They proposed the RTS to solve the problem which the problem was modelled through 

mixed integer non-linear programming (MINLP) with real and binary variables.  By 

using RTS, the results work in the excellent performance of the algorithm. 

 

 

Also in 2008, Blochliger and Zufferey introduced one more problem that can be 

solving using RTS.  They presented a local search approach to the graph colouring 

problem and shown that their algorithm obtains competitive results on a large sample of 

benchmark graphs which are generally agreed to be difficult to colour.  The scheme 

based on adjusting their tabu tenure itself depends not only on the graph but also on the 

state of the search.  The algorithm was design to be easy to implement and does not need 

to perform an explicit check for the repetition of configurations.  The determination of 

the tabu tenure only requires the variation of the objective function. 
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2.8 Summary 

 

 

This chapter contains the important information gathered.  It includes the CARP 

formulation, some related works from the researchers and heuristics methods which can 

be use to solve the CARP regarding from previous work and also previous research on 

RTS. 



 

 

 

 

 

CHAPTER 3 

 

 

 

 

RESEARCH METHODOLOGY 

 

 

 

 

3.1 Introduction 

 

 

Nowadays, more and more municipalities, regional authorities, post office 

administrations, school buses operators, electricity and gas companies are applying such 

an arc routing system.  This phenomenon is driven to be more competitive and cost-

efficient.  This growth has been paralleled by the development of a number of powerful 

optimization techniques.  The two most important are probably branch-and-cut for exact 

optimization and mathematical formulation of Tabu Search (TS) in the area of heuristics 

(Dror, 2000).  Thus, the data in this research will be analyzed by using one of a meta-

heuristic method which is Reactive Tabu Search (RTS).  The need to expand to RTS 

instead of TS is due to ability of the method to quickly explore an unknown domain 

without the need of parameter tweaking (Castellani et al., 2007). 

 

 

This chapter presents an overview of the methods used and the characteristic that 

we use to develop our newly formulated RTS algorithm.  It begins with our research 
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framework, data source followed by explaining the terminologies in TS, a basic 

procedure for TS, a reactive tabu scheme, our TS implementation and the element of 

RTS.  We also provide the general algorithm in developing our RTS algorithm and this 

chapter end with summary of the research methodology. 

 

 

 

 

3.2 Research Methodology 

 

 

The research starts with a literature review on routing problem to understand the 

scenario of the problem.  Then we gathered a set of data and simulated it into a routing 

problem.  The data then will be analysing to model it into Travelling Salesman Problem 

(TSP), Capacitated Arc Routing Problem (CARP) or Vehicle Routing Problem (VRP).  

After modelling it, then we find out that our problem is most suitable and close to 

CARP.  This is because, our problem is arc routing problem which need to collect the 

demand in every single arc but in the same time we have to minimize the total cost 

operation.  TSP is another model for routing problem and it is only can be applied if all 

nodes are connected to each other.  Since it can be a problem to implement our problem 

into TSP because some formula or rearrangement need to be made, so we decide not to 

choose TSP as our model. 

 

 

VRP is another most popular routing problem.  This model is almost similar to 

CARP in term of its graphical network.  But for VRP, the demand is located at each of 

the nodes while in our problem, the demand is located along the arc.  If we used VRP as 

our model we need to transform from an arc routing problem to a node routing problem.  

So to make it easy, since CARP fulfil all the criteria of our problem, then we chose 

CARP as our model.  The entire research methodology can be summarized in Figure 3.1 
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Figure 3.1: Research Methodology 

 

 

 

 

3.3 Data Source 

 

 

There are two types of data that will be used to assess the performance of the 

proposed algorithm: 
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a. Simulation Data 

Several sets of instances will be generated based on original data to simulate real life 

instance of CARP in solid waste collection.  The variables involve in the data collection 

and the data generations are the demand (the quantity of waste to be collected) and the 

cost for each arc. 

 

 

b. Primary Data 

The primary data is a real life instance of CARP originating from the municipal solid 

waste collection.  The original data was collected from Southern Waste Management 

Sdn. Bhd. (SWM) – Johor Bahru branch office, a provider of a diverse range of waste 

management services for municipal authorities, commercial and industrial sectors for the 

Southern Region of Malaysia.  We confine our study on residential area in Johor Bahru 

under municipal authorities of Majlis Perbandaran Johor Bahru.  The problem is to 

design a set of solid waste collection routes, each to be served by a truck such that the 

waste at each customer is fully collected and the total expected cost is minimized. 

 

 

 

 

3.4 Terminologies in Tabu Search 

 

 

Some terminologies in TS must be defined first in order to understand how TS 

works by using memory structures.  Then from TS, some changes can be made in order 

to make it RTS.  The change to make TS become RTS is on its tabu list size, instead of 

using static tabu list size in TS, the dynamic tabu list size was applied in RTS.  

Diversification strategy is also one of a characteristic that not consider in TS but will be 

used to develop RTS.  Table 3.1 shows the terminologies of TS. 
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Table 3.1: Terminologies in TS 

TERMINOLOGY DEFINITION 

A move A transition from a current solution to its neighbouring (or 

another) solution. 

An attribute The elements that constitute the move. 

Tabu list A list of moves that are currently tabu (a list of forbidden 

exchanges to avoid cycling between the same solutions 

endlessly). 

Tabu list size The number of iterations for which a recently accepted move 

is not allowed to be reserved, sT . 

Tabu tenure An integer number telling for how long a given move will 

remain tabu. 

Aspiration level A threshold (usually the best current objective function value) 

for which the tabu status of a move can be relaxed / override 

the tabu restriction. 

Admissible move A move that is nontabu or a move that is tabu active but that 

can produce a solution well above the aspiration level. 

Forbidding strategy The tabu condition that forbid a move from being reversed. 

Freeing strategy The conditions that allow a move to become nontabu, because 

either its tabu status has become not tabu or such a move 

satisfies an aspiration criterion. 

Aspiration criterion Criterion used to identify tabu restrictions that may be 

overridden. 

Data structure The way to record full or partial past information, which helps 

avoid wasting computing time in recomputing already 

computed information in future iterations. 

Neighbour solution One move from the current solution. 

Neighbourhood The set of all possible neighbour solution that can be reached 

with one move. 
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3.5 A Basic Tabu Search Procedure 

 

 

There is a procedure to be considered in order to make computational using TS.  

A general outline of a TS procedure as state in Zainuddin, 2004 is as follows: 

 

 

Given a feasible initial solution *x  with fitness function value *z , let *xx =  and 
*)( zxz = .  While stopping criterion is not fulfilled do the following steps. 

 
[Step 1] 

• Select best admissible move that transform x  into *x  

with fitness function value )(xz ′  and add its attributes 

to the running list. 

[Step 2] 

• Perform tabu list management: compute moves (or 

attributes) to be set as tabu, i.e update the tabu list. 

[Step 3] 

• Perform exchanges: xx ′= , )()( xzxz ′= ; 

if *)( zxz <  then )(* xzz =  and xx =* . 

Result: *x  is the best of all determined solution, with fitness function value *z . 

 

 

The main features to be considered in TS implementation are as follows: 

• An initialization phase 

• A forbidding strategy  

• A freeing strategy 

• A stopping criterion 

• A diversification strategy (optional) 
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3.5.1 The Initialization 

 

 

TS procedure requires a starting solution and it is the most important part to start 

a computational.  At the initialization strategy, the initial solution, the tabu list size and 

the moves need to be define on a few attribute.  The descriptions of each of them are as 

follows: 

 

 

Initial Solution 

 

 The computational of TS algorithm has to be start with an initial solution to 

assign the value to the decision variables and to assess the fitness function.  This initial 

solution can be feasible or otherwise.  It can be generated randomly or via a suitable 

heuristic by an optimal method.  Usually there are advantages to start from high quality 

of initial solution.  However, if the initial solution is already very good, it could make 

out TS quite restrictive (Zainuddin, 2004). 

 

 

Tabu List Size 

 

 As previously mentioned in the literature, TS is a memory search method.  Thus 

the important parameter in TS is tabu list size ( ST ) which is the size of the record list of 

a previous moves.  This size varies from iteration to iteration.  The size of the tabu list 

represents its memory ability and it is hard to set.  If ST  is set to a small value it may be 

too flexible and the probability of cycling may be high.  But if ST  is set to a large value 

it may be too strict and a good solution may be missed due to the move leading to them 

remained tabu take so long time.  This can be avoided by using dynamic tabu list size.  
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Dynamic tabu list size can be periodically changes over time or also can be continuously 

change.  If the tabu list size change periodically over times, this mean that the tabu list 

size will kept fixed for certain number of iteration and the process is repeated for k 

times.  While for continuously changes, the changes of tabu list size will depend on the 

cost function for the selected moves, or in other word it will change when needed. 

 

 

Moves 

 

 In each iteration, a modification to the current solutions is necessary to produce a 

neighbourhood solution which is known as move.  This neighbourhood is constructed in 

order to identify the adjacent solutions that can be reached from any current solution.  

The size for the search neighbourhood is not limited but it must have significant 

influence on the result.  The larger tabu list size, the better the quality of the solution but 

it requires more execution time. 

 

 

 

 

3.5.2 The Forbidding Strategy 

 

 

The forbidding strategy is designed to avoid cycling problem by forbidding the 

moves that already been investigated.  The main mechanism for using memory in TS is 

to classify a subset of the moves in a neighbourhood as forbidden or tabu.  But it will not 

remain tabu forever; it only for a certain number of iterations and tabu tenure will define 

for how long it remains tabu. 
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3.5.3 The Freeing Strategy 

 

 

Tabu conditions may become too restrictive.  Therefore it should not be 

inviolable under all circumstances.  And so of that, aspiration criteria are introduced in 

the basic TS algorithm.  The aspiration criterion is the rule that overrides tabu 

restrictions.  Aspiration criterion can make a certain forbidden moves become allowable 

when it is satisfies the rule.  It works by deleting the tabu restrictions of the solutions to 

reconsider in further steps of the search.  The goal of the aspiration function is to avoid 

cycling in order to provide the ability to find an improved solution and it is organized to 

be compatible. 

