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Abstract 
 

This paper discusses the application of artificial neural networks in the area of process monitoring, process control and 
fault detection. Since chemical process plants are getting more complex and complicated, the need of schemes that can improve 
process operations is highly demanded. Artificial neural network can provide a generic, non-linear solution, and dynamic 
relationship between cause and effect variables for complex and non-linear processes. This paper will describe the application 
of neural network for monitoring reactor temperature, estimation and inferential control of a fatty acid composition in a palm 
oil fractionation process and detection of reactor sensor failures in the Tennessee Eastman Plant (TEP). The potential for the 
application of neural network technology in the process industries is great. Its ability to capture and model process dynamics 
and severe process non-linearities makes it powerful tools for process monitoring, control and fault detection. 
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1. Introduction 
∗ 

As chemical process plants are getting more complex 
and more tightly integrated, the pressure on 
chemical/process engineers are more increasing. The 
pressure to improve yield, reduce wastage, improve 
product quality and above all increase profits makes it 
essential to increase the efficiency of process operations. In 
order to achieve this, one possible approach is through 
improvement of existing process monitoring, process 
control and fault detection systems. 

The application of artificial neural networks (ANNs) 
to modeling, control and fault detection for non-linear 
procesess has been intensively studied in recent years 
(Narendra and Parthasarathy, 1990; Hunt et al., 1992; 
Lightbody and Irwin, 1994). Compared with the 
conventional polynomial model-based non-linear 
identification, only the model order and the time delay are 
needed in neural modeling, as a neural network can 
represent any non-linearity to any pre-specified accuracy 
by its topology and non-linear transformation, provided 
that there are enough neurons in the hidden layer 
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(Funahashi, 1989). Model structure selection should, 
therefore, be investigated for use in neural modeling. 

Many process monitoring, control and fault detection 
schemes are based upon a representation of the dynamic 
relationship between cause and effect variables. As with 
standard linear modeling techniques, ANNs are capable of 
approximating the dynamic relationships between cause 
and effect variables. In contrast to linear techniques, ANNs 
show a potential of being able to capture non-linear 
relationships.  

This paper details some applications of neural 
networks in chemical/process engineering that have been 
studied. The paper begins by describing ANNs in more 
detail. This is followed by applications of neural networks 
in the area of process monitoring, process control and fault 
detection in Section 3, 4 and 5 respectively. Finally, a list 
of conclusions is provided in Section 6. 
 
2. Neural Networks 

 
A neural network consists of a large number of simple 

processors called neurons. A typical neuron is shown in 
Fig. 1. The neuron has n inputs, x1, x2,…., xn. These inputs 
can come from other units, or from some external source. 
The output of the unit y for the neural networks is given as: 
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Other types of transfer functions can be used besides the 
one described in equation (1). 

These simple processing units are arranged in layers, 
as shown in Fig. 2. The networks shown had three layers. 
Each neuron in the first layer has single input, the external 
input to the neural network. Each neuron in the second 
layer has an input from every neuron in the first layer and 
one additional input with a fixed value of unity. Each 
neuron in the third layer has an input from every neuron in 
the second layer and, like the second layer, one additional 
input with a fixed value of unity. The output of the third 
layer is the external output of the neural network. 

The second layer, which has no direct connections to 
the external world, is usually referred to as a hidden layer. 
The first layer is called input layer, while the third layer is 
called the output layer. More complicated networks can be 
utilized which have additional hidden layer.  
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Fig. 1: An individual neural network processing unit 
(neuron). 

 
The purpose for using the neural network is to obtain a 

mapping from a vector X to a vector Y. The size of the 
input and output layers are fixed by the number of 
components of X and Y, respectively. The user specifies the 
number of neurons Nh in the hidden layer. For a network 
with a single hidden layer, and a user-specified hidden 
layer size, the number of weighting terms in the network 
is: 

 
 yhyhhxt NNNNNNN +++= ,     (2) 

where 
 Nt = the total number of weighting terms, 
 Nx = the dimension of X, 
 Ny = the dimension of Y, and 
 Nh = the size of the hidden layer. 