 

 

 

 

3.5.4 The Stopping Criterion 

 

 

Since the algorithm is open-ended, so the stopping criterion is always needed.  It 

may run forever as the optimum is unknown.  The simplest form of stopping criterion is 

a fixed number of iterations, such as after 1000 iterations or by using computational 

time, such as after 10 minutes computations.  It always a trade-off to consider because 

maybe the computational need just two to three minutes computation, but we set it to 

stop after 10 minutes computation, so there is no sense of running the programme after 

that amount of time.  Nonetheless, if the algorithm stops too early, the optimum solution 

may not be found yet and conversely the computation time can be wasted if the 

algorithm stops too late.  Thus, the dynamic stopping criterion that is taking advantage 

of the solution changes is more suitable in most cases. 
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3.5.5 The Diversification Strategy 

 

 

Diversification provides a wider exploration of the search space and it drives the 

search into a new region.  When there is no improvement after performing some number 

of iteration, it shows that either the optimum solution has already been found or the 

neighbourhood of the solution space being searched is not good.  If it is happen, this 

mean that the algorithm need to terminate the search process or the algorithm need to 

diversify it search process.  The most common diversification strategy is a random 

restart, solutions found by other greedy heuristics or solutions obtained using an 

intelligent search that take into account past information.  This can help to improve the 

algorithm by escaping from a local optimum. 

 

 

 

 

3.6 The Reactive Tabu Scheme 

 

 

The tabu search is one of meta-strategy and it has been shown to be an effective 

and efficient scheme for combinatorial optimization.  It works by combining a hill-

climbing search strategy based on a set of elementary moves and a heuristics which is to 

avoid the stops at suboptimal points and the occurrence of cycles.  The fact that we 

already know in TS implementation is that cycle are avoided if the repetition of previous 

visited configuration is prohibited.  But it is actually not sufficient for an effective and 

efficient search technique.  The chaotic like attractor should be discouraged (Battiti & 

Tecchiolli, 1994).  And so of that, Reactive Tabu Search is applying to discover of a new 

high quality solution. 

 

 



43 
 

 

As we already known, the reactive tabu scheme totally maintains the basic 

concept and also the terminologies of TS.  What we try to do is to adapt the size to the 

problem to the current evolution of the search, also escape strategy for diversifying the 

search process.  

 

 

 

 

3.7 Tabu Search Implementation 

 

 

In this section, we present our tabu search implementation.  It contains the way 

we generate the initial solution, the element of our TS and RTS.  In the element of TS 

we provides the way we choose the move to produces the neighbourhood and which 

criteria that we choose for aspiration and stopping.  While in the element of RTS we 

state our tabu list size and how do we counter the repetition problem. 

 

 

 

 

3.7.1 The Initial Solution 

 

 

The RTS starts from an initial configuration where a good-quality of the initial 

configuration is used as a starting solution to obtain a good algorithm performance (da 

Silva et al., 2008).  The initial solutions are generated by using Cheapest Edge Method 

(CEM).  CEM was chosen as the initial solution as it is rather a simple heuristic 

approach and it is similar with Nearest Neighbour (NN) method.  They are different just 

on the move criterion, but the algorithm is almost the same.  The NN used least distance 

to move from one node to another while cheapest edge method used least cost.  NN 

typically does not find very high quality solutions, but it is often and successfully used 



44 
 

 

6

2

9 
8

1

7

5

4

3

( )0.2,30
( )0.3,30

( )0.2,30

( )0.3, 40

( )0.2, 20

( )0.1,10

( )0.3,30

( )0.1,10

( )0.2,10

( )0.4, 40

( )0.3, 40

( )0.1, 20
( )0.3, 20

( )0.2, 20

( ),q c = (Quantity of Garbage, Service Cost) 

in combination with pertubative search method and it is relatively fast and easy to use 

compare with other tour construction such as General Insertion (GI), Nearest Insertion 

(NI), Cheapest Insertion (CI), Farthest Insertion (FI) and Arbitrary Insertion (AI).  This 

is because all of them used a formula to choose the insertion of the move (Hoos & 

Stutzle, 2004). 

 

 

By using CEM, the vehicle starts by travelling from the depot.  The vehicle will 

move from one node to another with the required edge not yet served in a route that has 

the minimum cost.  If there is more than one required edge not yet served with the 

minimum cost, then ties are broken arbitrarily.  It will continue until all edge has been 

served.  When no remaining required edges can be feasibly added to the route, the route 

is completed by the vehicle returning to the depot through the minimum cost of 

deadheading path. 

 

 

A network model can be represented as shown in Figure 3.2: 

 

 

Figure 3.2: Network Model 
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While the algorithm for generating initial solution is as follows and symbols used are 

listed as follows; 

 

ijx = edge ( ),i j E A∈ ∪  traverse. 

ijkx = number of times edge ( ),i j E A∈ ∪  is traversed in trip k . 
1 ( ) ( , ) cov ,
0ijk

if the edge arc i j R is ered in trip k
y

otherwise
∈⎧

= ⎨
⎩

 

ijq = edge demand. 
Q = vehicle capacity. 

ijc = service cost of an edge ( ),i j E A∈ ∪ . 
C = total cost. 
 

 
[Step 1] 

• Find ijx , such that minij ijx c⎡ ⎤= ⎣ ⎦  unvisited arc. 

• If no more min ijc⎡ ⎤⎣ ⎦  unvisited arc and ijk ijkx y< , find ijx  

such that minij ijx c⎡ ⎤= ⎣ ⎦  visited arc that link to the 

unvisited arc. 

[Step 2] 

• Check the demand; 

• If 
( ),

ij ijk
i j R

q y Q
∈

>∑ , do not move, go to step 5 following with 

step 1. 

• Otherwise, move and proceed to step 3. 

[Step 3] 

• Update cost, 
( ), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑ . 

[Step 4] 

• If ijk ijkx y≥ , then proceed to step 5. 

• Otherwise, repeat step 1. 
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[Step 5] 

• Return to node 1 through minij ijx c⎡ ⎤= ⎣ ⎦ , then stop. 

* Always assign node 1 as a depot. 

* Ties are broken arbitrarily. 

 

 

 

 

3.7.2 Elements of Tabu Search 

 

 

There are several important elements used in the TS algorithm that need to define 

in order to develop our own algorithm.  There are a move neighbourhood structure, 

aspiration criteria and stopping criteria.  The descriptions of those elements are as 

follows: 

 

 

A Move Neighbourhood Structure: 

 

As other local search algorithms, the RTS algorithm starts with generating an 

initial solution follows by explores its neighbourhood in order to select the best move 

neighbour solution as the current solution.  For this research, we use three types of 

moves in order to define their neighbourhood.  There are 2-opt, insertion and deletion.  

For 2-opt, we only examine one combination in every iteration.  Then insertion and 

deletion are applied if it is necessary.  Its mean that, a necessary edge needs to be 

inserted and unnecessary edge or repeated arc need to be deleted in a new generated 

route to reach at a feasible route.  Then the best improvement is selected with the best 

fitness value in the neighbour solutions. 
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The basic step of 2-opt is to delete two edges from a tour and reconnect the 

remaining fragments of the tour by adding two new edges.  Figure 3.3 shows more 

clearly how 2-opt were operated. 

 

 

 
Figure 3.3: 2-opt move 

 

 

Figure 3.3 shows the initial tour is ),(),,( wvyx  while after doing the 2-opt modification, 

it becomes ),(),,( wyvx .  This 2-opt of move we use in our main neighbourhood 

structure to generate their neighbourhood and we also include the insertion and deletion 

to ensure the continuity of the route. 

 

 

Aspiration Criterion: 

 

 As mentioned above, aspiration criterion is the rules that overrides tabu 

restrictions.  If the aspiration criterion is satisfied, a tabu moves becomes allowed.  In 

other words, if a move leads to a better solution, then it is chosen even if it is tabu 

(Castellani, 2007).  There are three types of aspiration criterion as shown in Table 2.2 

above.  There are; aspiration by objective, aspiration by default and soft aspiration 

criteria.  Details description as discussed in Section 2.4.2 in Table 2.2.  In this research, 

we only consider the aspiration by default which is freeing the least cost move and its 

only work when all moves are tabu.  This means that if there is no more move are 

x x y y 

v v w w
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allowed then check to the fitness function and freed the move which have the minimum 

fitness function regardless of its tabu tenure. 

 

 

 

 

Stopping Criterion: 

 

 To terminate the computational, the algorithm will stop searching right after it 

complete diversify on the repetition and we also confining the maximum iteration to 

prevent from wasting time.  This is because, in case if there are too many repetitions, the 

algorithm may run forever until it completed diversify but in the same time the solution 

are not improve after such number of iteration.  Since the optimum is unknown, so the 

maximum number of iteration is needed. 

 

 

 

 

3.7.3 Elements of Reactive Tabu Search 

 

 

Tabu List Size: 

 

 The larger it size the stronger the memory.  However, with a fixed list size, it is 

possible that the searching trajectory may form a limit cycle (if the list size is small) and 

it also may cause low efficiency (if the list size is too large) (Xu et al., 1998).  In this 

study, firstly we defined the tabu list size to be static changes.  In the same time, we 

need to record the repetition of the objective function, its mean that record un-

improvement of objective function in every iterations.  Then if the repetition occurs for n 

periods of times, then apply the diversification strategies.  But if new best solution 

found, the tabu list size need to be increase to make sure it will not cycle itself.  
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However, if all the movement already in tabu list, then we need to decrease the tabu list 

size to loose it and preventing from being too strict.  Otherwise it might missed a good 

solution due to the move leading to them remained tabu take so long time. 

 

 

A Diversification Strategy 

 

 A diversification is needed to provide a wider exploration of the search space.  In 

this scheme, the diversification is applied when there are too many repetitions occur.  It 

work by undo the iteration to the first detect repeated iteration.  Then search for the 

neighbourhood that has the same objective function value with different route and apply 

the move and start the search process again. 

 

 

 

 

3.8 The General Reactive Tabu Search Algorithm 

 

 

Figure 3.4 shows the general entire procedures in developing RTS.  Without 

performing RTS procedure in Step 3 in a flow chart as shown in Figure 3.4, the 

development will be just a TS procedure. 
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Figure 3.4: Flow Chart of the Entire Procedure in Developing RTS 

 

 

 

 

3.9 Summary 

 

 

In general, this chapter contains our research methodology.  In this research 

methodology, the procedure, terms and terminologies in TS and RTS were discussed 

successfully.  At the end of this chapter provide the general flow chart for developing 

RTS algorithm.  Next chapter will discuss about other method that we used for 

comparing purposes which is Look Ahead Strategy (LAS) and the development of our 

TS algorithm. 



 

 

 

 

CHAPTER 4 

 

 

 

 

LOOK-AHEAD STRATEGY AND TABU SEARCH 

FOR SOLVING CAPACITATED ARC ROUTING PROBLEM 

 

 

 

 

4.1 Introduction 

 

 

This chapter presents a Look-Ahead Strategy (LAS) and Tabu Search (TS) 

implementation for solving Capacitated Arc Routing Problem (CARP).  Based on the 

initial worked by Ismail et al. (2007), a LAS computational module was developed for 

solving CARP.  The solution generated used as a benchmark to our propose solution 

approaches which is the TS and Reactive Tabu Search (RTS).  These two methods are 

used to make a comparison with our RTS algorithm.  The LAS method was refer in a 

paper, entitled “Look Ahead Heuristics for Modelling Solid Waste Collection Problems” 

by Ismail et al. (2007).  While for TS algorithm, the algorithm used to compare with 

RTS is RTS algorithm itself before applying it with element of RTS.  Then we used the 

same simulated data for comparing purposes. 
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4.2 Look-Ahead Strategy for Capacitated Arc Routing Problem 

 

 

Ismail et al., (2007) used Look-Ahead Strategy method proposed by Amponsah 

in solving the arc routing problem of the collection of garbage especially for developing 

country.  This approach conducted a case study on solid waste collection problem in the 

area of Johor Bahru under municipal authorities of Majlis Perbandaran Johor Bahru 

which is same as our area of the problem.  Initially, the problem is modelled as CARP.  

This method work to minimize the total cost of the operation which is set to be their 

fitness function.  It can be achieved by considering the minimum deadheading cycles 

through all the required edges.  A deadheading in CARP cases is stand for an empty 

movement which means that the traversal of the vehicle without give their servicing.  In 

other word, the vehicle just only passes an arc without collecting the garbage.  More 

about the development of LAS algorithm will be discuss in a next section. 

 

 

 

 

4.2.1 Basic Idea 

 

 

The most important point in this problem is the revisiting an empty arc again 

because it might increase their service cost.  In other words, empty movement need to be 

minimized as possible so that a service cost would be minimized.  They also assume that 

the estimation of the quantity of garbage in a particular arc is proportional to the arc 

distance.  Therefore, the algorithm was developed by considering the quantity  along 

the arc and the cost  of servicing the arc.  Hence, they used to combine both elements 

into the formulation, such as; 

 

      (4.1) 
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Equation (4.1) in the fitness function used to minimize the total cost.  However, 

this equation seems not performs well in terms of the demand/cost ratio in the entire 

solution.  Consequently, LAS was introduced to improve this greedy method by taking 

into account present as well later choices in the algorithm.  LAS works by inspecting the 

total demand/cost ratio on all possible temporary edges with respect to their likelihood to 

produce future advantage.  It chooses the most promising edges and removes away 

unpromising edges in the collection process.  By doing so, they can cut revisiting an 

empty arc again and at the same time the service cost will be reduce. 

 

 

 

 

4.2.2 Look-Ahead Strategy Algorithm 

 

 

Basically, the algorithm will proceeds from one junction to another which is 

adjacent to the related nodes in each stage.  For more details, Figure 4.1 shows clearly 

every single step in performing the algorithm. 
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Figure 4.1: Flowchart of LAS 
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4.3 Tabu Search for Capacitated Arc Routing Problem 

 

 

In the context of TS related to the CARP, the most appropriate solution 

procedure need to be made so that it is suitable for our CARP model.  The initial 

solution, the tabu list size, the tabu moves, the aspiration criterion and the stopping 

criterion is the main element to be defined in order to develop our own TS algorithm.  It 

can be consider as a body of solution procedure which is quite challenging to be define. 

 

 

The problem is to design a route such that the demand of each customer is fully 

collected.  In completing the task, there are some requirements that need to be consider 

which is the demand must not exceeding the maximum capacity of the vehicle while in 

the same time all arc must be served in a minimum cost.  So, the algorithm was built 

based on these requirements. 

 

 

 

 

4.3.1 Initial Solution 

 

 

Initial solution is very important in TS procedure to initialize the main search 

process.  It is because TS will start work from one solution and explore its 

neighbourhoods in order to get new regions of solutions.  Not just an initial solution 

itself is very important, the choice on defining the initial solution is also important.  To 

generate the initial solution, we use Cheapest Edge Method (CEM).  As discussed in 

Section 3.6.1, CEM was used for generating the initial solution because it is rather a 

simple heuristics approach and this will obtain a good-quality of the initial 

configuration.  Besides, it is fast and easy to use compare with other tour construction. 
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The details of the algorithm for generating an initial solution can be describe as 

follows: 

 

ijx = edge ( ),i j E A∈ ∪  traverse. 

ijkx = number of times edge ( ),i j E A∈ ∪  is traversed in trip k . 
1 ( ) ( , ) cov ,
0ijk

if the edge arc i j R is ered in trip k
y

otherwise
∈⎧

= ⎨
⎩

 

ijq = edge demand. 
Q = vehicle capacity. 

ijc = service cost of an edge ( ),i j E A∈ ∪ . 
C = total cost. 
 

 
[Step 1] 

• Find ijx , such that minij ijx c⎡ ⎤= ⎣ ⎦  unvisited arc. 

• If no more min ijc⎡ ⎤⎣ ⎦  unvisited arc and ijk ijkx y< , find ijx  

such that minij ijx c⎡ ⎤= ⎣ ⎦  visited arc that link to the 

unvisited arc. 

[Step 2] 

• Check the demand; 

• If 
( ),

ij ijk
i j R

q y Q
∈

>∑ , do not move, go to step 5 following with 

step 1. 

• Otherwise, move and proceed to step 3. 

[Step 3] 

• Update cost, 
( ), 1

K

ij ijk
i j E k

C c x
∈ =

= ∑ ∑ . 

 

[Step 4] 

• If ijk ijkx y≥ , then proceed to step 5. 



57 
 

• Otherwise, repeat step 1. 

[Step 5] 

• Return to node 1 through minij ijx c⎡ ⎤= ⎣ ⎦ , then stop. 

* Always assign node 1 as a depot. 

* Ties are broken arbitrarily. 

 

 

 

 

4.3.2 Tabu List Size 

 

 

For TS, a static tabu list size  is used.  However, a static number such as 3, 

10 or 31 or even any other numbers could not be assigned as tabu list size because the 

size of the problem may not always be the same.  Let’s say if we set it to 9, then for 

large size of problem, let say 30, the algorithm might cycle itself due to the small size of 

the tabu list and it is not efficient to use.  So to make the algorithm suitable for any 

numbers of nodes, we set tabu list size depend to the size of the problem which is equal 

to the number of nodes, n. 

 

 

In order to choose the best value for tabu list size, a variety size in multiplication 

of n were investigate.  In the investigation, we consider the multiplication of n because it 

varies from small to the large value so that the possible range will be check.  Hence, 

Table 4.1 presents the result of the investigation of the size of tabu list. 
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Table 4.1: Investigation on Tabu List Size 

n IS 
TS 

TS1 TS2 TS3 TS4 TS5 TS6 TS7 
5 380 380 380 380 380 380 380 380 
6 330 330 330 330 330 330 330 330 
7 490 430 430 430 490 490 490 430 
8 680 600 620 620 680 680 600 620 
9 820 760 760 760 760 760 760 770 
10 750 750 750 750 750 750 750 750 
11 890 890 890 890 890 890 890 890 
12 1070 1070 1070 1070 1070 1070 1070 1070 
13 1170 1140 1060 1060 1050 1060 1140 1090 
14 1260 1220 1260 1260 1220 1220 1220 1220 
15 1370 1370 1370 1370 1370 1370 1370 1370 
20 1490 1390 1490 1410 1410 1450 1470 1490 
25 2330 2330 2330 2330 2330 2330 2330 2330 
30 2680 2680 2680 2680 2680 2680 2680 2680 
50 1103 1103 1103 1103 1103 1103 1103 1103 

 

TS1 :   

TS2 :   

TS3 :   

TS4 :   

TS5 :   

TS6 :   

TS7 :   

Where  

 

 

 Table 4.1 shows the experimental results generated using different sizes of tabu 

list for up to 50 numbers of nodes.  Numbers in bold in the table shows the best results 

generated by the algorithm and we can see only TS1 gives the majority best fitness 

function among them.  Hence TS1 is chosen to be the tabu list size for CARP cases in 

our TS algorithm.  Figure 4.2 shows a specific comparison based on investigation on 
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tabu list size and it shows that TS1 always give the minimum answer compared with 

others. 