 
For a given external input X to the neural network, the 
network described above will return an external output 
value Y: 
  
 ),,,( ,1 tNiit wNXfY ==

)
,     (3) 

where 
 Ŷ = is the network predicted of Y. 
 
The terminology is used to differentiate the predicted value 
of Ŷ from the observed value of Y associated with the input 
X. It is desired that the difference between the predicted 
and observed values be as small as possible. The user can 
specify the network topology – the number and sizes of the 
hidden layers – as well as the values of the weighting 
terms. Usually, the major decision of the user is 
specification of the network topology. Then, the network 
weighting terms are found as the solution of the 
optimization problem. Obtaining the optimal weights for 
the network is known as training the network. During a 
training cycle, the network is presented with examples of 
the type of mapping desired. These examples, called 
training vectors, consist of two parts, an input X and a 
target Y. 
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Fig. 2: An example of a three-layer backpropagation neural 

network. The input vector is of dimension n and the    
output vector is of dimension 1. 

 
The input is the vector being mapped from and the target is 
the vector being mapped to. The output of the network is a 
predicted output Ŷ. The optimization is set up to minimize 
the difference between the predicted values of Ŷ and the 
observed values Y. The finding of the set of weights which 
minimize the error between Y and Ŷ is called the training of 
the network. 
 
2.1 Dynamic process model formulation and identification 
 

The process model for a sampled data system can be 
formulated in its most general form as: 

 
,....,,,( 321 !!!= tttt yyyfy  
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where 
 f = specified functional relationship, 
 yt = process output at time t, 
 ut = measured process input at time t, 
 et = unmeasured process input at time t, 
 t  = discrete time index (integer values only), and 
 θt = set of parameter values at time t. 
 
The inputs and outputs can be single (scalar) or 
multivariable (vector) values. 

The identification process for a given set of input-
output can be described in three steps: 
 

1. Postulate a structure to the model ( f ). 
2. Calculate the best estimate of θt. 
3. Validate the resulting model. 

 
The identification process is often iterative in nature. For 
example, the results of the validation step may suggest a 
better structure f for describing the process. 

Dynamic model identification work performed for 
identification is almost always done assuming a simpler 
model structure than equation (4). It is usually assumed 
that the desired model is time-invariant and linear, leading 
to a model of the form: 
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where gi are the process parameters of the system. 
 
2.2 Neural network training with cross-validation 

 
We wish to find some estimation of θ which allows us 

to predict values of y. The concept of cross-validation is 
that after estimation using a given sample of data, the 
quality of the mapping is evaluated using a different set of 
data. The best mapping is defined as the one which 
minimizes the prediction error on a data set for which it 
was not trained. 

 
The cross validation technique can be summarized as: 
 

1. Separate the M data points collected into two sets, 
a training set {xi, yi, i = 1,…, m} and a test set {xi, 
yi, i = m + 1,…, M}. 

2. Construct a number of mappings using the 
training set. 

3. Evaluate the mappings using the test set. 
4. Select the mapping which minimizes some 

criterion applied to the test set. 
 
3. Neural networks for process monitoring 
 

The process system that exhibits non-linear 
characteristics can be successfully monitored through the 
utilization of neural networks. Data usually taken from 
sensors are used as inputs for the network and outputs are 
the systems that need to be monitored such as temperature, 
pressure and product quality. Based on the monitoring, the 
decision is usually made whether the process should 
continue on, or a control action should be taken to make 
correction, or faulty condition can be detected. In other 
words, process monitoring is the starting step before any 
process control or fault detection action is taken.   

To monitor temperature of a reactor, for example, sets 
of data that have an effect to the reactor temperature are 
needed. These data are the inputs for the neural network 
and the output is the temperature that needs to be 
monitored. The input data contain data of reactor pressure, 
reactor temperature and cooling water temperature with 1 
and 2 delayed terms. Elman network is used in this study 
with 3 sets of different data needed for training, validation 
and testing. Fig. 3 shows the predicted of reactor 
temperature compared to the actual temperature that 
monitored by Elman network. The result shows that Elman 
network predict the reactor temperature successfully. 