 

 

 
Figure 4.2: Investigation on Tabu List Size 
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4.3.3 Tabu Moves 

 

 

The moves attribute will base on three type of move which are 2-opt, insertion 

and deletion.  For our first step to search a neighbourhood, we explore one combination 

of 2-opt move.  The 2-opt move can be describe as shown in Figure 4.3. 

 

 

 
Figure 4.3: 2-opt Move 

 

 

Figure 4.3 clearly shows the 2-opt moves.  Before doing 2-opt move, there exists a 

connection between  and  and after 2-opt was applied in the tour, a 

connection between  and  has been deleted and a connection between  

and  have been reconnected.  The outcome of 2-opt move will be stored in the 

tabu list where it will stay there till some number of iteration which is based on the tabu 

list size. 

 

 

1. Delete two edges from tour 
2. Reconnect the remaining fragments of the tour by adding 

two new edges. 
 

  x  xy  y 

v  v w  w
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 After 2-opt move is completed, some nodes may not be connected.  This is 

because in CARP cases, not all nodes are connected to each other.  If we try to connect 

two nodes without considering the existing link between them, we might get infeasible 

answer.  So to prevent from getting infeasible, then we need to insert an arc through 

another node to connect the remaining edge of the tour.  This is called insertion which is 

our second step in exploring the neighbourhood.   

 

 

Same concept goes to our third step of moves which is deletion.  After doing 2-

opt and insertion, some edge might be repeated continuously.  This attribute possibly 

will affect our last result.  Therefore to avoid the repetition of the edge, the repeated arc 

must be delete so that the total cost of travelling can be minimized.  In a conclusion, our 

algorithm need three type of move which are 2-opt, insertion and deletion to explore 

new region of solution space. 

 

 

 

 

4.3.4 Aspiration Criterion 

 

 

An aspiration criterion is needed if all moves become tabu.  For our TS 

algorithm, aspiration by default was chosen to free the tabu move so that the algorithm 

may escape from being trap.  The move with the minimum fitness function will be freed 

from the tabu list.  In other words, the tabu status of the move with the minimum fitness 

function will be overridden. 
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4.3.5 Stopping Criterion 

 

 

Since the algorithm is open-ended and may run forever as an optimal solution is 

unknown, so the stopping criterion is needed.  The TS algorithm will stop searching 

after some number of iteration which is determine by the experimentation that shown in 

Table 4.2. 

 

 

Table 4.2: Stopping Criterion 

   

 

 As we can see in Table 4.2, even the algorithm is set to stop after 1000 iteration 

nevertheless it does not guarantees that it has reached a steady state.  This is because it 

depends on the move.  If from the beginning of the search process it has drive to an 

optimal solution, then a small number of iteration is sufficient enough to reach an 

n IS Maximum Iteration 
Max1=500 Max2=750 Max3=1000

5 380 380 380 380 
6 330 330 330 330 
7 490 430 430 430 
8 680 620 620 620 
9 820 760 760 770 
10 660 750 570 610 
11 890 890 890 890 
12 1070 1070 1060 1070 
13 1170 1140 1140 1160 
14 1260 1220 1260 1220 
15 1370 1370 1370 1370 
20 1490 1390 1470 1330 
25 2330 2330 2330 2330 
30 2680 2680 2680 2680 
50 1103 1103 1103 1103 
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optimal solution.  Hence, to ensure that the algorithm performs well and reach an 

optimal solution, then the stopping criterion is set to be maximum to 1000 iteration. 

 

 

 

 

4.3.6 Tabu Search Algorithm 

 

 

 The algorithm is needed in order to guide the process of the computational.  In 

mathematics, an algorithm is an effective method for solving a problem using a finite 

sequence of instructions.  Each algorithm is a list of well-defined instructions for 

completing a task.  Starting from an initial state, the instructions describe a computation 

that proceeds through a well-defined series of successive states, eventually terminating 

in a final ending state. 

 

 

 For TS algorithm, the algorithm is starts with generating an initial solution.  This 

initial solution generating by using CEM as described in Section 3.6.1 and the cost is 

calculate using CARP formulation. This phase is known as initial solution phase.  The 

implementation of TS will starts in the second step.  In the second step which is TS 

phase, the iteration number will be set and aspiration level,  will be initialise. 

 

 

 The third step is for searching the neighbourhood.  In this step, the 

neighbourhood will be generate by performing a single combination of 2-opt move.  

Then an insertion and deletion procedure will be applied in order to get at a feasible 

route.  The move will be evaluated to find the minimum cost,  in a next step.  This 

cost is then will be check whether it is better than .  If  is better than , then set 

.  Otherwise, this step will jump to Step 6. 
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 After performing the fourth step and it satisfy the rule, then the process will 

continue with updating the tabu list size and checking for stopping criterion.  If the 

stopping criterion is satisfied, then the iteration will go to the next iteration and the 

process in Step 3 will be followed again, or else, the best solution has been outputted. 

 

 

 Step 6 in TS algorithm is provided in order to check the move.  If the move is not 

tabu, the process will go to Step 5 but if the move is tabu, then the process will search 

for another untabu move.  If no more untabu move exist in the solution space, then the 

freeing strategy will be applied, but if untabu are still exist, the search process will back 

to Step 3.  The process will repeatedly until the stopping criterion have been satisfied. 

 

 

 The algorithm will be described more clearly in a figure form which the whole 

process of TS algorithm can be summarized in Figure 4.4. 
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Figure 4.4: The TS Algorithm 

 

 

The algorithm is given as follows: 
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[Step 1] Initial solution phase 

• Generating the initial solution using Cheapest Edge 

Method 

• Calculating the cost, aC , using CARP formulation 

[Step 2] TS phase 

• Set iteration, i= 1 

• Set aspiration level = aC  

[Step 3] Neighbourhood search 

• Perform a single combination of 2-opt move 

• Apply insertion and deletion procedures to reach at a 

feasible route 

• Evaluate move by finding the minimum cost, bC  

[Step 4] Checking the result 

• Check whether bC  is better than aC  

• If bC  is better than aC  then, 

• Set a bC C=  

• Else go to [Step 6] 

[Step 5] Updating tabu list 

• Update the tabu list 

• Check for stopping rule 

• If continue, set 1i i= + , and go to [Step 3] 

• Else best solution outputted 

[Step 6] Checking the move 

• If the move is tabu, then 

• Search the other untabu move 

• Else go to [Step 5] 

• If no more untabu move, then 

• Apply freeing strategy, accept the move and go to [Step 

5] 

• Else go to [Step 3] 
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4.4 Computational Results 

 

 

Both LAS and TS techniques have been tested on a set of instances generated from 

simulated data.  A total of 45 instances within the range of five to 50 nodes have been 

used to test the algorithm and divided into three groups which is based on the maximum 

capacity of the vehicle.  Table 4.3 shows all the instances used and the labelled for each 

of the problem according to their size of node and the maximum capacity of the vehicle 

capacity. 

 

 

Table 4.3: Type of Problem 

Size of Node 5 tonne 9 tonne 15 tonne 
5 A1 B1 C1 
6 A2 B2 C2 
7 A3 B3 C3 
8 A4 B4 C4 
9 A5 B5 C5 
10 A6 B6 C6 
11 A7 B7 C7 
12 A8 B8 C8 
13 A9 B9 C9 
14 A10 B10 C10 
15 A11 B11 C11 
20 A12 B12 C12 
25 A13 B13 C13 
30 A14 B14 C14 
50 A15 B15 C15 
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4.4.1 Look-Ahead Strategy Computational Results 

 

 

Using the LAS approach proposed by Ismail et al, (2007), the same problems 

have been used to generate the result.  Table 4.4 shows the computational results given 

from LAS algorithm. 

 

 

Table 4.4: LAS Computational Results 

Problem LAS 
A1 400 
A2 470 
A3 460 
A4 - 
A5 - 
A6 - 

 

 

As we can see in Table 4.4, only 6 type of problem which only 5 tonne of vehicle 

capacity with the number of node less than 10 can be solved by LAS proposed by Ismail, 

et al.  But unfortunately for our data, LAS failed to give the answer for problem A4, A5 

and A6.  This is because there exist an empty movement edge with length two or above 

and LAS failed to compute since its only allow an empty movement edge with length 

one, means the vehicle can only passes through an arc without servicing it once.  A lot of 

an empty movement may occur in some problem due to its network.  The routing for 

some of them may be too complicated means that the vehicle needs to pass through the 

same arc three to four or even five times in order to reach the unvisited arc or to 

complete the tour.  It might because that was the only way to get the unvisited arc or it 

might also be in term of the cost. 
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4.4.2 Tabu Search Computational Results 

 

 

A variety number in range five to 50 number of nodes with three size of the 

vehicle limit that describe earlier have been used to test the performance of TS 

algorithm.  The results generated by TS and also percentage of improvement from initial 

solution are shown in Table 4.5. 

 

 

Table 4.5: TS Computational Results 

Problem 
A : 5 tonne B : 9 tonne C : 15 tonne 

IS TS % IS TS % IS TS % 

1 380 380 0 380 380 0 380 380 0 

2 330 330 0 330 330 0 330 330 0 

3 490 430 12.24 490 430 12.24 490 430 12.24 
4 680 620 8.82 680 600 11.76 680 600 11.76 
5 820 740 9.76 820 730 10.98 820 730 10.98 
6 800 800 0 750 750 0 750 750 0 
7 1010 1010 0 890 870 2.25 890 830 6.74 
8 1100 1100 0 1150 1150 0 1150 960 16.52 
9 1050 1050 0 1060 980 7.55 1060 980 7.55 
10 1330 1330 0 1150 1150 0 1150 1050 8.70 
11 1330 1330 0 1190 1190 0 1190 1060 10.92 
12 1330 1330 0 1290 1290 0 1290 1210 6.20 
13 2290 2290 0 2400 2400 0 1990 1990 0 
14 2630 2630 0 2370 2370 0 2290 2290 0 

15 1100 1100 0 1100 1100 0 1100 1100 0 
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From the table, we can see the percentage of improvement using TS.  It clearly shows 

that not all run will generate an improvement in the search.  This is due to the already 

good initial solution generated using CEM method.  But there are still have an 

improvement on the others because CEM is not the perfect method to give the optimal 

solution.  Hence, we need to test with TS, perhaps it might have other better solution 

than CEM.  For clearly observation, refer to Figure 4.5 and Figure 4.6.  Figure 4.5 shows 

a comparison results between IS and TS in graph while Figure 4.6 shows a percentage of 

the improvement for TS computational results. 

 

 

 
Figure 4.5: Comparison between IS and TS 
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Figure 4.6: Percentage of Improvement for TS Computational Results 

 

 

 

 

4.4.3 Look-Ahead Strategy versus Tabu Search 

 

 

As mention before, these two methods (LAS and TS) are used for comparing 

purposes.  As a result, Table 4.6 shows the comparison result between LAS and TS, 

while Figure 4.7 illustrates the results in graph. 
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Table 4.6: Comparison between LAS and TS 

Problem LAS TS 
A1 400 380 
A2 470 330 
A3 460 430 
A4 

 

620 
A5 

 

740 
A6 

 

800 
A7 - 1010 
A8 - 1100 
A9 - 1050 
A10 - 1330 
A11 - 1330 
A12 - 1330 
A13 - 2290 
A14 - 2630 
A15 - 1100 

 

 

 
Figure 4.7: Comparison between LAS and TS 
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These results clearly show the weaknesses of LAS method that it cannot compute a large 

number of nodes.  The maximum number we can use in LAS only 10 nodes.  Other than 

that, it also shows that results given by LAS are not the perfect one because the results 

produce by TS is much better.  One more weaknesses on LAS is that it cannot compute 

the servicing cost if the vehicle need to pass through an empty edge again and again 

without servicing it in order to complete the route or to reach an edge that not been 

served.  In order words, LAS can only perform well for simple network. 

 

 

 

 

4.5 Summary 

 

 

This chapter described a little bit about the LAS method and described clearly 

about the development of TS model.  At the end of this chapter, we can see a 

computational results and a comparison between these two methods.  Next, we will 

discuss about the development of RTS algorithm which is develop by modification from 

TS algorithm which describe in this chapter in certain term. 



 

 

 

 

 

CHAPTER 5 

 

 

 

 

SOLUTIONS BASED ON REACTIVE TABU SEARCH 

 

 

 

 

5.1 Introduction 

 

 

 Chapter five presents a Reactive Tabu Search (RTS) algorithm developed to 

solve a Capacitated Arc Routing Problem (CARP).  RTS scheme was based on theory of 

dynamical systems which was introduced by Battiti and Tecchiolli (1994).  This 

approach maintains the basic ideas of Tabu Search (TS) with changes in the features of 

selecting tabu size.  It dynamically controls the size of tabu list.  The search mechanism 

in TS is not sufficient to arrive at the global optimum and so of that an escape strategy 

for diversifying the search process was introduced.  According to Wassan et al., 2008, 

RTS is robust enough to overcome tabu list problem and has little effect of parameter 

changes.  This chapter begins with the discussion on the implementation of RTS, 

followed by the discussion on the algorithm and finally a discussion on computational 

results. 
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5.2 Reactive Tabu Search Implementation 

 

 

Generally RTS maintain the basic concept of TS algorithm.  RTS modified the 

tabu list size and allow repetition to diversify the exploration of searching the 

neighbourhood in order to widen the solution space.  Table 5.1 explains more clearly the 

differences between TS and RTS algorithm. 

 

 

Table 5.1: The Differences between TS and RTS 

Parameter TS RTS 

Initial Solution Generated using Cheapest Edge 
Method (CEM) Same as TS 

Neighbourhood 
Structure 
(Moves) 

 
A single combination of 2-opt 
move 
Then insertion and deletion to 
reach at feasible route 
 

Same as TS 

Tabu List Size 
 

Set to be static, which is equal to 
the number of the nodes,  

 
Set to be dynamic 
Initially, 
• for  then  is set to 

 
• for  then  is set to 

 
Then, 

• if solution improve; increase 
 up to 20% of the current 
 

• if all moves become tabu; 
decrease 20% of the current 
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Aspiration 
Criterion 

 
Aspiration by default that is 
freeing the least cost move 
(check at the fitness function and 
free the minimum one) 
 

Same as TS 

Diversification 
Strategy Not apply 

 
Diversification is apply on the 
repeated solution 
Diversify if there is no 
improvement; 
• for  times (if ) 
• for  times (if ) 

 

Stopping 
Criterion 

Confine maximum iteration up to 
1000 

 
Two criterion for stopping: 
1. After algorithm complete 

diversify the neighbourhood 
2. Maximum iteration is set to be 

500 
The search stops whichever 
criterion is met first 

 

 

 

 The differences between TS and RTS have been described clearly in Table 5.1.  

From the table, the differences between both methods are tabu list size, diversification 

strategy and stopping criterion.  These three elements will be described separately in the 

next sub-section. 

 

 

 

 

5.2.1 Tabu List Size 
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RTS employed the dynamic tabu list size .  In this study, only the number 

of nodes between five up to 50 nodes had been considered.  A different tabu list size was 

assign to two different groups of nodes, namely group with less than 10 nodes and group 

with nodes more and equal to 10.  For , tabu list size is set to be  while for 

 tabu list size will be set to .  An investigation on the effect of tabu list 

size was simultaneously done with the effect of the repetition for 15 different size 

problems.  Table 5.2(a) and Table 5.2(b) show the results generated by using RTS 

algorithm with different size of tabu list size and number of repetition. 

 

 

Table 5.2(a): Investigation on Tabu List Size and Repetition 

n IS 
RTS 

RTS1 RTS2 RTS3 RTS4 RTS5 RTS6 RTS7 RTS8 
5 380 380 380 380 380 380 380 380 380 
6 330 330 330 330 330 330 330 330 330 
7 490 430 430 430 430 430 430 430 490 
8 680 620 620 670 600 600 600 600 600 
9 820 710 710 710 780 710 730 770 710 
10 660 660 600 560 600 560 570 660 660 
11 890 890 830 830 890 890 890 890 830 
12 1070 1070 1000 1070 1070 1070 1070 1060 1070 
13 1170 1080 1030 1170 1110 990 1170 1170 1170 
14 1260 1260 1110 1130 1220 1210 1110 1260 1260 
15 1370 1370 1260 1370 1370 1370 1370 1370 1370 
20 1490 1450 1380 1310 1490 1410 1410 1470 1330 
25 2330 2330 2330 2330 2330 2330 2330 2330 2330 
30 2680 2680 2680 2680 2680 2680 2680 2680 2680 
50 1103 1103 1103 1103 1103 1103 1103 1103 1103 
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Table 5.2(b): Investigation on Tabu List Size and Repetition 

n IS 
RTS 

RTS9 RTS10 RTS11 RTS12 RTS13 RTS14 RTS15
5 380 380 380 380 380 380 380 380 
6 330 330 330 330 330 330 330 330 
7 490 430 490 490 490 430 490 490 
8 680 600 670 600 600 620 600 670 
9 820 760 770 710 820 820 710 730 
10 660 570 660 660 660 660 530 530 
11 890 890 830 830 870 870 890 830 
12 1070 1060 1070 1060 1070 1070 1060 1000 
13 1170 1170 1170 1170 990 1110 1170 940 
14 1260 1050 1260 1090 1200 1170 1220 1050 
15 1370 1370 1370 1370 1370 1370 1370 1260 
20 1490 1390 1490 1410 1320 1490 1450 1270 
25 2330 2330 2330 2330 2330 2330 2330 2330 
30 2680 2680 2680 2680 2680 2680 2680 2680 
50 1103 1103 1103 1103 1103 1103 1103 1103 

 

 

RTS1 :  , Repetition =  

RTS2 :  , Repetition =  

RTS3 :  , Repetition =  

RTS4 :  , Repetition =  

RTS5 :  , Repetition =  

RTS6 :  , Repetition =  

RTS7 :  , Repetition =  

RTS8 :  , Repetition =  

RTS9 :  , Repetition =  

RTS10 :  , Repetition =  

RTS11 :  , Repetition =  

RTS12 :  , Repetition =  

RTS13 :  , Repetition =  

RTS14 :  , Repetition =  

RTS15 :  , Repetition =  

 

Where n = 5, 6, 7, ..., 50 
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 From Table 5.2(a) and Table 5.2(b), numbers in bold shows the minimum 

solution that can be reached by RTS algorithm.  The result shows that RTS15 gives a 

bigger number of solutions with the best fitness values.  There are 46.67 percent 

instances give an improvement from an initial solution, while for other tabu list of size, 

the improvement is rather limited between two or four instances only.  Although RTS15 

give majority best solution among others, but there are only for instances with the 

number of node more than and equal to 10.  For instances with the node less than 10, 

RTS15 are not be up to much in finding other solution that less than the initial solution 

while in other tabu list size, an improvement occurred.  By considering instances with 

the number of node less than 10, RTS5 give majority best solution with three out of five 

instances give an improvement from the initial solution. 

 

 

 Figure 5.1 shows the specific comparison based on investigation on tabu list size 

for nodes less than 10.  While Figure 5.2 shows the specific comparison based on 

investigation on tabu list size for 10 number of nodes and above.  These graph show that 

RTS5 and RTS15 always reach at minimum solution compared to other which only 

some problem manage to give an improvement. 
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Figure 5.1: Comparison on Tabu List Size and Repetition for  
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Figure 5.2: Comparison on Tabu List Size and Repetition for  
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Based on this investigation, RTS5, (  = ), was selected to be as tabu list size 

for the number of nodes less than 10 and RTS15, ( ), to be as tabu list 

size for the rest of it.  The selections of tabu list size are given in Table 5.3. 