 
Fig. 3: Neural network predictor for reactor temperature 
 

The use of neural network for process monitoring has 
given a successful result. This is because the ability of 
neural networks to capture and model process dynamics 
and severe process non-linearities. 
 
4. Neural networks for process control 
 

In the neural network-based control systems, a neural 
network is often trained to estimate the unknown nonlinear 
process and a controller is then formulated based on the 
neural network. The formulation of the control signal, 

0 100 200 300 400 500 600 700
-0.5

0

0.5

1

1.5

T

r

a

i

n

i

n

g

0 100 200 300 400 500 600 700
0

0.5

1

T

e

m

p

e

r

a

t

u

r

e

 

(

s

c

a

l

e

d

)

V

a

l

i

d

a

t

i

o

n

100 200 300 400 500 600
0

0.5

1

Data Set

T

e

s

t

i

n

g

Actual Output

Predicted Output



Malaysian Science and Technology Congress, Melaka, 2001 

0 500 1000 1500 2000 2500 3000
0.45

0.5

0.55

0.6

0.65

0.7

C
8
x

Time (mins)

Online Estimation

Actual   

Estimated

0 500 1000 1500 2000 2500 3000 3500 4000
0.5

0.52

0.54

0.56

0.58

C
8
x
(
%
)

Time (mins)

Actual   

Set Point

Fig. 6: Set point tracking of product composition 
using inferential control 

however, is not easy as it has to be determined from the 
neural network model that is nonlinear with respect to its 
input arguments. It is, therefore, necessary to develop an 
approach to simplify the control signal formulation. The 
problem of control signal determination can be regarded as 
that of the inversion of the neural network model, and it 
may be solved by nonlinear optimization.  

One of the neural network-based control systems that 
have been studied is inferential control. The idea of 
inferential control is founded on the use of secondary 
measurements in the computation of control actions for the 
control of the primary variables. Fig. 4 displays the 
schematic diagram of an inferential estimation system. The 
system uses measurements of secondary process outputs, 
such as temperatures, pressures and/or flowrates, to infer 
the effect of unmeasurable disturbances on primary process 
outputs, in other words, variables being controlled, such as 
product quality. The control system uses its inference to 
adjust the control effort to counteract the effect of the 
unmeasurable disturbances on the product quality. 
Inferential control can be viewed as an extension of 
feedforward control which infers the effect of measurable 
disturbances on the product quality and adjusts the control 
effort to counteract the effect of the measured disturbances. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The capability of neural networks in providing 
inferential measurement of the fatty acid composition in a 
palm oil fractionation process is illustrated in Fig. 5. As 
clearly displayed, the neural network model is capable of 
estimating the product composition accurately and 
continuously during the operation of the plant.  

 

 
 
 
 
 
 
 

 
 
 
 
The inferential estimator was installed in a feedback 

control loop. Here, estimated values of product 
composition using the neural network model will be used 
instead of the actual measurement. The performance of this 
proposed strategy was compared to the indirect 
composition control using temperature control (i.e., base 
case). The inferential strategy was tested on set point 
tracking of the product composition. As observed in Fig. 6, 
satisfactory performance was obtained 

 
 
 

 
 
 
 
 
 
 
 

The use of inferential estimators constructed using 
ANN has provided efficient estimation of the product 
composition. The implementation of the inferential control 
has also been successful. It is therefore concluded that the 
use of inferential estimation and control strategy is a viable 
approach when dealing with frequently disturbed processes 
or in cases where the feed composition is uncertain. 
 
5. Neural networks for fault detection 
 

Fault detection and diagnosis is becoming extremely 
important for safe and optimal operation of process plants. 
There has been considerable work done on fault detection 
using neural networks. In fault detection application, the 
inputs to the network include the symptoms present or 
absent in the system being diagnosed, and the outputs of 
the network represent the present or absence of particular 
fault causes. In fault diagnosis of physical systems, such as 
chemical plants, the inputs to the network include the 
sensor values or alarm states of the process, either used 
directly or with minor data conditioning performed first.  