 

 

Table 5.3: Tabu List Size 

Range of Nodes Tabu List Size,  

10  
10  

 

 

 Due to the dynamic value of the tabu list size, it changes during the search 

process.  This list is known as a dynamic tabu list size.  From this study, it shows that 20 

percent of the current tabu list size will increase if there is an improvement on the 

solution but the list size reduces by 20 percent if all the movement becomes tabu.  The 

values of this attribute were assigned based on the investigation tested for dynamically 

of tabu list size as shown in Table 5.4. 
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Table 5.4: Investigation on Dynamic Tabu List Size 

n IS d1 d2 d3 d4 d5 d6 d7 d8 d9 
5 380 380 380 380 380 380 380 380 380 380 
6 330 330 330 330 330 330 330 330 330 330 
7 490 430 430 430 430 490 430 430 490 430 
8 680 600 600 600 620 600 600 600 600 600 
9 820 710 710 710 710 710 710 710 820 820 
10 660 530 600 530 660 660 660 660 570 600 
11 890 830 830 890 830 830 830 890 830 830 
12 1070 1000 1070 1070 1070 1070 1060 1070 1070 1070 
13 1170 940 1000 1000 1170 1170 1170 1170 1170 1170 
14 1260 1050 1210 1130 1200 1050 1050 1130 1050 1260 
15 1370 1260 1370 1370 1370 1370 1370 1370 1370 1370 
20 1490 1270 1410 1390 1370 1450 1410 1390 1320 1390 
25 2330 2330 2330 2330 2330 2330 2330 2330 2330 2330 
30 2680 2680 2680 2680 2680 2680 2680 2680 2680 2680 
50 1103 1103 1103 1103 1103 1103 1103 1103 1103 1103 

 
d1 : increase 20%, decrease 20% 

d2 : increase 20%, decrease 50% 

d3 : increase 20%, decrease 70% 

d4 : increase 50%, decrease 20% 

d5 : increase 50%, decrease 50% 

d6 : increase 50%, decrease 70% 

d7 : increase 70%, decrease 20% 

d8 : increase 70%, decrease 50% 

d9 : increase 70%, decrease 70% 

 

 

 Table 5.4 shows the results from an investigation conducted on dynamic tabu list 

size.  The percentage of increasing and decreasing the tabu list size is based on 

experimentation and results produced by the RTS algorithm.  As shown in Table 5.4, d1 

give the best performance among others.  The results produced by d1 improved up to 

66.67 percent.  On contrary, the results produced by others improved between 20 to 

33.33 percent only.  Therefore, d1 was chosen to be a size for dynamic tabu list.  By 

selecting d1, tabu list size will increase 20 percent when a better solution found and 

decrease 20 percent when all the movement become tabu. 
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5.2.2 Diversification Strategy 

 

 

In RTS algorithm, the diversification strategy is applied to allow for repetition to 

occur.  The idea comes when the number of repetition occurs too many times in the 

solution space.  A searching trajectory seeks to jump out from current solution to another 

solution after certain number of none improving iteration.  The experimentation was 

carried out simultaneously with the experimentation of tabu list size which the results 

are provided in Table 5.2(a) and Table 5.2(b).  A different number of repetition was 

assigned to two different groups of nodes, namely group with nodes less than 10 and 

group with nodes more than or equal to 10.  For , the best time to diversify the 

search process is when there is no improvement for 2n times.  Mean while for , 

the search process will diversify when there is no improvement for 3n times.  The best 

time to diversify is given in Table 5.5. 

 

 

Table 5.5: Repetition 

Range of Nodes Repetition 

10  

10  
 

 

The diversification are done by undo the iteration to the first detected of non-

improving moves and choose the other route that have the same fitness function for 

searching another trajectory to get the best possible solution.  Figure 5.3 shows an 

illustration on how the repetition is made. 
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Figure 5.3: Illustration on Diversification Strategy 

 

 

 The algorithm needs to diversify if there is no improvement in the fitness 

function after some number of iteration.  As illustrate in Figure 5.3, let say if there is no 

improvement on the current fitness function from the first iteration, then after 2n 

iteration (example on number of nodes less than 10), the algorithm will undo and back to 

first iteration and seek for another solution that have a same value with the current 

fitness function and start exploring their moves.  This diversification will continue until 

all the possible solution that have same fitness function had been explored. 

i = 1 i = 2 i = 2n 

i = 2n+1 i = 2n+2 i = 2n 

= have a same value with the current fitness function 
= other value that worse than current fitness function 
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 Table 5.6 shows a comparing result between without the application of 

diversification and with the application of diversification.  For addition, these results 

have been illustrated in Figure 5.4 and Figure 5.5. 

 

 

Table 5.6: Investigation on Diversification Strategy 

n 
Without Diversify With Diversify 

IS RTS 
% of 

improvement
IS RTS 

% of 
improvement

5 380 380 0 380 380 0 
6 330 330 0 330 330 0 
7 490 430 12.24 490 430 12.24 
8 680 620 8.82 680 600 11.76 
9 820 820 0 820 710 13.41 
10 660 600 9.09 660 530 19.70 
11 890 890 0 890 830 6.74 
12 1070 1070 0 1070 1000 6.54 
13 1170 1140 2.56 1170 940 19.66 
14 1260 1220 3.17 1260 1050 16.67 
15 1370 1320 3.65 1370 1260 8.03 
20 1490 1390 6.71 1490 1270 14.77 
25 2330 2330 0 2330 2330 0 
30 2680 2680 0 2680 2680 0 
50 1103 1103 0 1103 1103 0 
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Figure 5.4: Comparison on a Result between Diversify and Not Diversify 

 

 

 
Figure 5.5: Comparison on Percentage of Improvement between Diversify and Not 

Diversify 
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Regarding the results provided in Table 5.6 and as clearly shown in Figure 5.4, 

results produce by the application of diversification always give the better performance 

compared without the application of diversification. While Figure 5.5 shows that, 

without the application of diversification, RTS still can present an improvement on 

initial solution but results with the application of diversification is much more improved.  

Summarization for percentage of improvement as reported in Table 5.7 shows that with 

the application of diversification, each node improve in average up to 8.63 percent while 

without the application, the improvement only at 3.08 percent.  This shows that, the 

application of diversification is useful in exploring and searching the best solution for 

RTS algorithm. 

 

 

Table 5.7: Summary on Diversification Strategy 

 Without Diversify With Diversify 
Total % of improvement 46.24 129.52 

Average % of improvement 3.08 8.63 
 

 

 

 

5.2.3 Stopping Criterion 

 

 

Since RTS is one of an iterative method to compute successive approximation to 

the solution, then a stopping criterion is needed to prevent the algorithm from running 

forever.  Because of that, choosing the good stopping criterion is very important.  In 

RTS, two ways to stop the algorithm had been used.  First, the algorithm needs to 

explore the repetition in the iteration before it could stop.  Mean that the algorithm has to 

diversify by exploring all the repetition in solution space before the stopping criterion 

can be applied.  However, sometimes in several situations, the algorithm may running 
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seems like there are no ending solution.  In preventing the algorithm from running 

forever, second criterion is used.  This second criterion will ask the algorithm to stop 

searching if it reaches at maximum iteration which is to be 500. 

 

 

Table 5.8 shows the experimental results on the number of maximum iteration.  

Its shows that the algorithm gives the same fitness function for different size of 

maximum iteration, which are 500, 750 and 1000.  This means that, 500 iterations is 

enough for the algorithm to reach at the best fitness function. 

 

 

Table 5.8: Investigation on Maximum Iteration 

n IS 
Maximum Iteration 

500 750 1000 
5 380 380 380 380 
6 330 330 330 330 
7 490 430 430 430 
8 680 600 600 600 
9 820 710 710 710 
10 660 530 530 530 
11 890 830 830 830 
12 1070 1000 1000 1000 
13 1170 940 940 940 
14 1260 1050 1050 1050 
15 1370 1260 1260 1260 
20 1490 1270 1270 1270 
25 2330 2330 2330 2330 
30 2680 2680 2680 2680 
50 1103 1103 1103 1103 
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5.3 Reactive Tabu Search Algorithm 

 

 

As earlier state, RTS development is made by modification from TS algorithm.  

So the implementation of the algorithm is almost similar with TS.  The difference is only 

in a part of repetition (in Step 7) where the implementation of diversification strategy is 

applied.  The repetition is done by undo the iteration and randomly selects the different 

route that have the same fitness function.  Then the process will turn back to Step 3 and 

start searching the neighbourhood again and so on. 

 

 

Since the tabu list size in RTS implementation is set to dynamically change 

during the search process, so the additional on when to increase and decrease the tabu 

list size is added in Step 4 and Step 6, respectively.  The complete RTS algorithm is 

shown in Figure 5.6. 
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Figure 5.6: The RTS Algorithm 

 

 

The details descriptions of the algorithm are as follows: 
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[Step 1] Initial solution phase 

• Generating the initial solution using CEM 

• Calculating the cost, aC , using CARP formulation 

[Step 2] TS phase 

• Set iteration, i= 1 

• Set aspiration level = aC  

[Step 3] Neighbourhood search 

• Perform a single combination of 2-opt move 

• Apply insertion and deletion procedures to reach at a 

feasible route 

• Evaluate move by finding the minimum cost, bC  

[Step 4] Checking the result 

• Check whether bC  is better than aC  

• If bC  is better than aC  then, 

• Set a bC C=  

• Increase the tabu list size 

• Else go to [Step 6] 

[Step 5] Updating tabu list 

• Update the tabu list and repetition 

• If repetition occur, go to [Step 7] 

• Check for stopping rule 

• If continue, set 1i i= + , and go to [Step 3] 

• Else best solution outputted 

[Step 6] Checking the move 

• If the move is tabu, then 

• Search the other untabu move 

• Else go to [Step 5] 

• If no more untabu move, then 

• Apply freeing strategy, accept the move 

• Decrease the tabu list size and go to [Step 5] 
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• Else go to [Step 3] 

[Step 7] Repetition 

• Undo the iteration and randomly select different route 

with the same fitness function 

• Then go to [Step 3] 

 

 

 

 

5.4 Computational Results 

 

 

The performance of RTS algorithm have been tested and evaluated.  Same 

instances used to test the performance of TS algorithm have been tested to RTS 

algorithm.  The performances of the RTS algorithm are shown in Table 5.9 and have 

been illustrated in Figure 5.7 and Figure 5.8.  Generally, some problems show no 

improvement on the initial solution and some of them can improve more than 25 

percent.  In detail, more than half of the total problem shows an improvement.  As 

clearly shown in Figure 5.7, results produced by RTS can still reach at a better solution 

than IS even some of them are not really improve to a better one. 
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Table 5.9: RTS Computational Results 

Problem 
A : 5 tonne B : 9 tonne C : 15 tonne 

IS RTS % IS RTS % IS RTS % 
1 380 380 0 380 380 0 380 380 0 
2 330 330 0 330 330 0 330 330 0 
3 490 430 12.24 490 430 12.24 490 430 12.24 
4 680 620 8.82 680 600 11.76 680 600 11.76 
5 820 710 13.41 820 710 13.41 820 710 13.41 
6 800 750 6.52 750 750 0 750 750 0 
7 1010 830 17.82 890 790 11.24 890 790 11.24 
8 1100 1100 0 1150 1100 4.35 1150 860 25.22 
9 1050 1050 0 1060 970 8.49 1060 970 8.49 
10 1330 1230 7.52 1150 1050 8.70 1150 1050 8.70 
11 1330 1330 0 1190 1140 4.20 1190 1060 10.92 
12 1330 1330 0 1290 1290 0 1290 1170 9.30 
13 2290 2290 0 2400 2400 0 1990 1990 0 
14 2630 2630 0 2370 2370 0 2290 2290 0 
15 1100 1100 0 1100 1080 1.82 1100 1078 2.00 

 

 

 
Figure 5.7: Comparison between IS and RTS 



 95

 

 

 
Figure 5.8: Percentage of Improvement for RTS Computational Results 

 

 

 The percentage of the improvement on the initial solution is given in Figure 5.8.  

It is shown that some instances give no improvement and some of them can give the 

improvement up to 25 percent.  The summarization of this improvement is given in 

Table 5.10. 

 

 

Table 5.10: Average Percentage of Improvement 

 A B C 
Number of improve 6 9 10 

% number of improve 40 60 66.67 
Total % of improvement 66.33 76.21 113.28 

Average % of improvement 4.42 5.08 7.55 
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 Table 5.10 shows the summary of improvement in number of problem that 

categorized in different size of maximum limit of vehicle.  For problem categorized in 

group A (5 tonnes), only six instances out of 15, which is just 40 percent that give an 

improvement compare to group C (15 tonnes), which is 66.67 percent from the number 

of instances give an improvement.  This means that, the larger it size the more 

improvement RTS could give.  This is strengthen by the total average of percentage of 

improvement that group A only improve 4.49 percent instead group C improve up to 

7.55 percent. 

 

 

 

 

5.5 Summary 

 

 

The development of RTS has been discussed clearly in this chapter.  Also 

included in this chapter are the RTS algorithm and computational result on percentage of 

improvement which is how much RTS improve from initial solution.  More analysing on 

TS and RTS will be discuss in a next chapter. 

 



 

 

 

 

CHAPTER 6 

 

 

 

 

SYSTEM DEVELOPMENT FOR 

CAPACITATED ARC ROUTING PROBLEM MODEL 

 

 

 

 

6.1 Introduction 

 

 

This chapter presents the implementation of the algorithm and methodology 

developed in previous chapters.  In this implementation, the problem of Capacitated Arc 

Routing Problem (CARP) will be simulated using simple computer programming.  It 

begins with the detail explanation of CARP’s program operation developed using 

Microsoft Visual Studio followed by the program visualisation and end with how to 

manage and use the CARP solution systems. 
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6.2 Programming with Microsoft Visual Studio 

 

 

In developing a solution to CARP, a programming was developed using 

Microsoft Visual Studio 2005 Team Suite (Trial) Edition and it is written in Visual C# 

language.  Visual Studio is a complete set of development tools for building ASP.NET 

Web applications, XML Web Services, desktop applications, and mobile applications. 

 

 

C# (pronounced "C sharp") is a programming language that is designed for 

building a variety of applications that run on the .NET Framework.  C# is an object-

oriented programming language developed by Microsoft as part of the .NET initiative.  

Anders Hejlsberg leads development of the C# language, which has a procedural, object-

oriented syntax based on C++ and includes influences from aspects of several other 

programming languages (most notably Delphi and Java) with a particular emphasis on 

simplification.  C# is simple, powerful, type-safe and object oriented.  Many innovations 

in C# enable rapid application development while retaining the expressiveness and 

elegance of C-style languages.  The Visual Studio supports Visual C# with a full-

featured code editor, compiler, project templates, designers, code wizards, a powerful 

and easy-to-use debugger, and other tools.  The .NET class library provides access to 

many operating system services, well-designed classes that speed up the development 

cycle significant and other useful features. 

 

 

 

 

6.2.1 The Visual Studio Application 

 

 

One of the collections of development tools exposed through a common user 

interface is the Visual C# integrated development environment (IDE).  Some of the tools 
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are shared with other Visual Studio languages and some of them such as C# compiler are 

unique to Visual C#.  The most important tools and windows in Visual C# are as 

follows: 

 

• The Code Editor, for writing source code. 

• The C# compiler, for converting C# source code into an executable program. 

• The Visual Studio debugger, for testing the program. 

• The Toolbox and Designer, for rapid development of user interfaces by using 

the mouse. 

• Solution Explorer, for viewing and managing project files and settings. 

• Project Designer, for configuring compiler options, deployment paths, 

resources and more. 

• Class View, for navigating through source code according to types, not files. 

• Properties Window, for configuring properties and events on controls in user 

interface. 

• Object Browser, for viewing the methods and classes available in dynamic 

link libraries including .NET Framework assemblies and COM objects. 

• Document Explorer, for browsing and searching product documentation on a 

local computer and on the internet. 

 

 

 
Figure 6.1: Basic IDE 
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 The windows for most of these tools can be opened from the View menu.  Figure 

6.1 represent the basic IDE.  The large main window is used by the Code Editor, the 

Windows Forms Designer or the Windows Presentation Foundation Designer which is 

the space needed to write the source code.  Upper-right of the main window is Solution 

Explorer window which shows all the files in the project in a hierarchical tree view.  

Lower-right of the main window is the Properties window that enable user to set 

properties and hook up events for user interface controls such as buttons and text boxes.  

The Toolbox window is located on a left-side of the main window.  Window below the 

Code Editor Window is named as Task List Window which functioning to list down the 

build errors when we compile the designed project in the Code Editor Window. 

 

 

 The C# Compiler has no window because it is not an interactive tool but we can 

set the compiler options in the Project Designer, while the Project Designer property 

pages can be accessed by right-clicking the Properties node in Solution Explorer and 

then clicking open.  All the windows in Visual C# actually can be made dock-able or 

floating, hidden or visible or it can be moved to a new locations.  Many other aspects of 

the IDE can be customizing by clicking Options on the Tools menu. 

 

 

 

 

6.3 Waste Collection Management Computational Module 

 

 

 The main purpose in developing the Waste Collection Management (WCM) 

computational module is to make the computational easier.  The computational can be 

done by a manual calculation, but it will take a very long time to complete the 

calculation.  This is because the way on how TS and RTS work.  It works by iteratively 
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searching from one solution to another solution and this make the computational so hard 

to be done manually by man-power.  Therefore, a best way to compute this type of 

problem is by using computer programming. 

 

 

 For this WCM computational module, the system is excellent to be used by the 

data with 50 numbers of nodes and less.  For data with number of nodes more than 50, 

this WCM computational module can also be used, but the space for a drawing region in 

graphical user interface (GUI) need to be widen so that it can accommodate for a large 

number of nodes.  However, the limitation is set up to 100 numbers of nodes.  This 

WCM computational module cannot afford for a calculation more than 100 numbers of 

nodes.  The modification in a coding is needed if the data more than 100 numbers of 

nodes have to be used in the calculation. 

 

 

 

 

6.4 Program Visualization; Graphical User Interface 

 

 

The GUI has been created with the purpose of making the program to be user 

friendly.  The user can key in the input and design the graph as they pleased.  This GUI 

start with a welcome message and it will display when opening the program as shown in 

Figure 6.2.  Just click an enter button to go through this welcome message. 
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Figure 6.2: Welcome GUI 

 

 

Image display in Figure 6.3 is our computational GUI which contains a drawing 

region to draw the network, a push buttons to control the behaviour of the computation 

and an output layout to give the result produce by the program.  It also contains a menu 

bar and there are three pull down menus on it which are File, Edit and Help.  Figure 6.4 

shows all the features in menu bar. 
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Figure 6.3: GUI of the Program 

 

 

There are five items in File as illustrated in Figure 6.4(a) which are New to open 

a new file, Open to call the existing file, Save and Save As to save the network design on 

drawing region in File.xml document type and Exit to close the program.  For the Edit, 

there are two items which are Undo and Copy To Clipboard as presents in Figure 6.4(b).  