Neural networks used for process fault detection 
generally use sensor measurement and process alarms as 
inputs, while the outputs represent particular fault types, or 
categories. In many of fault detection and diagnosis neural 
network systems previously developed (Hoskins and 
Himmelblau, 1988; Venkatasubramanian and Chen, 1989; 
Watanabe et al., 1989), each output neuron corresponds to 
one particular fault possibility. In the ideal situation, if the 
value of a neuron in the output layer of the network is 
equal to one, then the fault represented by that particular 
neuron is considered to be present. Conversely, if the 

Fig. 4: Inferential Control Strategy 
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Fig. 5: On-line Estimation of Product Composition 
Using ANN Model 
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output of a neuron in the output layer is equal to zero, the 
fault represented by that particular neuron is judged to be 
absent. A fault-free state is indicated when the values of all 
output neurons are equal to zero, and multiple faults are 
indicated when the values of multiple output neurons are 
equal to one. 

In this paper, detection of reactor sensor failures in the 
Tennessee Eastman Plant (TEP) has been studied. Fig. 7 
shows the schematic diagram of the process. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Schematic diagram of Tennessee Eastman Plant 
(TEP). 
 

This study focused on the malfunctions of the process 
caused by the failure of the pressure, temperature and 
cooling water temperature sensors in the reactor.  Faulty 
conditions are simulated using the Tennessee Eastman 
Plant model coded in MATLAB language. Sensor failures 
are created causing the normal process operation to shift to 
a faulty operation mode. For the pressure sensor, deviation 
of 4.0% or greater from the normal condition is assumed to 
cause malfunction to the process. Similarly, for 
temperature and cooling water temperature sensors the 
figures are 6.0% and 3.0% respectively. 

For fault detection scheme, two types of networks are 
needed. First is predictor, to predict behavior of reactor 
temperature and second is classifier, to classify type of 
fault. Elman network is used for predictor with pressure, 
temperature and cooling water temperature with 1 and 2 
delayed terms as inputs. Behavior of reactor temperature is 
depicted in Fig. 3. Meanwhile for classifier multilayer 
feedforward neural network with one input and three 
outputs F1, F2 and F3 represent pressure, temperature and 
cooling water temperature sensor fault, respectively. These 
two networks are trained using Levenberg-Marquardt 
learning algorithm. Input for classifier is in the form of 
residual signal from predictor. 

The outputs of the classifier are set between the values 
of 0 and 1. In this study, the classifier is designed in such a 
way that the faults are monitored and alarm signal is 

generated when the classifier’s output reached the output 
index 0.8. 0.8 is an assigned value for the residual reactor 
pressure. When the residual reactor pressure beyond the 
assigned value, it indicated that the actual reactor pressure 
has deviated from its normal operating condition. Fig. 8 
and 9 show fault detection for reactor pressure sensor fault 
(F1) and reactor cooling water temperature sensor fault 
(F3), respectively. 

 
Fig. 8: Fault detection for reactor pressure sensor fault (F1) 

 
Fig. 9: Fault detection for reactor cooling water 
temperature sensor fault (F3) 
 

The results revealed the success of the classifiers in 
detecting the process fault in the dynamic operation 
condition. The classifier’s outputs reached the index 0.8 to 
indicate the violation of operating limit and the cause of 
the violation.  
 
6. Conclusion 

 
ANN-based systems for process monitoring, process 

control and fault detection have been studied. Application 
of neural network in monitoring reactor temperature gave a 
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successful result. Neural network also used as an estimator 
and inferential controller to determine composition of fatty 
acid in a palm oil fractionation process. Its results also 
indicated that neural network can be successfully applied. 
For detecting sensor fault, neural network-based classifiers 
have successfully been applied to detect sensor faults in the 
Tennessee Eastman Plant. From all the results, it is shown 
that neural network can capture and model process 
dynamics and severe process non-linearities makes neural 
network a powerful tool in process monitoring, control and 
fault detection.  
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