The Undo menu allowing user to undo some of the errors user may have made while 

entering the data into a drawing region and Copy To Clipboard providing user to copy 

the drawing network.  Figure 6.4(c) illustrates the items in Help.  There are two of them, 

which are Information and About. 

 

 

Drawing region 

Output layout 

Menu bar 

Push button 
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(a) 

 
(b) 

 
(c) 

Figure 6.4: Features in Menu Bar 

 

 

Information provide in Information menu are as shown in Figure 6.5 while 

information provide in About menu are as shown in Figure 6.6. 
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Figure 6.5: Information Menu 

 

 

 
Figure 6.6: About Menu 

 

 

 

 

6.5 Managing the Capacitated Arc Routing Problem Program 

 

 

This program is created to be very user friendly and easy to manage.  First page 

is just an introduction page as shown in Figure 6.2.  Just click the Enter button to open 
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the computation graphical interface.  Then interface as shown in Figure 6.3 will appear 

after clicking the enter button. 

 

 

To start using this program, we need to design the input data on the drawing 

region or call the existing file if the network is already created.  In drawing a network, 

use left-click mouse to create a nodes and right-click mouse to create an arc (connection) 

between two nodes.  In connecting two nodes, a form such as shown in Figure 6.7 will 

appear to ask for a value of demand which is quantity of the garbage and a service cost.  

Key-in the value and then click ok.   

 

 

 
Figure 6.7: Form for Insert Demand and Cost 

 

 

 After complete drawing the network such as shown in Figure 6.8, then we can go 

to the computation.  To start TS or RTS computation, we need to generate the initial 

solution first.  So, click Compute Initial button to compute the initial solution.  A form 

such as in Figure 6.9 will appear to ask for the maximum capacity of the vehicle; key-in 

the maximum limit of the vehicle can load in a time and then click ok. 
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Figure 6.8: Example of Complete Network in Drawing Region 

 

 

 
Figure 6.9: Form for Maximum Capacity of the Vehicle 

 

 

 The initial solution will produce using Cheapest Edge Method (CEM) in output 

layout once we click ok in maximum capacity form.  Figure 6.10 shows the example of 

the result generated by the program in output region. 
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Figure 6.10: Example of the Initial Solution Produced By the Program 

 

 

 Lastly click the Compute TS button to get the result by using TS algorithm or 

click Compute RTS button to get the result by using RTS algorithm.  After the program 

stop computing, a message box such as shows in Figure 6.11 will appear to tell the 

computational time of running the program.  Click ok to finish it and we can see all the 

result produced by the program in output region.  Every single route that gives the 

minimum cost will list out in this region.  Figure 6.12 shows the example of the result 

produce by the program. 

 

 

 
Figure 6.11: Message Box of Computational Time 

 

 

 
Figure 6.12: Example of the Result Produced By the Program 
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6.6 Summary 

 

 

The system development on Visual C# has been discussed widely in this chapter.  

Each functions in GUI have been clearly explain.  We also provide in details the way to 

run this program.  Next chapter will be the comparison analysis of the computational 

using TS and RTS approach. 



 

 

 

 

CHAPTER 7 

 

 

 

 

ANALYSIS OF RESULTS, 

CONCLUSION AND RECOMMENDATION 

 

 

 

 

7.1 Introduction 

 

 

In this chapter, performances of Reactive Tabu Search (RTS) algorithm will be 

investigated and evaluated by comparing with Tabu Search (TS) algorithm.  The 

instances used for conducting a test on RTS algorithm are always same as TS instances.  

In this chapter, the conclusion and recommendation of the research is also provided.  

This chapter begins with the analysis of the results by comparing the results between TS 

and RTS.  At the end of this chapter, the conclusions for the whole research and also the 

recommendations are given. 
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7.2 Analysis of Results 

 

 

After some findings as discussed in the earlier chapters (Chapter 4 and Chapter 

5), the performance of the TS algorithm and RTS algorithm will be discussed and 

compared in this section.  Then the discussion will follows with the summarization on 

the advantages and disadvantages of TS and RTS.   

 

 

 Table 7.1 shows the details values of the fitness function produced by TS 

algorithm and RTS algorithm. 

 

 

Table 7.1: Comparison between TS and RTS 

Problem 
A B C 

TS RTS TS RTS TS RTS 

1 380 380 380 380 380 380 
2 330 330 330 330 330 330 
3 430 430 430 430 430 430 
4 620 620 600 600 600 600 
5 740 710 730 710 730 710 
6 800 750 750 750 750 750 
7 1010 830 870 790 830 790 
8 1100 1100 1150 1100 960 860 
9 1050 1050 980 970 980 970 
10 1330 1230 1150 1050 1050 1050 
11 1330 1330 1190 1140 1060 1060 
12 1330 1330 1290 1290 1210 1170 
13 2290 2290 2400 2400 1990 1990 
14 2630 2630 2370 2370 2290 2290 
15 1100 1100 1100 1080 1100 1078 
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Based on a computational result between Look-Ahead Strategy (LAS) and TS in 

Chapter 4, LAS gave a result slightly worse than TS and only three instances can be 

compared.  Therefore, the comparisons are only between TS and RTS computational 

results.  Table 7.1 shows that RTS results give an equal or even better solution than TS.  

For obviously evaluation, Figure 7.1 gives a clear illustration for this comparison.   

 

 

 
Figure 7.1: Comparison between TS and RTS 

 

 

Figure 7.1 shows that TS can reach the same minimum solution as RTS but never 

reach the better solution than RTS.  While in some instances, RTS can give much more 

improvement and better solution compared to TS.  This illustrates that RTS algorithm 

producing high-quality solution.  The main reason for its improvement is the ability to 

dynamically change the tabu list size which allows it to escape from being trap in tabu 

list.  In additional, a consideration of the diversification in implementing the RTS 

algorithm is also one of the reasons of the improvement in the initial solution.  The 
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diversification was done by allowing a repetition in the search process in order to 

explore their neighbourhood widely.  The summarization of advantages and 

disadvantages of TS and RTS are described in Table 7.2. 

 

 

Table 7.2: Advantages and Disadvantages of TS and RTS 

 Advantages Disadvantages 

TS 

The use of memory structures 
allows the implementation of 
procedures that are capable of 
searching the solution space 
economically and effectively. 

The static and fixed size of tabu list 
sometimes makes the exploration 
getting trap.  To fix this problem, 
RTS with dynamically changing 
the tabu list size have been 
introduced. 

RTS 

Dynamically change the tabu list 
size which allows escaping from 
being trap in tabu list is the 
strength in RTS algorithm. 
The consideration of the repetition 
in the exploration also one of the 
advantages in RTS algorithm. 

Not really suitable for the simple 
problems, mean the problem that 
not categorized in NP-hard. 

 

 

 

 

7.3 Conclusion 

 

 

As a result, several good works have been reported.  In this investigation, a 

newly modified RTS algorithm presents a high quality of solution for Capacitated Arc 

Routing Problem (CARP).  Even the development of this RTS algorithm is the simplest 

and straightforward implementation on it reactive scheme (without any long-term 

memory or any other procedure to encourage an intensification or a deep 

diversification), but it manage to give a very best performance compare to TS.  This 
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basic investigation definitely provided a better understanding on the powerful of RTS 

that will be useful in its use to other related problem. 

 

 

Subsequently for second objective, the development of a computational module 

was very useful and very helpful in finding a various results.  Without the use of this 

computational module, the computational might became a big problem since 

automatically computational by computer are not reachable by man-power. 

 

 

 

 

7.4 Recommendation 

 

 

Since this RTS algorithm is the simplest and apply only the basic procedure in 

implementing it, so we recommend to explore a deep diversification and intensification 

strategy in order to wider the search exploration process.  Other than that, the reactive 

part which is a dynamic tabu list size is also might be consider so that the future RTS 

algorithm is more powerful than the existing one.  Rather than increasing and decreasing 

the tabu list size, the use of mathematical formulation can also be considered in order to 

make it dynamic so that it become more powerful and can be applied to any range of set 

of data. 
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7.5 Future Problems: The Extension of This Problem 

 

 

 For extending this problem, there are some types of problems lies in the area of 

CARP to be considered.   There are Multiple Depot Capacitated Arc Routing Problem 

(MDCARP), Capacitated Arc Routing Problem with Stochastic Demand (CARPSD), 

Capacitated Arc Routing Problem with Time Window (CARPTW), Capacitated Arc 

Routing Problem with Refill Point (CARPRP), Periodic Capacitated Arc Routing 

Problem (PCARP) and Capacitated Arc Routing Problem with Backhauls (CARPB).  

These are the variants of CARP itself that lies in the area of arc routing that can be 

considered and reformulate the RTS algorithm to solve these problems. 

 

 

 Another problem that can be considered to solve by this RTS algorithm is in the 

area of node routing problem which are Travelling Salesman Problem (TSP) and 

Vehicle Routing Problem (VRP).  The VRP itself also have it variants as CARP that also 

can be considered in future research work.  There are Capacitated Vehicle Routing 

Problem (CVRP), Multiple Depot Vehicle Routing Problem (MDVRP), Vehicle Routing 

Problem with Stochastic Demand (VRPSD), Vehicle Routing Problem with Time 

Window (VRPTW), Vehicle Routing Problem with Pick-up and Delivery (VRPPD), 

Vehicle Routing Problem with Backhauls (VRPB), Periodic Vehicle Routing Problem 

(PVRP) and Split Delivery Vehicle Routing Problem (SDVRP). 

 

 

 To implement all these problem into this RTS algorithm, the formulation need to 

be formulated so that it suits with the types and constraints of the problems.  As well as 

the RTS algorithm, if it does not satisfy the order or constraint, so the RTS algorithm 

need to modified. 
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